1
|
Hong Z, Xu H, Ni K, Yang Y, Deng S. Effect of Cyclosporin H on ischemic injury and neutrophil infiltration in cerebral infarct model of rats via PET imaging. Ann Nucl Med 2024; 38:337-349. [PMID: 38360964 DOI: 10.1007/s12149-024-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.
Collapse
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi, 214063, China
| | - Hong Xu
- Department of Oncology, Changshu Hospital Affiliated to Soochow University, Changzhou No. 1 People's Hospital, Suzhou, 215006, China
| | - Kairu Ni
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yi Yang
- Department of Nuclear Medicine, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00818-3. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
3
|
Sun L, Wang J, Lei J, Zhang Y, Zhang Y, Zhang Y, Xing S. Differential gene expression and miRNA regulatory network in coronary slow flow. Sci Rep 2024; 14:8419. [PMID: 38600259 PMCID: PMC11006858 DOI: 10.1038/s41598-024-58745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Coronary slow flow (CSF) is characterized by slow progression of coronary angiography without epicardial stenosis. The aim of this study was to explore the potential biomarkers and regulatory mechanism for CSF. Peripheral blood mononuclear cells from 3 cases of CSF and 3 healthy controls were collected for high-throughput sequencing of mRNA and miRNA, respectively. The differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) was identified. A total of 117 DE-mRNAs and 32 DE-miRNAs were obtained and they were mainly enriched in immune and inflammatory responses. Twenty-six DE-mRNAs were the predicted target genes for miRNAs by RAID, and then the regulatory network of 15 miRNAs were constructed. In addition, through the PPI network, we identified the three genes (FPR1, FPR2 and CXCR4) with larger degrees as hub genes. Among them, FPR1 was regulated by hsa-miR-342-3p, hsa-let-7c-5p and hsa-miR-197-3p and participated in the immune response. Finally, we validated the differential expression of hub genes and key miRNAs between 20 CSF and 20 control. Moreover, we found that miR-342-3p has a targeted regulatory relationship with FPR1, and their expression is negatively correlated. Then we established a hypoxia/reoxygenation (H/R) HUVEC model and detected FPR1, cell proliferation and apoptosis. Transfection with miR-342-3p mimics can significantly promote the proliferation of HUVEC under H/R conditions. FPR1 were associated with CSF as a biomarker and may be regulated by miR-342-3p potential biomarkers.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Jimin Lei
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Ying Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yue Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yaling Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Shifeng Xing
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
4
|
Li F, Wen Z, Wu C, Yang Z, Wang Z, Diao W, Chen D, Xu Z, Lu Y, Liu W. Simultaneous Activation of Immunogenic Cell Death and cGAS-STING Pathway by Liver- and Mitochondria-Targeted Gold(I) Complexes for Chemoimmunotherapy of Hepatocellular Carcinoma. J Med Chem 2024; 67:1982-2003. [PMID: 38261008 DOI: 10.1021/acs.jmedchem.3c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Induction of immunogenic cell death (ICD) and activation of the cyclic GMP-AMP synthase stimulator of interferon gene (cGAS-STING) pathway are two potent anticancer immunotherapeutic strategies in hepatocellular carcinoma (HCC). Herein, 12 liver- and mitochondria-targeting gold(I) complexes (9a-9l) were designed and synthesized. The superior complex 9b produced a considerable amount of reactive oxygen species (ROS) and facilitated DNA excretion, the ROS-induced ICD and DNA activated the cGAS-STING pathway, both of which evoked an intense anticancer immune response in vitro and in vivo. Importantly, 9b strongly inhibited tumor growth in a patient-derived xenograft model of HCC. Overall, we present the first case of simultaneous ICD induction and cGAS-STING pathway activation within the same gold-based small molecule, which may provide an innovative strategy for designing chemoimmunotherapies for HCC.
Collapse
Affiliation(s)
- Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chuanxing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 210011, P. R. China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Zhaoran Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wenjing Diao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Dahong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
6
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
7
|
Kim D, Seok OH, Ju S, Kim SY, Kim JM, Lee C, Hwang CS. Detection of Nα-terminally formylated native proteins by a pan-N-formyl methionine-specific antibody. J Biol Chem 2023; 299:104652. [PMID: 36990220 PMCID: PMC10164907 DOI: 10.1016/j.jbc.2023.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
N-formyl methionine (fMet)-containing proteins are produced in bacteria, eukaryotic organelles mitochondria and plastids, and even in cytosol. However, Nα-terminally (Nt-) formylated proteins have been poorly characterized because of the lack of appropriate tools to detect fMet independently of downstream proximal sequences. Using a fMet-Gly-Ser-Gly-Cys peptide as an antigen, we generated a pan-fMet-specific rabbit polyclonal antibody called anti-fMet. The raised anti-fMet recognized universally and sequence context-independently Nt-formylated proteins in bacterial, yeast, and human cells as determined by a peptide spot array, dot blotting, and immunoblotting. We anticipate that the anti-fMet antibody will be broadly used to enable an understanding of the poorly explored functions and mechanisms of Nt-formylated proteins in various organisms.
Collapse
|
8
|
Pyridazinones and Structurally Related Derivatives with Anti-Inflammatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123749. [PMID: 35744876 PMCID: PMC9229294 DOI: 10.3390/molecules27123749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
Persistent inflammation contributes to a number of diseases; therefore, control of the inflammatory response is an important therapeutic goal. In an effort to identify novel anti-inflammatory compounds, we screened a library of pyridazinones and structurally related derivatives that were used previously to identify N-formyl peptide receptor (FPR) agonists. Screening of the compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP1-Blue monocytic cells identified 48 compounds with anti-inflammatory activity. Interestingly, 34 compounds were FPR agonists, whereas 14 inhibitors of LPS-induced NF-κB activity were not FPR agonists, indicating that they inhibited different signaling pathways. Further analysis of the most potent inhibitors showed that they also inhibited LPS-induced production of interleukin 6 (IL-6) by human MonoMac-6 monocytic cells, again verifying their anti-inflammatory properties. Structure–activity relationship (SAR) classification models based on atom pair descriptors and physicochemical ADME parameters were developed to achieve better insight into the relationships between chemical structures of the compounds and their biological activities, and we found that there was little correlation between FPR agonist activity and inhibition of LPS-induced NF-κB activity. Indeed, Cmpd43, a well-known pyrazolone-based FPR agonist, as well as FPR1 and FPR2 peptide agonists had no effect on the LPS-induced NF-κB activity in THP1-Blue cells. Thus, some FPR agonists reported to have anti-inflammatory activity may actually mediate their effects through FPR-independent pathways, as it is suggested by our results with this series of compounds. This could explain how treatment with some agonists known to be inflammatory (i.e., FPR1 agonists) could result in anti-inflammatory effects. Further research is clearly needed to define the molecular targets of pyridazinones and structurally related compounds with anti-inflammatory activity and to define their relationships (if any) to FPR signaling events.
Collapse
|
9
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Zhu H, Tan J, Zhao Y, Wang Z, Wu Z, Li M. Potential Role of the Chemotaxis System in Formation and Progression of Intracranial Aneurysms Through Weighted Gene Co-Expression Network Analysis. Int J Gen Med 2022; 15:2217-2231. [PMID: 35250300 PMCID: PMC8893157 DOI: 10.2147/ijgm.s347420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Background Intracranial aneurysm (IA) is the most common and is the main cause of spontaneous subarachnoid hemorrhage (SAH). The underlying molecular mechanisms for preventing IA progression have not been fully identified. Our research aimed to identify the key genes and critical pathways of IA through gene co-expression networks. Methods Gene Expression Omnibus (GEO) datasets GSE13353, GSE54083 and GSE75436 were used in the study. The genetic data were analyzed by weighted gene co-expression network analysis (WGCNA). Then the clinically significant modules were identified and the differentially expressed genes (DEGs) with the genes were intersected in these modules. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the function or pathway. In addition, the composition of immune cells was analyzed by CIBERSORT algorithm. Finally, the hub genes and key genes were identified by GSE122897. Results A total of 266 DEGs and two modules with clinical significance were identified. The inflammatory response and immune response were identified by GO and KEGG. CCR5, CCL4, CCL20, and FPR3 were the key genes in the module correlated with IA. The proportions of infiltrating immune cells in IA and normal tissues were different, especially in terms of macrophages and mast cells. Conclusion The chemotactic system has been identified as a key pathway of IA, and interacting macrophages may regulate this pathological process.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Zhiwu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
- Correspondence: Meihua Li, Email
| |
Collapse
|
11
|
Xu J, Zhang MY, Jiao W, Hu CQ, Wu DB, Yu JH, Chen GX. Identification of Candidate Genes Related to Synovial Macrophages in Rheumatoid Arthritis by Bioinformatics Analysis. Int J Gen Med 2021; 14:7687-7697. [PMID: 34764682 PMCID: PMC8575484 DOI: 10.2147/ijgm.s333512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is one of the most prevalent inflammatory arthritis worldwide. However, the genes and pathways associated with macrophages from synovial fluids in RA patients still remain unclear. This study aims to screen and verify differentially expressed genes (DEGs) related to identifying candidate genes related to synovial macrophages in rheumatoid arthritis by bioinformatics analysis. Methods We searched the Gene Expression Omnibus (GEO) database, and GSE97779 and GSE10500 with synovial macrophages expression profiling from multiple RA microarray dataset were selected to conduct a systematic analysis. GSE97779 included nine macrophage samples from synovial fluids of RA patients and five macrophage samples from primary human blood of HC. GSE10500 included five macrophage samples from synovial fluids of RA patients and three macrophage samples from primary human blood of HC. Functional annotation of DEGs was performed, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein–protein interaction (PPI) network of DEGs was established using the STRING database. CytoHubba was used to identify hub genes. MCODE was used to determine gene clusters in the interactive network. Results There were 2638 DEGs (1425 upregulated genes and 1213 downregulated ones) and 889 DEGs (438 upregulated genes and 451 downregulated ones) selected from GSE97779 and GSE10500, respectively. Venn diagrams showed that 173 genes were upregulated and 106 downregulated in both two datasets. The top 10 hub genes, including FN1, VEGFA, HGF, SERPINA1, MMP9, PPBP, CD44, FPR2, IGF1, and ITGAM, were identified using the PPI network. Conclusion This study provides new insights for the potential biomarkers and the relevant molecular mechanisms in RA patients. Our findings suggest that the 10 candidate genes might be used in diagnosis, prognosis, and therapy of RA in the future. However, further studies are required to confirm the expression of these genes in synovial macrophages in RA and control specimen.
Collapse
Affiliation(s)
- Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ming-Ying Zhang
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Wei Jiao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Cong-Qi Hu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan-Bin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jia-Hui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Guang-Xing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Park B, Lee M, Kim SD, Jeong YS, Kim JC, Yang S, Kim HY, Bae YS. Activation of formyl peptide receptor 1 elicits therapeutic effects against collagen-induced arthritis. J Cell Mol Med 2021; 25:8936-8946. [PMID: 34378309 PMCID: PMC8435430 DOI: 10.1111/jcmm.16854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder which shows production of autoantibodies, inflammation, bone erosion, swelling and pain in joints. In this study, we examined the effects of an immune-modulating peptide, WKYMVm, that is an agonist for formyl peptide receptors (FPRs). Administration of WKYMVm into collagen-induced arthritis (CIA) mice, an animal model for RA, attenuated paw thickness, clinical scores, production of type II collagen-specific antibodies and inflammatory cytokines. WKYMVm treatment also decreased the numbers of TH 1 and TH 17 cells in the spleens of CIA mice. WKYMVm attenuated TH 1 and TH 17 differentiation in a dendritic cell (DC)-dependent manner. WKYMVm-induced beneficial effects against CIA and WKYMVm-attenuated TH 1 and TH 17 differentiation were reversed by cyclosporin H but not by WRW4, indicating a crucial role of FPR1. We also found that WKYMVm augmented IL-10 production from lipopolysaccharide-stimulated DCs and WKYMVm failed to suppress TH 1 and TH 17 differentiation in the presence of anti-IL-10 antibody. The therapeutic administration of WKYMVm also elicited beneficial outcome against CIA. Collectively, we demonstrate that WKYMVm stimulation of FPR1 in DCs suppresses the generation of TH 1 and TH 17 cells via IL-10 production, providing novel insight into the function of FPR1 in regulating CIA pathogenesis.
Collapse
Affiliation(s)
- Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sang Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
13
|
The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int J Mol Sci 2021; 22:ijms22073706. [PMID: 33918194 PMCID: PMC8038163 DOI: 10.3390/ijms22073706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Formyl peptide receptors (FPRs) are cell surface pattern recognition receptors (PRRs), belonging to the chemoattractant G protein-coupled receptors (GPCRs) family. They play a key role in the innate immune system, regulating both the initiation and the resolution of the inflammatory response. FPRs were originally identified as receptors with high binding affinity for bacteria or mitochondria N-formylated peptides. However, they can also bind a variety of structurally different ligands. Among FPRs, formyl peptide receptor-like 1 (FPRL1) is the most versatile, recognizing N-formyl peptides, non-formylated peptides, and synthetic molecules. In addition, according to the ligand nature, FPRL1 can mediate either pro- or anti-inflammatory responses. Hp(2-20), a Helicobacter pylori-derived, non-formylated peptide, is a potent FPRL1 agonist, participating in Helicobacter pylori-induced gastric inflammation, thus contributing to the related site or not-site specific diseases. The aim of this review is to provide insights into the role of FPRs in H. pylori-associated chronic inflammation, which suggests this receptor as potential target to mitigate both microbial and sterile inflammatory diseases.
Collapse
|
14
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
15
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
16
|
Pouwels SD, Wiersma VR, Fokkema IE, Berg M, Ten Hacken NHT, van den Berge M, Heijink I, Faiz A. Acute cigarette smoke-induced eQTL affects formyl peptide receptor expression and lung function. Respirology 2020; 26:233-240. [PMID: 33078507 PMCID: PMC7983955 DOI: 10.1111/resp.13960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Background and objective Cigarette smoking is one of the most prevalent causes of preventable deaths worldwide, leading to chronic diseases, including chronic obstructive pulmonary disease (COPD). Cigarette smoke is known to induce significant transcriptional modifications throughout the respiratory tract. However, it is largely unknown how genetic profiles influence the smoking‐related transcriptional changes and how changes in gene expression translate into altered alveolar epithelial repair responses. Methods We performed a candidate‐based acute cigarette smoke‐induced eQTL study, investigating the association between SNP and differential gene expression of FPR family members in bronchial epithelial cells isolated 24 h after smoking and after 48 h without smoking. The effects FPR1 on lung epithelial integrity and repair upon damage in the presence and absence of cigarette smoke were studied in CRISPR‐Cas9‐generated lung epithelial knockout cells. Results One significant (FDR < 0.05) inducible eQTL (rs3212855) was identified that induced a >2‐fold change in gene expression. The minor allele of rs3212855 was associated with significantly higher gene expression of FPR1, FPR2 and FPR3 upon smoking. Importantly, the minor allele of rs3212855 was also associated with lower lung function. Alveolar epithelial FPR1 knockout cells were protected against CSE‐induced reduction in repair capacity upon wounding. Conclusion We identified a novel smoking‐related inducible eQTL that is associated with a smoke‐induced increase in the expression of FPR1, FPR2 and FPR3, and with lowered lung function. in vitro FPR1 down‐regulation protects against smoke‐induced reduction in lung epithelial repair.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Immeke E Fokkema
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Irene Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Application of small molecule FPR1 antagonists in the treatment of cancers. Sci Rep 2020; 10:17249. [PMID: 33057069 PMCID: PMC7560711 DOI: 10.1038/s41598-020-74350-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The formylpeptide receptor-1 (FPR1) is a member of the chemotactic GPCR-7TM formyl peptide receptor family, whose principle function is in trafficking of various leukocytes into sites of bacterial infection and inflammation. More recently, FPR1 has been shown to be expressed in different types of cancer and in this context, plays a significant role in their expansion, resistance and recurrence. ICT12035 is a selective and potent (30 nM in calcium mobilisation assay) small molecule FPR1 antagonist. Here, we demonstrate the efficacy of ICT12035, in a number of 2D and 3D proliferation and invasion in vitro assays and an in vivo model. Our results demonstrate that targeting FPR1 by a selective small molecule antagonist, such as ICT12035, can provide a new avenue for the treatment of cancers.
Collapse
|
18
|
Methods in isolation and characterization of bovine monocytes and macrophages. Methods 2020; 186:22-41. [PMID: 32622986 DOI: 10.1016/j.ymeth.2020.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Monocytes and macrophages belong to the mononuclear phagocyte system and play important roles in both physiological and pathological processes. The cells belonging to the monocyte/macrophage system are structurally and functionally heterogeneous. Several subsets of monocytes have been previously identified in mammalian blood, generating different subpopulations of macrophages in tissues. Although their distribution and phenotype are similar to their human counterpart, bovine monocytes and macrophages feature differences in both functions and purification procedures. The specific roles that monocytes and macrophages fulfil in several important diseases of bovine species, including among the others tuberculosis and paratuberculosis, brucellosis or the disease related to peripartum, remain still partially elusive. The purpose of this review is to discuss the current knowledge of bovine monocytes and macrophages. We will describe methods for their purification and characterization of their major functions, including chemotaxis, phagocytosis and killing, oxidative burst, apoptosis and necrosis. An overview of the flow cytometry and morphological procedures, including cytology, histology and immunohistochemistry, that are currently utilized to describe monocyte and macrophage main populations and functions is presented as well.
Collapse
|
19
|
Piras G, Rattazzi L, Paschalidis N, Oggero S, Berti G, Ono M, Bellia F, D'Addario C, Dell'Osso B, Pariante CM, Perretti M, D'Acquisto F. Immuno-moodulin: A new anxiogenic factor produced by Annexin-A1 transgenic autoimmune-prone T cells. Brain Behav Immun 2020; 87:689-702. [PMID: 32126289 DOI: 10.1016/j.bbi.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.
Collapse
Affiliation(s)
- Giuseppa Piras
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lorenza Rattazzi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nikolaos Paschalidis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Giulio Berti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London,United Kingdom
| | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences "Luigi Sacco", ASST Fatebenefratelli Sacco, Ospedale Sacco, Polo Universitario, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom.
| |
Collapse
|
20
|
Im DS. Maresin-1 resolution with RORα and LGR6. Prog Lipid Res 2020; 78:101034. [DOI: 10.1016/j.plipres.2020.101034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
|
21
|
Nawaz MI, Rezzola S, Tobia C, Coltrini D, Belleri M, Mitola S, Corsini M, Sandomenico A, Caporale A, Ruvo M, Presta M. D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3. Angiogenesis 2020; 23:357-369. [PMID: 32152757 DOI: 10.1007/s10456-020-09714-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
N-formyl peptide receptors (FPRs) are G protein-coupled receptors involved in the recruitment and activation of immune cells in response to pathogen-associated molecular patterns. Three FPRs have been identified in humans (FPR1-FPR3), characterized by different ligand properties, biological function and cellular distribution. Recent findings from our laboratory have shown that the peptide BOC-FLFLF (L-BOC2), related to the FPR antagonist BOC2, acts as an angiogenesis inhibitor by binding to various angiogenic growth factors, including vascular endothelial growth factor-A165 (VEGF). Here we show that the all-D-enantiomer of L-BOC2 (D-BOC2) is devoid of any VEGF antagonist activity. At variance, D-BOC2, as well as the D-FLFLF and succinimidyl (Succ)-D-FLFLF (D-Succ-F3) D-peptide variants, is endowed with a pro-angiogenic potential. In particular, the D-peptide D-Succ-F3 exerts a pro-angiogenic activity in a variety of in vitro assays on human umbilical vein endothelial cells (HUVECs) and in ex vivo and in vivo assays in chick and zebrafish embryos and adult mice. This activity is related to the capacity of D-Succ-F3 to bind FRP3 expressed by HUVECs. Indeed, the effects exerted by D-Succ-F3 on HUVECs are fully suppressed by the G protein-coupled receptor inhibitor pertussis toxin, the FPR2/FPR3 antagonist WRW4 and by an anti-FPR3 antibody. A similar inhibition was observed following WRW4-induced FPR3 desensitization in HUVECs. Finally, D-Succ-F3 prevented the binding of the anti-FPR3 antibody to the cell surface of HUVECs. In conclusion, our data demonstrate that the angiogenic activity of D-Succ-F3 is due to the engagement and activation of FPR3 expressed by endothelial cells, thus shedding a new light on the biological function of this chemoattractant receptor.
Collapse
Affiliation(s)
- Mohd I Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Ophthalmology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Andrea Caporale
- Istituto Di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- Istituto Di Cristallografia, CNR, Trieste, Italy
| | - Menotti Ruvo
- Istituto Di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- AnBition srl, Napoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Italian Consortium for Biotechnology (CIB), Unit of Brescia, Trieste, Italy.
| |
Collapse
|
22
|
Lee HY, Kim HS, Jeong YS, Kim JC, Bae YS, Jo YH, Park JS, Bae YS. A membrane-tethering pepducin derived from formyl peptide receptor 3 shows strong therapeutic effects against sepsis. Biochem Biophys Res Commun 2020; 524:156-162. [PMID: 31982133 DOI: 10.1016/j.bbrc.2020.01.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/11/2020] [Indexed: 01/12/2023]
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors mainly expressed in inflammatory myeloid cells. Previous reports demonstrated that human neutrophils express only FPR1 and FPR2 but not FPR3. Here, we found that FPR3 is expressed in sepsis patient derived neutrophils and Fpr3 is expressed in the mouse neutrophils. To test the role of Fpr3 in neutrophil activity, we synthesized Fpr3 pepducins and successfully developed an agonistic pepducin that stimulates Fpr3, eliciting calcium increase and chemotactic migration of neutrophils. We also found that administration of an Fpr3 pepducin in an experimental mouse sepsis model significantly increased the survival rate. The pepducin markedly inhibited lung injury, splenocyte apoptosis, and inflammatory cytokine production. Bacterial counts were significantly decreased by the pepducin in septic mice. Based on these results, we suggest that FPR3 can be regarded as a new target to control sepsis, and the newly generated Fpr3-based pepducin can be used for the development of anti-septic agents.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
23
|
Wu Q, Chong L, Shao Y, Chen S, Li C. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol 2019; 73:414-423. [PMID: 31152979 DOI: 10.1016/j.intimp.2019.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and is mainly caused by hyperoxia exposure and mechanical ventilation. Alveolar simplification, pulmonary vascular abnormalities and pulmonary inflammation are the main pathological changes in hyperoxic lung injury animals. Lipoxin A4 (LXA4) is an important endogenous lipid that can mediate the regression of inflammation and plays a role in acute lung injury and asthma. The purpose of this study was to evaluate the effects of LXA4 on inflammation and lung function in neonatal rats with hyperoxic lung injury and to explore the mechanism of the PINK1 pathway. After 85% oxygen exposure in newborn rats for 7 days, the BPD model was established. We found that LXA4 could significantly reduce cell and protein infiltration and oxidative stress in rat lungs, improve pulmonary function and alveolar simplification, and promote weight gain. LXA4 inhibited the expression of TNF-α, MCP-1 and IL-1β in serum and BALF from hyperoxic rats. Moreover, we found that LXA4 could reduce the expression of the PINK1 gene and down-regulate the expression of PINK1, Parkin, BNIP3L/Nix and the autophagic protein LC3B.These protective effects of LXA4 could be partially reversed by addition of BOC-2.Thus, we concluded that LXA4 can alleviate the airway inflammatory response, reduce the severity of lung injury and improve lung function in a hyperoxic rat model of BPD partly through the PINK1 signaling pathway.
Collapse
Affiliation(s)
- Qiuping Wu
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chong
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyou Shao
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Discipline of Neonatology Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changchong Li
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
25
|
Deora GS, Qin CX, Vecchio EA, Debono AJ, Priebbenow DL, Brady RM, Beveridge J, Teguh SC, Deo M, May LT, Krippner G, Ritchie RH, Baell JB. Substituted Pyridazin-3(2H)-ones as Highly Potent and Biased Formyl Peptide Receptor Agonists. J Med Chem 2019; 62:5242-5248. [DOI: 10.1021/acs.jmedchem.8b01912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Girdhar Singh Deora
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth A. Vecchio
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Aaron J. Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel L. Priebbenow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ryan M. Brady
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Julia Beveridge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Silvia C. Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria 3052, Australia
| | - Guy Krippner
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rebecca H. Ritchie
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
26
|
Park YJ, Park B, Lee M, Jeong YS, Lee HY, Sohn DH, Song JJ, Lee JH, Hwang JS, Bae YS. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis. Sci Rep 2018; 8:14664. [PMID: 30279454 PMCID: PMC6168567 DOI: 10.1038/s41598-018-32963-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
In oriental medicine, centipede Scolopendra subspinipes mutilans has long been used as a remedy for rheumatoid arthritis (RA), a well-known chronic autoimmune disorder. However, the molecular identities of its bioactive components have not yet been extensively investigated. We sought to identify bioactive molecules that control RA with a centipede. A novel antimicrobial peptide (AMP) (scolopendrasin IX) was identified from Scolopendra subspinipes mutilans. Scolopendrasin IX markedly activated mouse neutrophils, by enhancing cytosolic calcium increase, chemotactic cellular migration, and generation of superoxide anion in neutrophils. As a target receptor for scolopendrasin IX, formyl peptide receptor (FPR)2 mediates neutrophil activation induced by the AMP. Furthermore, scolopendrasin IX administration strongly blocked the clinical phenotype of RA in an autoantibody-injected model. Mechanistically, the novel AMP inhibited inflammatory cytokine synthesis from the joints and neutrophil recruitment into the joint area. Collectively, we suggest that scolopendrasin IX is a novel potential therapeutic agent for the control of RA via FPR2.
Collapse
MESH Headings
- Animals
- Antimicrobial Cationic Peptides/chemical synthesis
- Antimicrobial Cationic Peptides/pharmacology
- Antimicrobial Cationic Peptides/therapeutic use
- Antirheumatic Agents/chemical synthesis
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthropods
- Autoantibodies/administration & dosage
- Autoantibodies/blood
- Cells, Cultured
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- Injections, Subcutaneous
- Insect Proteins/chemical synthesis
- Insect Proteins/pharmacology
- Insect Proteins/therapeutic use
- Male
- Mice
- Mice, Transgenic
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Primary Cell Culture
- Receptors, Formyl Peptide/immunology
- Receptors, Formyl Peptide/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, 50612, Korea
| | - Jason Jungsik Song
- Department of Internal Medicine, Division of Rheumatology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, 55365, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
27
|
Kim HS, Park MY, Lee SK, Park JS, Lee HY, Bae YS. Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity. BMB Rep 2018. [PMID: 30021674 PMCID: PMC6130828 DOI: 10.5483/bmbrep.2018.51.8.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, Lin−c-kit+Sca-1− cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Min Young Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Present address: Institute for Stem Cell & Regenerative Medicine Research of Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
28
|
Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int Immunopharmacol 2018; 61:140-149. [PMID: 29879657 DOI: 10.1016/j.intimp.2018.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
The effects of formyl peptide receptors (FPRs) on effector T cells and inflammation-causing tissue-resident cells are not well known. Here, we explored the effect of FPR activation on efferent T cell responses in models of rheumatoid arthritis (RA) and on the expansion of fibroblast-like synoviocytes (FLS). Compound 43 (Cpd43; FPR1/2 agonist) was administered to mice with collagen-induced arthritis (CIA) or antigen-induced arthritis (AIA) after disease onset. Joint inflammation/damage and immunity were assessed. FLS were cultured with Cpd43 to test its effects on cell apoptosis and proliferation. To explore the effects of endogenous FPR2 ligands on FLS proliferation, FLS FPR2 was blocked or Annexin A1 (AnxA1) expression silenced. Cpd43 reduced arthritis severity in both models. In CIA, Cpd43 decreased CD4 T cell proliferation and survival and increased the production of the protective cytokine, IFNγ, in lymph nodes. In AIA, Cpd43 increased CD4 apoptosis and production of the anti-inflammatory IL-4, while augmenting the proportion of splenic regulatory T cells and their expression of IL-2Rα. In both models, Cpd43 increased CD4 IL-17A production, without affecting humoral immunity. FPR2 inhibitors reversed Cpd43-mediated effects on AIA and T cell immunity. Cpd43 decreased TNF-induced FLS proliferation and augmented FLS apoptosis in association with intracellular FPR2 accumulation, while endogenous AnxA1 and FPR2 reduced FLS proliferation via the ERK and NFκB pathways. Overall, FPR activation inhibits the expansion of arthritogenic effector CD4 T cells and FLS, and reduces joint injury in experimental arthritis. This suggests the therapeutic potential of FPR ligation for the treatment of RA.
Collapse
|
29
|
Chen K, Bao Z, Gong W, Tang P, Yoshimura T, Wang JM. Regulation of inflammation by members of the formyl-peptide receptor family. J Autoimmun 2017; 85:64-77. [PMID: 28689639 PMCID: PMC5705339 DOI: 10.1016/j.jaut.2017.06.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with a variety of diseases. The hallmark of inflammation is leukocyte infiltration at disease sites in response to pathogen- or damage-associated chemotactic molecular patterns (PAMPs and MAMPs), which are recognized by a superfamily of seven transmembrane, Gi-protein-coupled receptors (GPCRs) on cell surface. Chemotactic GPCRs are composed of two major subfamilies: the classical GPCRs and chemokine GPCRs. Formyl-peptide receptors (FPRs) belong to the classical chemotactic GPCR subfamily with unique properties that are increasingly appreciated for their expression on diverse host cell types and the capacity to interact with a plethora of chemotactic PAMPs and MAMPs. Three FPRs have been identified in human: FPR1-FPR3, with putative corresponding mouse counterparts. FPR expression was initially described in myeloid cells but subsequently in many non-hematopoietic cells including cancer cells. Accumulating evidence demonstrates that FPRs possess multiple functions in addition to controlling inflammation, and participate in the processes of many pathophysiologic conditions. They are not only critical mediators of myeloid cell trafficking, but are also implicated in tissue repair, angiogenesis and protection against inflammation-associated tumorigenesis. A series recent discoveries have greatly expanded the scope of FPRs in host defense which uncovered the essential participation of FPRs in step-wise trafficking of myeloid cells including neutrophils and dendritic cells (DCs) in host responses to bacterial infection, tissue injury and wound healing. Also of great interest is the FPRs are exploited by malignant cancer cells for their growth, invasion and metastasis. In this article, we review the current understanding of FPRs concerning their expression in a vast array of cell types, their involvement in guiding leukocyte trafficking in pathophysiological conditions, and their capacity to promote the differentiation of immune cells, their participation in tumor-associated inflammation and cancer progression. The close association of FPRs with human diseases and cancer indicates their potential as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
30
|
FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep 2017; 7:15575. [PMID: 29138422 PMCID: PMC5686125 DOI: 10.1038/s41598-017-15586-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Osteoclasts can be differentiated from bone marrow-derived macrophages (BMDM). They play a key role in bone resorption. Identifying novel molecules that can regulate osteoclastogenesis has been an important issue. In this study, we found that FAM19A5, a neurokine or brain-specific chemokine, strongly stimulated mouse BMDM, resulting in chemotactic migration and inhibition of RANKL-induced osteoclastogenesis. Expression levels of osteoclast-related genes such as RANK, TRAF6, OSCAR, TRAP, Blimp1, c-fos, and NFATc1 were markedly decreased by FAM19A5. However, negative regulators of osteoclastogenesis such as MafB and IRF-8 were upregulated by FAM19A5. FAM19A5 also downregulated expression levels of RANKL-induced fusogenic genes such as OC-STAMP, DC-STAMP, and Atp6v0d2. FAM19A5-induced inhibitory effect on osteoclastogenesis was significantly reversed by a formyl peptide receptor (FPR) 2 antagonist WRW4 or by FPR2-deficiency, suggesting a crucial role of FPR2 in the regulation of osteoclastogenesis. Collectively, our results suggest that FAM19A5 and its target receptor FPR2 can act as novel endogenous ligand/receptor to negatively regulate osteoclastogenesis. They might be regarded as potential targets to control osteoclast formation and bone disorders.
Collapse
|
31
|
Nawaz IM, Chiodelli P, Rezzola S, Paganini G, Corsini M, Lodola A, Di Ianni A, Mor M, Presta M. N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2) inhibits the angiogenic activity of heparin-binding growth factors. Angiogenesis 2017; 21:47-59. [PMID: 29030736 DOI: 10.1007/s10456-017-9581-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022]
Abstract
The peptides N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2) and BOC-Met-Leu-Phe (BOC1) are widely used antagonists of formyl peptide receptors (FPRs), BOC2 acting as an FPR1/FPR2 antagonist whereas BOC1 inhibits FPR1 only. Extensive investigations have been performed by using these FPR antagonists as a tool to assess the role of FPRs in physiological and pathological conditions. Based on previous observations from our laboratory, we assessed the possibility that BOC2 may exert also a direct inhibitory effect on the angiogenic activity of vascular endothelial growth factor-A (VEGF-A). Our data demonstrate that BOC2, but not BOC1, inhibits the angiogenic activity of heparin-binding VEGF-A165 with no effect on the activity of the non-heparin-binding VEGF-A121 isoform. Endothelial cell-based bioassays, surface plasmon resonance analysis, and computer modeling indicate that BOC2 may interact with the heparin-binding domain of VEGF-A165, thus competing for heparin interaction and preventing the binding of VEGF-A165 to tyrosine kinase receptor VEGFR2, its phosphorylation and downstream signaling. In addition, BOC2 inhibits the interaction of a variety of heparin-binding angiogenic growth factors with heparin, including fibroblast growth factor 2 (FGF2) whose angiogenic activity is blocked by the compound. Accordingly, BOC2 suppresses the angiogenic potential of human tumor cell lines that co-express VEGF-A and FGF2. Thus, BOC2 appears to act as a novel multi-heparin-binding growth factor antagonist. These findings caution about the interpretation of FPR-focusing experimental data obtained with this compound and set the basis for the design of novel BOC2-derived, FPR independent multi-target angiogenesis inhibitors.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
32
|
Park YJ, Kim HS, Lee HY, Hwang JS, Bae YS. A novel antimicrobial peptide isolated from centipede Scolopendra subspinipes mutilans stimulates neutrophil activity through formyl peptide receptor 2. Biochem Biophys Res Commun 2017; 494:352-357. [PMID: 28988115 DOI: 10.1016/j.bbrc.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
Abstract
In this study, we identified scolopendrasin X, a novel antimicrobial peptide (AMP), from centipede Scolopendra subspinipes mutilans. Scolopendrasin X strongly stimulated mouse neutrophils, resulting in intracellular calcium increase, chemotactic migration through pertussis toxin-sensitive G-protein and phospholipase C pathway, and increased superoxide anion production in neutrophils. Target receptor for scolopendrasin X, formyl peptide receptor (FPR)2 mediated scolopendrasin X-induced neutrophil activation. Moreover, scolopendrasin X significantly blocked inflammatory cytokine production induced by lipopolysaccharide in mouse neutrophils. Taken together, our results suggest that the novel AMP scolopendrasin X can be used as a material to regulate neutrophil activity through FPR2.
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
33
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|