1
|
Drapela S, Garcia BM, Gomes AP, Correia AL. Metabolic landscape of disseminated cancer dormancy. Trends Cancer 2024:S2405-8033(24)00224-3. [PMID: 39510896 DOI: 10.1016/j.trecan.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cancer dormancy is a phenomenon defined by the entry of cancer cells into a reversible quiescent, nonproliferative state, and represents an essential part of the metastatic cascade responsible for cancer recurrence and mortality. Emerging evidence suggests that metabolic reprogramming plays a pivotal role in enabling entry, maintenance, and exit from dormancy in the face of the different environments of the metastatic cascade. Here, we review the current literature to understand the dynamics of metabolism during dormancy, highlighting its fine-tuning by the host micro- and macroenvironment, and put forward the importance of identifying metabolic vulnerabilities of the dormant state as therapeutic targets to eradicate recurrent disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bruna M Garcia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
2
|
Xu FX, Sun R, Owens R, Hu K, Fu D. Assessing Drug Uptake and Response Differences in 2D and 3D Cellular Environments Using Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:14480-14489. [PMID: 39186736 DOI: 10.1021/acs.analchem.4c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The architecture of cell culture, two-dimensional (2D) versus three-dimensional (3D), significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band (C-D, C-H, and fingerprint regions) SRS imaging to 2D and 3D cell cultures and performed a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids was less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response and discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.
Collapse
Affiliation(s)
- Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rui Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan Owens
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kailun Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
5
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
6
|
Xu FX, Sun R, Owens R, Hu K, Fu D. Assessing drug uptake and response differences in 2D and 3D cellular environments using stimulated Raman scattering microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590622. [PMID: 38712095 PMCID: PMC11071388 DOI: 10.1101/2024.04.22.590622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The architecture of cell culture-two-dimensional (2D) versus three-dimensional (3D)-significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band SRS imaging to 2D and 3D cell cultures and provided a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids is less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response, and we discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.
Collapse
|
7
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
8
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
9
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
10
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Ferrer-Diaz AI, Sinha G, Petryna A, Gonzalez-Bermejo R, Kenfack Y, Adetayo O, Patel SA, Hooda-Nehra A, Rameshwar P. Revealing role of epigenetic modifiers and DNA oxidation in cell-autonomous regulation of Cancer stem cells. Cell Commun Signal 2024; 22:119. [PMID: 38347590 PMCID: PMC10863086 DOI: 10.1186/s12964-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Breast cancer cells (BCCs) can remain undetected for decades in dormancy. These quiescent cells are similar to cancer stem cells (CSCs); hence their ability to initiate tertiary metastasis. Dormancy can be regulated by components of the tissue microenvironment such as bone marrow mesenchymal stem cells (MSCs) that release exosomes to dedifferentiate BCCs into CSCs. The exosomes cargo includes histone 3, lysine 4 (H3K4) methyltransferases - KMT2B and KMT2D. A less studied mechanism of CSC maintenance is the process of cell-autonomous regulation, leading us to examine the roles for KMT2B and KMT2D in sustaining CSCs, and their potential as drug targets. METHODS Use of pharmacological inhibitor of H3K4 (WDR5-0103), knockdown (KD) of KMT2B or KMT2D in BCCs, real time PCR, western blot, response to chemotherapy, RNA-seq, and flow cytometry for circulating markers of CSCs and DNA hydroxylases in BC patients. In vivo studies using a dormancy model studied the effects of KMT2B/D to chemotherapy. RESULTS H3K4 methyltransferases sustain cell autonomous regulation of CSCs, impart chemoresistance, maintain cycling quiescence, and reduce migration and proliferation of BCCs. In vivo studies validated KMT2's role in dormancy and identified these genes as potential drug targets. DNA methylase (DNMT), predicted within a network with KMT2 to regulate CSCs, was determined to sustain circulating CSC-like in the blood of patients. CONCLUSION H3K4 methyltransferases and DNA methylation mediate cell autonomous regulation to sustain CSC. The findings provide crucial insights into epigenetic regulatory mechanisms underlying BC dormancy with KMT2B and KMT2D as potential therapeutic targets, along with standard care. Stem cell and epigenetic markers in circulating BCCs could monitor treatment response and this could be significant for long BC remission to partly address health disparity.
Collapse
Affiliation(s)
- Alejandra I Ferrer-Diaz
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Andrew Petryna
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Yannick Kenfack
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Shyam A Patel
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
| | - Anupama Hooda-Nehra
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
12
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
13
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
15
|
De Dios-Figueroa GT, Aguilera-Márquez JDR, García-Uriostegui L, Hernández-Gutiérrez R, Camacho-Villegas TA, Lugo-Fabres PH. Embedded Living HER2+ Cells in a 3D Gelatin-Alginate Hydrogel as an In Vitro Model for Immunotherapy Delivery for Breast Cancer. Polymers (Basel) 2023; 15:3726. [PMID: 37765581 PMCID: PMC10535529 DOI: 10.3390/polym15183726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epidermal growth factor receptor 2 (HER2) is the second target molecule most commonly used in breast cancer treatment. Both recurrence and metastasis are still deadly for HER2+ breast cancer patients. Hydrogels can be an option for developing three-dimensional (3D) cell culture systems that resemble tumor features better than monolayer cultures and could be used for preclinical screening for new biotherapeutics. Biopolymers (gelatin and alginate) were used to develop a hydrogel capable of encapsulating living HER2+ breast cancer cells BT-474/GFP. The hydrogel was physicochemically characterized, and the viability of embedded cells was evaluated. The hydrogel developed had suitable physical properties, with swelling of 38% of its original mass at 20 h capacity and pore sizes between 20 and 125 µm that allowed cells to maintain their morphology in a 3D environment, in addition to being biocompatible and preserving 90% of cell viability at 10 days. Furthermore, encapsulated BT-474/GFP cells maintained HER2 expression that could be detected by the Trastuzumab-fluorescent antibody, so this hydrogel could be used to evaluate new HER2-targeted therapies.
Collapse
Affiliation(s)
- G. Tonantzin De Dios-Figueroa
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Janette del Rocío Aguilera-Márquez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Lorena García-Uriostegui
- CONAHCYT—Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara (UDG), Guadalajara 44100, Jalisco, Mexico;
| | - Rodolfo Hernández-Gutiérrez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Tanya A. Camacho-Villegas
- CONAHCYT—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
| | - Pavel H. Lugo-Fabres
- CONAHCYT—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
| |
Collapse
|
16
|
Cuesta-Borràs E, Salvans C, Arqués O, Chicote I, Ramírez L, Cabellos L, Martínez-Quintanilla J, Mur-Espinosa A, García-Álvarez A, Hernando J, Tejedor JR, Mirallas O, Élez E, Fraga MF, Tabernero J, Nuciforo P, Capdevila J, Palmer HG, Puig I. DPPA3-HIF1α axis controls colorectal cancer chemoresistance by imposing a slow cell-cycle phenotype. Cell Rep 2023; 42:112927. [PMID: 37537841 DOI: 10.1016/j.celrep.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.
Collapse
Affiliation(s)
- Estefania Cuesta-Borràs
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Cándida Salvans
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain
| | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Laia Cabellos
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Alex Mur-Espinosa
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Alejandro García-Álvarez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jorge Hernando
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Oriol Mirallas
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Elena Élez
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Josep Tabernero
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; UVic-UCC, IOB-Quiron, 08023 Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, 08029 Madrid, Spain; Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; IOB-Teknon, 08023 Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| | - Isabel Puig
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| |
Collapse
|
17
|
Merat R. The human antigen R as an actionable super-hub within the network of cancer cell persistency and plasticity. Transl Oncol 2023; 35:101722. [PMID: 37352624 DOI: 10.1016/j.tranon.2023.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
In this perspective article, a clinically inspired phenotype-driven experimental approach is put forward to address the challenge of the adaptive response of solid cancers to small-molecule targeted therapies. A list of conditions is derived, including an experimental quantitative assessment of cell plasticity and an information theory-based detection of in vivo dependencies, for the discovery of post-transcriptional druggable mechanisms capable of preventing at multiple levels the emergence of plastic dedifferentiated slow-proliferating cells. The approach is illustrated by the author's own work in the example case of the adaptive response of BRAFV600-melanoma to BRAF inhibition. A bench-to-bedside and back to bench effort leads to a therapeutic strategy in which the inhibition of the baseline activity of the interferon-γ-activated inhibitor of translation (GAIT) complex, incriminated in the expression insufficiency of the RNA-binding protein HuR in a minority of cells, results in the suppression of the plastic, intermittently slow-proliferating cells involved in the adaptive response. A similar approach is recommended for the validation of other classes of mechanisms that we seek to modulate to overcome this complex challenge of modern cancer therapy.
Collapse
Affiliation(s)
- Rastine Merat
- Dermato-Oncology Unit, Division of Dermatology, Geneva University Hospitals, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
18
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
19
|
Buckley CE, Yin X, Meltzer S, Ree AH, Redalen KR, Brennan L, O'Sullivan J, Lynam-Lennon N. Energy Metabolism Is Altered in Radioresistant Rectal Cancer. Int J Mol Sci 2023; 24:ijms24087082. [PMID: 37108244 PMCID: PMC10138551 DOI: 10.3390/ijms24087082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Resistance to neoadjuvant chemoradiation therapy is a significant clinical challenge in the management of rectal cancer. There is an unmet need to identify the underlying mechanisms of treatment resistance to enable the development of biomarkers predictive of response and novel treatment strategies to improve therapeutic response. In this study, an in vitro model of inherently radioresistant rectal cancer was identified and characterized to identify mechanisms underlying radioresistance in rectal cancer. Transcriptomic and functional analysis demonstrated significant alterations in multiple molecular pathways, including the cell cycle, DNA repair efficiency and upregulation of oxidative phosphorylation-related genes in radioresistant SW837 rectal cancer cells. Real-time metabolic profiling demonstrated decreased reliance on glycolysis and enhanced mitochondrial spare respiratory capacity in radioresistant SW837 cells when compared to radiosensitive HCT116 cells. Metabolomic profiling of pre-treatment serum samples from rectal cancer patients (n = 52) identified 16 metabolites significantly associated with subsequent pathological response to neoadjuvant chemoradiation therapy. Thirteen of these metabolites were also significantly associated with overall survival. This study demonstrates, for the first time, a role for metabolic reprograming in the radioresistance of rectal cancer in vitro and highlights a potential role for altered metabolites as novel circulating predictive markers of treatment response in rectal cancer patients.
Collapse
Affiliation(s)
- Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, UCD Institute of Food and Health, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, UCD Institute of Food and Health, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
20
|
Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A, La Verde N. Host-Related Factors in the Interplay among Inflammation, Immunity and Dormancy in Breast Cancer Recurrence and Prognosis: An Overview for Clinicians. Int J Mol Sci 2023; 24:ijms24054974. [PMID: 36902406 PMCID: PMC10002538 DOI: 10.3390/ijms24054974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of patients treated for early breast cancer develop medium-term and late distant recurrence. The delayed manifestation of metastatic disease is defined as "dormancy". This model describes the aspects of the clinical latency of isolated metastatic cancer cells. Dormancy is regulated by extremely complex interactions between disseminated cancer cells and the microenvironment where they reside, the latter in turn influenced directly by the host. Among these entangled mechanisms, inflammation and immunity may play leading roles. This review is divided into two parts: the first describes the biological underpinnings of cancer dormancy and the role of the immune response, in particular, for breast cancer; the second provides an overview of the host-related factors that may influence systemic inflammation and immune response, subsequently impacting the dynamics of breast cancer dormancy. The aim of this review is to provide physicians and medical oncologists a useful tool to understand the clinical implications of this relevant topic.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Anna Moretti
- Medical Oncology Unit, S. Carlo Hospital, ASST Santi Paolo e Carlo, 20153 Milan, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche—AOU delle Marche, 60121 Ancona, Italy
| | - Maria Silvia Cona
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Dalu
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Cecilia Villa
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Chizzoniti
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Sheila Piva
- Medical Oncology Unit, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Anna Gambaro
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Nicla La Verde
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
- Correspondence: ; Tel.: +39-02-3904-2492
| |
Collapse
|
21
|
Choi JH, Park SY, Lee WJ, Lee CJ, Kim JH, Jang TY, Jeon SE, Jun Y, Nam JS. SEC22B inhibition attenuates colorectal cancer aggressiveness and autophagic flux under unfavorable environment. Biochem Biophys Res Commun 2023; 665:10-18. [PMID: 37148741 DOI: 10.1016/j.bbrc.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has bidirectional functions in cancer by facilitating cell survival and death in a context-dependent manner. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a large family of proteins essential for numerous biological processes, including autophagy; nevertheless, their potential function in cancer malignancy remains unclear. Here, we explored the gene expression patterns of SNAREs in tissues of patients with colorectal cancer (CRC) and discovered that SEC22B expression, a vesicle SNARE, was higher in tumor tissues than in normal tissues, with a more significant increase in metastatic tissues. Interestingly, SEC22B knockdown dramatically decreased CRC cell survival and growth, especially under stressful conditions, such as hypoxia and serum starvation, and decreased the number of stress-induced autophagic vacuoles. Moreover, SEC22B knockdown successfully attenuated liver metastasis in a CRC cell xenograft mouse model, with histological signs of decreased autophagic flux and proliferation within cancer cells. Together, this study posits that SEC22B plays a crucial role in enhancing the aggressiveness of CRC cells, suggesting that SEC22B might be an attractive therapeutic target for CRC.
Collapse
|
22
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
23
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
24
|
Ozcan G. The hypoxia-inducible factor-1α in stemness and resistance to chemotherapy in gastric cancer: Future directions for therapeutic targeting. Front Cell Dev Biol 2023; 11:1082057. [PMID: 36846589 PMCID: PMC9945545 DOI: 10.3389/fcell.2023.1082057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a crucial mediator of intra-tumoral heterogeneity, tumor progression, and unresponsiveness to therapy in tumors with hypoxia. Gastric tumors, one of the most aggressive tumors in the clinic, are highly enriched in hypoxic niches, and the degree of hypoxia is strongly correlated with poor survival in gastric cancer patients. Stemness and chemoresistance in gastric cancer are the two root causes of poor patient outcomes. Based on the pivotal role of HIF-1α in stemness and chemoresistance in gastric cancer, the interest in identifying critical molecular targets and strategies for surpassing the action of HIF-1α is expanding. Despite that, the understanding of HIF-1α induced signaling in gastric cancer is far from complete, and the development of efficacious HIF-1α inhibitors bears various challenges. Hence, here we review the molecular mechanisms by which HIF-1α signaling stimulates stemness and chemoresistance in gastric cancer, with the clinical efforts and challenges to translate anti-HIF-1α strategies into the clinic.
Collapse
Affiliation(s)
- Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, Turkiye
- Koç University Research Center for Translational Medicine, Istanbul, Turkiye
| |
Collapse
|
25
|
Feng J, Xi Z, Jiang X, Li Y, Nik Nabil WN, Liu M, Song Z, Chen X, Zhou H, Dong Q, Xu H. Saikosaponin A enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. Cancer Lett 2023; 554:216011. [PMID: 36442771 DOI: 10.1016/j.canlet.2022.216011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Quiescent cancer cells (QCCs), also known as dormant cancer cells, resist and survive chemo- and radiotherapy, resulting in treatment failure and later cancer recurrence when QCCs resume cell cycle progression. However, drugs selectively targeting QCCs are lacking. Saikosaponin A (SSA) derived from Bupleurum DC., is highly potent in eradicating multidrug-resistant prostate QCCs compared with proliferative prostate cancer cells. By further exacerbating the already increased autophagy through inactivation of Akt-mTOR signaling, SSA triggered cell death in QCCs. Contrarily, inhibition of autophagy or activation of Akt signaling pathway prevented SSA-induced cell death. The multicycle of Docetaxel treatments increased the proportion of QCCs, whereas administering SSA at intervals of Docetaxel treatments aggravated cell death in vitro and led to tumor growth arrest and cell death in vivo. In conclusion, SSA is posed as a novel QCCs-eradicating agent by aggravating autophagy in QCCs. In combination with the current therapy, SSA has potential to improve treatment effectiveness and to prevent cancer recurrence.
Collapse
Affiliation(s)
- Jiling Feng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China; Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China; Pharmaceutical Services Program, Ministry of Health, Petaling Jaya, Selangor, 46200, Malaysia.
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Xiaoqiong Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Hua Zhou
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China.
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
| | - Hongxi Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
26
|
Liang L, Kaufmann AM. The Significance of Cancer Stem Cells and Epithelial-Mesenchymal Transition in Metastasis and Anti-Cancer Therapy. Int J Mol Sci 2023; 24:ijms24032555. [PMID: 36768876 PMCID: PMC9917228 DOI: 10.3390/ijms24032555] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified and characterized in both hematopoietic and solid tumors. Their existence was first predicted by Virchow and Cohnheim in the 1870s. Later, many studies showed that CSCs can be identified and isolated by their expression of specific cell markers. The significance of CSCs with respect to tumor biology and anti-cancer treatment lies in their ability to maintain quiescence with very slow proliferation, indefinite self-renewal, differentiation, and trans-differentiation such as epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The ability for detachment, migration, extra- and intravasation, invasion and thereby of completing all necessary steps of the metastatic cascade highlights their significance for metastasis. CSCs comprise the cancer cell populations responsible for tumor growth, resistance to therapies and cancer metastasis. In this review, the history of the CSC theory, their identification and characterization and their biology are described. The contribution of the CSC ability to undergo EMT for cancer metastasis is discussed. Recently, novel strategies for drug development have focused on the elimination of the CSCs specifically. The unique functional and molecular properties of CSCs are discussed as possible therapeutic vulnerabilities for the development of novel anti-metastasis treatments. Prospectively, this may provide precise personalized anti-cancer treatments with improved therapeutic efficiency with fewer side effects and leading to better prognosis.
Collapse
|
27
|
Lu Q, Chen Y, Li J, Zhu F, Zheng Z. Crosstalk between cGAS-STING pathway and autophagy in cancer immunity. Front Immunol 2023; 14:1139595. [PMID: 36936940 PMCID: PMC10014609 DOI: 10.3389/fimmu.2023.1139595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is critical in cancer immunity. Autophagy is a highly conserved process that is responsible for the degradation of cytoplasmic material and is involved in both innate and adaptive immunity. Recently, cGAS-STING and autophagy have been shown to be interconnected, which may influence the progression of cancer. Although cGAS-STING and autophagy have been shown to be interrelated in innate immunity, little has been reported about cancer immunity. As cancer immunity is key to treating tumors, it is essential to summarize the relationship and interactions between the two. Based on this, we systematically sorted out the recent findings of cGAS-STING and autophagy in cancer immunity and explored the interactions between cGAS-STING and autophagy, although these interactions have not been extensively studied. Lastly, we provide an outlook on how cGAS-STING and autophagy can be combined, with the hope that our research can help people better understand their potential roles in cancer immunity and bring light to the treatment of cancer.
Collapse
Affiliation(s)
- Qijun Lu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhan Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhan Zheng,
| |
Collapse
|
28
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
29
|
Taghizadeh-Hesary F, Akbari H, Bahadori M, Behnam B. Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes (Basel) 2022; 13:genes13101728. [PMID: 36292613 PMCID: PMC9602426 DOI: 10.3390/genes13101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Like living organisms, cancer cells require energy to survive and interact with their environment. Mitochondria are the main organelles for energy production and cellular metabolism. Recently, investigators demonstrated that cancer cells can hijack mitochondria from immune cells. This behavior sheds light on a pivotal piece in the cancer puzzle, the dependence on the normal cells. This article illustrates the benefits of new functional mitochondria for cancer cells that urge them to hijack mitochondria. It describes how functional mitochondria help cancer cells’ survival in the harsh tumor microenvironment, immune evasion, progression, and treatment resistance. Recent evidence has put forward the pivotal role of mitochondria in the metabolism of cancer stem cells (CSCs), the tumor components responsible for cancer recurrence and metastasis. This theory highlights the mitochondria in cancer biology and explains how targeting mitochondria may improve oncological outcomes.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Correspondence: or (F.T.-H.); or (B.B.); Tel.: +98-912-608-6713 (F.T.-H.); Tel.: +1-407-920-4420 (B.B.)
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 4739-19395, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Moslem Bahadori
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, Germantown, MD 20874, USA
- Correspondence: or (F.T.-H.); or (B.B.); Tel.: +98-912-608-6713 (F.T.-H.); Tel.: +1-407-920-4420 (B.B.)
| |
Collapse
|
30
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
31
|
Recent insights into the effects of metabolism on breast cancer cell dormancy. Br J Cancer 2022; 127:1385-1393. [PMID: 35715635 PMCID: PMC9553927 DOI: 10.1038/s41416-022-01869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) remains the most common cancer, as well as the leading cause of cancer mortality in women worldwide [1]. Approximately 30% of patients with early-stage BC experience metastasis or a recurrent form of the disease [2]. The phenomenon of BC dormancy, where metastasised cancer cells remain in a quiescent phase at their disseminated location and for unknown reasons can become actively proliferative again, further adds to BC’s clinical burden with treatment at this secondary stage typically proving futile. An emerging avenue of research focuses on the metabolic properties of dormant BC cells (BCCs) and potential metabolic changes causing BCCs to enter/exit their quiescent state. Here we explore several studies that have uncovered changes in carbon metabolism underlying a dormant state, with conflicting studies uncovering shifts towards both glycolysis and/or oxidative phosphorylation. This review highlights that the metabolic states/shifts of dormant BCCs seem to be dependent on different BC subtypes and receptor status; however, more work needs to be done to fully map these differences. Building on the research that this review outlines could provide new personalised therapeutic possibilities for BC patients.
Collapse
|
32
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
33
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
34
|
Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14030547. [PMID: 35158815 PMCID: PMC8833651 DOI: 10.3390/cancers14030547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor recurrence still represents a major clinical challenge for cancer patients. Cancer cells may undergo a dormant state for long times before re-emerging. Both intracellular- and extracellular-driven pathways are involved in maintaining the dormant state and the subsequent awakening, with a mechanism that is still mostly unknown. In this scenario, cancer metabolism is emerging as a critical driver of tumor progression and dissemination and have gained increasing attention in cancer research. This review focuses on the metabolic adaptations characterizing the dormant phenotype and supporting tumor re-growth. Deciphering the metabolic adaptation sustaining tumor dormancy may pave the way for novel therapeutic approaches to prevent tumor recurrence based on combined metabolic drugs. Abstract Tumor relapse represents one of the main obstacles to cancer treatment. Many patients experience cancer relapse even decades from the primary tumor eradication, developing more aggressive and metastatic disease. This phenomenon is associated with the emergence of dormant cancer cells, characterized by cell cycle arrest and largely insensitive to conventional anti-cancer therapies. These rare and elusive cells may regain proliferative abilities upon the induction of cell-intrinsic and extrinsic factors, thus fueling tumor re-growth and metastasis formation. The molecular mechanisms underlying the maintenance of resistant dormant cells and their awakening are intriguing but, currently, still largely unknown. However, increasing evidence recently underlined a strong dependency of cell cycle progression to metabolic adaptations of cancer cells. Even if dormant cells are frequently characterized by a general metabolic slowdown and an increased ability to cope with oxidative stress, different factors, such as extracellular matrix composition, stromal cells influence, and nutrient availability, may dictate specific changes in dormant cells, finally resulting in tumor relapse. The main topic of this review is deciphering the role of the metabolic pathways involved in tumor cells dormancy to provide new strategies for selectively targeting these cells to prevent fatal recurrence and maximize therapeutic benefit.
Collapse
|
35
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
36
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
37
|
A perspective on the role of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166262. [PMID: 34481059 DOI: 10.1016/j.bbadis.2021.166262] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Autophagy refers to a ubiquitous set of catabolic pathways required to achieve proper cellular homeostasis. Aberrant autophagy has been implicated in a multitude of diseases including cancer. In this review, we highlight pioneering and groundbreaking research that centers on delineating the role of autophagy in cancer initiation, proliferation and metastasis. First, we discuss the autophagy-related (ATG) proteins and their respective roles in the de novo formation of autophagosomes and the subsequent delivery of cargo to the lysosome for recycling. Next, we touch upon the history of cancer research that centers upon ATG proteins and regulatory mechanisms that control an appropriate autophagic response and how these are altered in the diseased state. Then, we discuss the various discoveries that led to the idea of autophagy as a double-edged sword when it comes to cancer therapy. This review also briefly narrates how different types of autophagy-selective macroautophagy and chaperone-mediated autophagy, have been linked to different cancers. Overall, these studies build upon a steadfast trajectory that aims to solve the monumentally daunting challenge of finding a cure for many types of cancer by modulating autophagy either through inhibition or induction.
Collapse
|
38
|
Ayob AZ, Ramasamy TS. Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media. In Vitro Cell Dev Biol Anim 2021; 57:896-911. [PMID: 34750738 DOI: 10.1007/s11626-021-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Tumour hypoxia drives resistance and aggressiveness, and in large part, contributes to treatment failure thereby causing cancer-related deaths. The rapid and uncontrolled tumour growth develops not only a hypoxic niche but also a nutrient-deprived condition due to insufficient blood supply; together, these create a stressful tumour niche, further promoting higher aggressiveness and resistance features of cancer. However, how cellular responses in the prolonged stress is associated with cancer stem cells (CSCs), which is linked to these features, remains unclear. Here, we established HepG2 tumoursphere culture in a hypoxic and serum-free condition that recapitulated differential responses to prolonged tumour growth pressures, evident by their progressive changes in the morphology of tumoursphere formation over a course of 15-day culture. HepG2 tumourspheres formed larger sphere sizes of > 200 μm in hypoxic conditions, concomitant with higher cell yield and upregulation of PCNA marker at day 7, corresponding with higher self-renewal capacity when cultured in SFM compared to SM. Notably, prolonged growth of HepG2 tumourspheres for 15 days under hypoxic and SFM condition increased their sphere counts, yet significantly reduced their cell yield along with downregulation of PCNA expression. Gene expression analysis showed that HepG2 tumourspheres on day 15 exhibited enhanced expression of markers of quiescence, stemness, EMT, and chemoresistance. Interestingly, analysis of HIF1α and HIF2α and their target gene expression indicated complementary HIF expression with preferential upregulation of HIF2α was observed in HepG2 tumourspheres in prolonged hypoxic and serum-free conditions, suggesting HIF2α-dependency and plausibility of the HIF1α-HIF2α switch that govern their survival by promoting CSC-like programmes. Altogether, these findings suggest the implication of prolonged hypoxia and nutrient deprivation stress in promoting CSC-like programmes in cancer cells recapitulating their plasticity, hence having opened many research directions that enable development of effective targeting of CSCs and precision medicine for treating cancer.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Alhasan BA, Gordeev SA, Knyazeva AR, Aleksandrova KV, Margulis BA, Guzhova IV, Suvorova II. The mTOR Pathway in Pluripotent Stem Cells: Lessons for Understanding Cancer Cell Dormancy. MEMBRANES 2021; 11:858. [PMID: 34832087 PMCID: PMC8620939 DOI: 10.3390/membranes11110858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Currently, the success of targeted anticancer therapies largely depends on the correct understanding of the dormant state of cancer cells, since it is increasingly regarded to fuel tumor recurrence. The concept of cancer cell dormancy is often considered as an adaptive response of cancer cells to stress, and, therefore, is limited. It is possible that the cancer dormant state is not a privilege of cancer cells but the same reproductive survival strategy as diapause used by embryonic stem cells (ESCs). Recent advances reveal that high autophagy and mTOR pathway reduction are key mechanisms contributing to dormancy and diapause. ESCs, sharing their main features with cancer stem cells, have a delicate balance between the mTOR pathway and autophagy activity permissive for diapause induction. In this review, we discuss the functioning of the mTOR signaling and autophagy in ESCs in detail that allows us to deepen our understanding of the biology of cancer cell dormancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina I. Suvorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (B.A.A.); (S.A.G.); (A.R.K.); (K.V.A.); (B.A.M.); (I.V.G.)
| |
Collapse
|
40
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
42
|
Patel N, Kommineni N, Surapaneni SK, Kalvala A, Yaun X, Gebeyehu A, Arthur P, Duke LC, York SB, Bagde A, Meckes DG, Singh M. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607:120943. [PMID: 34324983 PMCID: PMC8528640 DOI: 10.1016/j.ijpharm.2021.120943] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.
Collapse
Affiliation(s)
- Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Xuegang Yaun
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA; The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
43
|
Duan Y, Tian X, Liu Q, Jin J, Shi J, Hou Y. Role of autophagy on cancer immune escape. Cell Commun Signal 2021; 19:91. [PMID: 34493296 PMCID: PMC8424925 DOI: 10.1186/s12964-021-00769-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/24/2021] [Indexed: 01/15/2023] Open
Abstract
Autophagy is catabolic process by degradation of intracellular components in lysosome including proteins, lipids, and mitochondria in response to nutrient deficiency or stress such as hypoxia or chemotherapy. Increasing evidence suggests that autophagy could induce immune checkpoint proteins (PD-L1, MHC-I/II) degradation of cancer cells, which play an important role in regulating cancer cell immune escape. In addition to autophagic degradation of immune checkpoint proteins, autophagy induction in immune cells (macrophages, dendritic cells) manipulates antigen presentation and T cell activity. These reports suggest that autophagy could negatively or positively regulate cancer cell immune escape by immune checkpoint protein and antigens degradation, cytokines release, antigens generation. These controversial phenomenon of autophagy on cancer cell immune evasion may be derived from different experimental context or models. In addition, autophagy maybe exhibit a role in regulating host excessive immune response. So rational combination with autophagy could enhance the efficacy of cancer immunotherapy. In this review, the current progress of autophagy on cancer immune escape is discussed. Video Abstract
Collapse
Affiliation(s)
- Yalan Duan
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Xiaoqing Tian
- School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu Province, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China. .,School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China.
| |
Collapse
|
44
|
Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The Evolutionary Ecology of Dormancy in Nature and in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dormancy is an inactive period of an organism’s life cycle that permits it to survive through phases of unfavorable conditions in highly variable environments. Dormancy is not binary. There is a continuum of dormancy phenotypes that represent some degree of reduced metabolic activity (hypometabolism), reduced feeding, and reduced reproduction or proliferation. Similarly, normal cells and cancer cells exhibit a range of states from quiescence to long-term dormancy that permit survival in adverse environmental conditions. In contrast to organismal dormancy, which entails a reduction in metabolism, dormancy in cells (both normal and cancer) is primarily characterized by lack of cell division. “Cancer dormancy” also describes a state characterized by growth stagnation, which could arise from cells that are not necessarily hypometabolic or non-proliferative. This inconsistent terminology leads to confusion and imprecision that impedes progress in interdisciplinary research between ecologists and cancer biologists. In this paper, we draw parallels and contrasts between dormancy in cancer and other ecosystems in nature, and discuss the potential for studies in cancer to provide novel insights into the evolutionary ecology of dormancy.
Collapse
|
45
|
Sinha G, Ferrer AI, Ayer S, El-Far MH, Pamarthi SH, Naaldijk Y, Barak P, Sandiford OA, Bibber BM, Yehia G, Greco SJ, Jiang JG, Bryan M, Kumar R, Ponzio NM, Etchegaray JP, Rameshwar P. Specific N-cadherin-dependent pathways drive human breast cancer dormancy in bone marrow. Life Sci Alliance 2021; 4:4/7/e202000969. [PMID: 34078741 PMCID: PMC8200294 DOI: 10.26508/lsa.202000969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.
Collapse
Affiliation(s)
- Garima Sinha
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Alejandra I Ferrer
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Seda Ayer
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Markos H El-Far
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Sri Harika Pamarthi
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Yahaira Naaldijk
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Pradeep Barak
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | - Oleta A Sandiford
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Bernadette M Bibber
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Ghassan Yehia
- Genome Editing Shared Resource, Office of Research and Economic Development, Rutgers University, New Brunswick, NJ, USA
| | - Steven J Greco
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | - Margarette Bryan
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| | - Rakesh Kumar
- Department of Biotechnology, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| | - Nicholas M Ponzio
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,ONI, Linacre House, Oxford, UK
| | | | - Pranela Rameshwar
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA .,Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medicine School, Newark, NJ, USA
| |
Collapse
|
46
|
Raggi C, Taddei ML, Sacco E, Navari N, Correnti M, Piombanti B, Pastore M, Campani C, Pranzini E, Iorio J, Lori G, Lottini T, Peano C, Cibella J, Lewinska M, Andersen JB, di Tommaso L, Viganò L, Di Maira G, Madiai S, Ramazzotti M, Orlandi I, Arcangeli A, Chiarugi P, Marra F. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J Hepatol 2021; 74:1373-1385. [PMID: 33484774 DOI: 10.1016/j.jhep.2020.12.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetta Piombanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy; Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy
| | - Javier Cibella
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Monika Lewinska
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Luca di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Department of Hepatobiliary Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giovanni Di Maira
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ivan Orlandi
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy.
| |
Collapse
|
47
|
Bushnell GG, Deshmukh AP, den Hollander P, Luo M, Soundararajan R, Jia D, Levine H, Mani SA, Wicha MS. Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer 2021; 7:66. [PMID: 34050189 PMCID: PMC8163741 DOI: 10.1038/s41523-021-00269-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Luo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Departments of Physics and Bioengineering, Northeastern University, Boston, MA, USA.
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and Cancer Dormancy. Front Oncol 2021; 11:627023. [PMID: 33816262 PMCID: PMC8017298 DOI: 10.3389/fonc.2021.627023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metastasis and relapse account for the great majority of cancer-related deaths. Most metastatic lesions are micro metastases that have the capacity to remain in a non-dividing state called “dormancy” for months or even years. Commonly used anticancer drugs generally target actively dividing cancer cells. Therefore, cancer cells that remain in a dormant state evade conventional therapies and contribute to cancer recurrence. Cellular and molecular mechanisms of cancer dormancy are not fully understood. Recent studies indicate that a major cellular stress response mechanism, autophagy, plays an important role in the adaptation, survival and reactivation of dormant cells. In this review article, we will summarize accumulating knowledge about cellular and molecular mechanisms of cancer dormancy, and discuss the role and importance of autophagy in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nesibe Peker
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Arzu Akcay
- Yeni Yüzyıl University, School of Medicine, Private Gaziosmanpaşa Hospital, Department of Pathology, Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
49
|
Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021; 13:cancers13061191. [PMID: 33801846 PMCID: PMC8002185 DOI: 10.3390/cancers13061191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hyperactivation of the de novo serine/glycine biosynthesis across different cancer types and its critical contribution in tumor initiation, progression, and therapy resistance indicate the relevance of serine/glycine metabolism-targeted therapies as therapeutic intervention in cancer. In this review, we specifically focus on the contribution of the de novo serine/glycine biosynthesis pathway to radioresistance. We provide a future perspective on how de novo serine/glycine biosynthesis inhibition and serine-free diets may improve the outcome of radiotherapy. Future research in this field is needed to better understand serine/glycine metabolic reprogramming of cancer cells in response to radiation and the influence of this pathway in the tumor microenvironment, which may provide the rationale for the optimal combination therapies. Abstract The activation of de novo serine/glycine biosynthesis in a subset of tumors has been described as a major contributor to tumor pathogenesis, poor outcome, and treatment resistance. Amplifications and mutations of de novo serine/glycine biosynthesis enzymes can trigger pathway activation; however, a large group of cancers displays serine/glycine pathway overexpression induced by oncogenic drivers and unknown regulatory mechanisms. A better understanding of the regulatory network of de novo serine/glycine biosynthesis activation in cancer might be essential to unveil opportunities to target tumor heterogeneity and therapy resistance. In the current review, we describe how the activation of de novo serine/glycine biosynthesis in cancer is linked to treatment resistance and its implications in the clinic. To our knowledge, only a few studies have identified this pathway as metabolic reprogramming of cancer cells in response to radiation therapy. We propose an important contribution of de novo serine/glycine biosynthesis pathway activation to radioresistance by being involved in cancer cell viability and proliferation, maintenance of cancer stem cells (CSCs), and redox homeostasis under hypoxia and nutrient-deprived conditions. Current approaches for inhibition of the de novo serine/glycine biosynthesis pathway provide new opportunities for therapeutic intervention, which in combination with radiotherapy might be a promising strategy for tumor control and ultimately eradication. Further research is needed to gain molecular and mechanistic insight into the activation of this pathway in response to radiation therapy and to design sophisticated stratification methods to select patients that might benefit from serine/glycine metabolism-targeted therapies in combination with radiotherapy.
Collapse
|
50
|
Werner S, Heidrich I, Pantel K. Clinical management and biology of tumor dormancy in breast cancer. Semin Cancer Biol 2021; 78:49-62. [PMID: 33582172 DOI: 10.1016/j.semcancer.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
Clinical tumor dormancy is specified as an extended latency period between removal of the primary tumor and subsequent relapse in a cancer patient who has been clinically disease-free. In particular, patients with estrogen receptor-positive breast cancer can undergo extended periods of more than five years before they relapse with overt metastatic disease. Recent studies have shown that minimal residual disease in breast cancer patients can be monitored by different liquid biopsy approaches like analysis of circulating tumor cells or cell-free tumor DNA. Even though the biological principles underlying tumor dormancy in breast cancer patients remain largely unknown, clinical observations and experimental studies have identified emerging mechanisms that control the state of tumor dormancy. In this review, we illustrate the latest discoveries on different molecular aspects that contribute to the control of tumor dormancy and distant metastatic relapse, then discuss current treatments affecting minimal residual disease and dormant cancer cells, and finally highlight how novel liquid biopsy based diagnostic methodologies can be integrated into the detection and molecular characterization of minimal residual disease.
Collapse
Affiliation(s)
- Stefan Werner
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany; Mildred-Scheel-Nachwuchszentrum HaTRiCs4, Universitäres Cancer Center Hamburg, Germany
| | - Isabel Heidrich
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|