1
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Zhukovskaya EV, Obukhov YA, Karelin AF. Tumors of the orofacial zone in children and adolescents (literature review). Pediatr Dent 2020. [DOI: 10.33925/1683-3031-2020-20-3-244-250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Relevance. The relevance of the literature review presented by the authors is due to the diversity and complexity of the differential diagnosis of tumors of the orofacial zone in children and adolescents. Against the background of the absolute predominance of benign neoplasms, about 10-20% falls on the share of malignant neoplasms in this area. In this regard, polyclinic specialists often do not show sufficient oncological alertness, which leads to an unjustified lengthening of the diagnostic period and late diagnosis of malignant neoplasms.The purpose of the literature review is to discuss the results of studies on the epidemiological, clinical and therapeutic features of the tumor process in the orofacial zone in children and adolescents.Materials and methods. The searching of publications on the subject of the review were performed in the databases: https://www.ncbi.nlm.nih.gov/, https://elibrary.ru/cit_title_items.asp, https://www.researchgate.net/, https://elibrary.ru/. The authors describe the clinical manifestations of tumors depending on the location of the lesion and histological affiliation. The initial symptoms of both malignant and benign neoplasms are often nonspecific. Prevailing benign neoplasms can only be treated by surgery. Much less often in children and adolescents, malignant neoplasms are also found: squamous cell carcinoma of the oral cavity, Langerhans cell histiocytosis and others, which are treated in accordance with the principles of complex / combined anticancer therapy, including courses to minimize the amount of rehabilitation. Results. Timely diagnosis and prevention of the development of neoplasms in the orofacial area can reduce the severity of morphological and functional disorders in children and adolescents. Despite the use of effective methods of surgical or combination therapy, many need rehabilitation measures.Conclusions. The optimal position of a pediatrician, therapist, dentist, or surgeon at the stage of tumor diagnosis should be the implementation of oncological alertness, which implies an active approach without long-term "dynamic observation" of patients. Oncological alertness, especially among dentists, will improve the results of antitumor therapy in patients with Orofacial tumors.
Collapse
Affiliation(s)
- E. V. Zhukovskaya
- Federal state budgetary institution Dmitry Rogachev national medical research center for pediatric Hematology, Oncology and immunology of the Ministry of health of the Russian Federation
| | - Yu. A. Obukhov
- Federal state budgetary institution Dmitry Rogachev national medical research center for pediatric Hematology, Oncology and immunology of the Ministry of health of the Russian Federation
| | - A. F. Karelin
- Federal state budgetary institution Dmitry Rogachev national medical research center for pediatric Hematology, Oncology and immunology of the Ministry of health of the Russian Federation
| |
Collapse
|
3
|
Abstract
BACKGROUND Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.
Collapse
|
4
|
Zakeri Z, Salmaninejad A, Hosseini N, Shahbakhsh Y, Fadaee E, Shahrzad MK, Fadaei S. MicroRNA and exosome: Key players in rheumatoid arthritis. J Cell Biochem 2019; 120:10930-10944. [PMID: 30825220 DOI: 10.1002/jcb.28499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is known as one of important autoimmune disorders which can lead to joint pain and damage throughout body. Given that internal (ie, genetic and epigenetic alterations) and external factors (ie, lifestyle changes, age, hormones, smoking, stress, and obesity) involved in RA pathogenesis. Increasing evidence indicated that cellular and molecular alterations play critical roles in the initiation and progression of RA. Among various targets and molecular signaling pathways, microRNAs (miRNAs) and their regulatory networks have key roles in the RA pathogenesis. It has been showed that deregulation of many miRNAs involved in different stages of RA. Hence, identification of miRNAs and their signaling pathways in RA, could contribute to new knowledge which help to better treatment of patients with RA. Besides miRNAs, exosomes have been emerged as key messengers in RA pathogenesis. Exsosomes are nanocarriers which could be released from various cells and lead to changing of behaviors recipient cells via targeting their cargos (eg, proteins, messenger RNAs, miRNAs, long noncoding RNAs, DNAs). Here, we summarized several miRNAs involved in RA pathogenesis. Moreover, we highlighted the roles of exosomes in RA pathogenesis.
Collapse
Affiliation(s)
- Zahra Zakeri
- Labafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehalsadat Hosseini
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yas Shahbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elyas Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - Mohammad Karim Shahrzad
- Shohada Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem 2019; 120:10893-10908. [PMID: 30770587 DOI: 10.1002/jcb.28419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPARs are categorized into three subtypes, PPARα, β/δ, and γ, encoded by different genes, expressed in diverse tissues and participate in various biological functions and can be activated by their metabolic derivatives in the body or dietary fatty acids. The PPAR-γ also takes parts in the regulation of energy balance, lipoprotein metabolism, insulin sensitivity, oxidative stress, and inflammatory signaling. It has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancers. Among various cellular and molecular targets that are able to regulate PPAR-γ and its underlying pathways, microRNAs (miRNAs) appeared as important regulators. Given that the deregulation of these molecules via targeting PPAR-γ could affect initiation and progression of various diseases, identification of miRNAs that affects PPAR-γ could contribute to the better understanding of roles of PPAR-γ in various biological and pathological conditions. Here, we have summarized the function and various ligands of PPAR-γ and have highlighted various miRNAs involved in the regulation of PPAR-γ.
Collapse
Affiliation(s)
- Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J Cell Biochem 2019; 120:16316-16329. [DOI: 10.1002/jcb.29053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
|
7
|
Sharifi H, Shafiee A, Molavi G, Razi E, Mousavi N, Sarvizadeh M, Taghizadeh M. Leukemia-derived exosomes: Bringing oncogenic signals to blood cells. J Cell Biochem 2019; 120:16307-16315. [PMID: 31127656 DOI: 10.1002/jcb.29018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Leukemia is a cancer, which is derived from leukocytes and precursors of leukocytes in the bone marrow. A large number of pivotal biological processes are linked to leukemia pathogenesis. More insights into these mechanisms can provide a better developing pharmacological platform for patients with leukemia. Among the different players in leukemia pathogenesis, exosomes have appeared as a new biological vehicle, which can transfer oncogenic signals to blood cells. Exosomes are nano-carriers, which enable transferring numerous cargos such as DNA fragments, RNAs, messenger RNAs, microRNAs, long noncoding RNA, and proteins. Targeting the contents of exosomes leads to the alteration of host cell behavior. Increasing evidence has indicated that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. In this regard, the importance of exosomes in terms of initiation and progression of leukemia was underlined in this study.
Collapse
Affiliation(s)
- Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Sharifi H, Jafari Najaf Abadi MH, Razi E, Mousavi N, Morovati H, Sarvizadeh M, Taghizadeh M. MicroRNAs and response to therapy in leukemia. J Cell Biochem 2019; 120:14233-14246. [PMID: 31081139 DOI: 10.1002/jcb.28892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
A variety of epigenetic factors involved in leukemia pathogenesis. Among various epigenetic factors, microRNAs (miRNAs) have emerged as important players, which affect a sequence of cellular and molecular signaling pathways. Leukemia is known as progressive cancer, which is related to many health problems in the world. It has been shown that the destruction of the blood-forming organs could lead to abnormal effects on the proliferation and development of leukocytes and their precursors. Despite many attempts for approved effective and powerful therapies for patients with leukemia, finding and developing new therapeutic approaches are required. One of the important aspects of leukemia therapy, identification of underlying cellular and molecular mechanisms involved in the pathogenesis of leukemia. Several miRNAs (ie, miR-103, miR-101, mit-7, let-7i, miR-424, miR-27a, and miR-29c) and play major roles in response to therapy in patients with leukemia. miRNAs exert their effects by targeting a variety of targets, which are associated with response to therapy in patients with leukemia. It seems that more understanding about the roles of miRNAs in response to therapy in patients with leukemia could contribute to better treatment of patients with leukemia. Here, for the first time, we summarized various miRNAs, which are involved in response to therapy in the treatment patients with leukemia.
Collapse
Affiliation(s)
- Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | | | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Motlagh RA, Mohebbi S, Moslemi M, Jabbari P, Alizadeh A, Mardani R, Gheibi Hayat SM. Pancreatic β-cell regeneration: From molecular mechanisms to therapy. J Cell Biochem 2019; 120:14189-14200. [PMID: 31081169 DOI: 10.1002/jcb.28834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Pancreatic β cells are a type of cells that are present in the islets of Langerhans. These cells are highly specialized for the secretion of insulin in response to low increasing of blood glucose levels. Hence, pancreatic β cells could contribute to maintaining systemic glucose homeostasis. Increasing evidence has revealed that a variety of internal (ie, genetic and epigenetic factors) and external factors (ie, radical-oxidative stress) are involved in the protection and/or regeneration of pancreatic β cells. The pathways regulating β-cell replication have been intensely investigated. Glucose has an important role in cell cycle entry of quiescent β cells, which exerts its effect via glucose metabolism and unfolded proteins. A variety of growth factors, hormones, and signaling pathways (ie, calcium-calcineurin nuclear factor of activated T cells) are others factors that could affect β-cell replication under different conditions. Therefore, a greater understanding of the underlying pathways involved in the regeneration and protection of pancreatic β cells could lead to finding and developing new therapeutic approaches. Utilization of stem cells and various phytochemical agents have provided new aspects for preventing β-cell degeneration and stimulating the endogenous regeneration of islets. Thus, these therapeutic platforms could be used as potential therapies in the treatment of insulin-dependent diabetes mellitus. Here, we summarized the various mechanisms involved in pancreatic β-cell regeneration. Moreover, we highlighted different therapeutic approaches which could be used for the regeneration of pancreatic β cells.
Collapse
Affiliation(s)
- Roozbeh Akbari Motlagh
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, Iran
| | - Maryam Moslemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parnia Jabbari
- Department of New Medical Science, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Farajipour H, Rahimian S, Taghizadeh M. Curcumin: A new candidate for retinal disease therapy? J Cell Biochem 2019; 120:6886-6893. [PMID: 30548307 DOI: 10.1002/jcb.28068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The retina is the neural portion and light-sensitive layer of the eye, which has been observed in most of the vertebrates. The retina is composed of light-sensitive cells that absorb light and convert it into neural signals. These signals are sent to the brain for visual recognition. It has been shown that many pathogenesis conditions, including inflammation, angiogenesis, oxidative stress, and imbalanced histone modifications in the retina are associated with initiation and progression of retinal diseases (ie, glaucoma, diabetic retinopathy, and age-related macular degeneration). Currently available treatments include laser surgery, freezing, stem-cell therapy, shrinking abnormal blood vessels. It has some limitations, such as invasive methods, high costs, and many side effects. Hence, finding a new therapeutic platform for stopping or slowing of the disease progression is required. Curcumin is a natural product, which is associated with a wide range of properties, such as antioxidant, anti-inflammatory, antiangiogenic, and antitumor activates. It exerts therapeutic effects via activation/inhibition cellular and molecular targets involved in various diseases, such as retinal diseases. Increasing evidence revealed that curcumin can be used as a therapeutic option in the treatment of different retinal diseases. Here, we summarized various clinical and preclinical studies that used curcumin as a therapeutic agent in the treatment of retinal disorders.
Collapse
Affiliation(s)
| | - Susan Rahimian
- Oral and Maxillofacial Radiology Department, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Hesari A, Azizian M, Darabi H, Nesaei A, Hosseini SA, Salarinia R, Motaghi AA, Ghasemi F. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem 2019; 120:7109-7114. [PMID: 30485486 DOI: 10.1002/jcb.27984] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
One of the most lethal cancers among women is breast cancer. MicroRNAs (miRNAs) can be of great importance in the early detection of breast cancer. This study aimed to investigate some miRNAs in the serum of patients with breast cancer compared with the control group. Total RNA was extracted from the serum of patients with breast cancer and healthy volunteers. The expression levels of miRNAs and the genes were assessed using real-time reverse transcriptase-polymerase chain reaction with specific primers. Our data showed that miR-25 and miR-133 were downregulated, and miR-17 was upregulated in patients with breast cancer. Upregulation of miR-17 is related to the poor survival time and increased cell proliferation. The reduced expression of miR-133 and miR-25 is significantly associated with clinical stage, metastasis, and survival time of patients with breast cancer. Expressions of miRNAs miR-17, miR-25, and miR-133 are altered in patients with clinical stage, metastasis, poor survival time.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hassan Darabi
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amir Ali Motaghi
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
12
|
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM, Taghizadeh M. Vaccines for colorectal cancer: an update. J Cell Biochem 2018; 120:8815-8828. [PMID: 30536960 DOI: 10.1002/jcb.28179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is known as the third most common and fourth leading cancer associated death worldwide. The occurrence of metastasis has remained as a critical challenge in CRC, so that distant metastasis (mostly to the liver) has been manifested in about 20%-25% of patients. Several screening approaches have introduced for detecting CRC in different stages particularly in early stages. The standard treatments for CRC are surgery, chemotherapy and radiotherapy, in alone or combination. Immunotherapy is a set of novel approaches with the aim of remodeling the immune system battle with metastatic cancer cells, such as immunomodulatory monoclonal antibodies (immune checkpoint inhibitors), adoptive cell transfer (ACT) and cancer vaccine. Cancer vaccines are designed to trigger the intense response of immune system to tumor-specific antigens. In two last decades, introduction of new cancer vaccines and designing several clinical trials with vaccine therapy, have been taken into consideration in colon cancer patients. This review will describe the treatment approaches with the special attention to vaccines applied to treat colorectal cancer.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi Biouki
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Baniebrahimi G, Khanmohammadi R, Mir F. Teeth-derived stem cells: A source for cell therapy. J Cell Physiol 2018; 234:2426-2435. [PMID: 30238990 DOI: 10.1002/jcp.27270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Cell therapy is one of the important therapeutic approaches in the treatment of many diseases such as cancer, degenerative diseases, and cardiovascular diseases. Among various cell types, which could be used as cell therapies, stem cell therapy has emerged as powerful tools in the treatment of several diseases. Multipotent stem cells are one of the main classes of stem cells that could originate from different parts of the body such as bone marrow, adipose, placenta, and tooth. Among several types of multipotent stem cells, tooth-derived stem cells (TDSCs) are associated with special properties such as accessible, easy isolation, and low invasive, which have introduced them as a good source for using in the treatment of several diseases such as neural injuries, liver fibrosis, and Cohrn's disease. Here, we provided an overview of TDSCs particular stem cells from human exfoliated deciduous teeth and clinical application of them. Moreover, we highlighted molecular mechanisms involved in the regulation of dental stem cells fate.
Collapse
Affiliation(s)
- Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Khanmohammadi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mir
- Department of Pediatric Dentistry, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
16
|
Salimian J, Mirzaei H, Moridikia A, Harchegani AB, Sahebkar A, Salehi H. Chronic obstructive pulmonary disease: MicroRNAs and exosomes as new diagnostic and therapeutic biomarkers. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2018; 23:27. [PMID: 29692824 PMCID: PMC5894277 DOI: 10.4103/jrms.jrms_1054_17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is known as a progressive lung disease and the fourth leading cause of death worldwide. Despite valuable efforts, there is still no accurate diagnostic and prognostic tool for COPD. Hence, it seems that finding new biomarkers could contribute to provide better therapeutic platforms for COPD patients. Among various biomarkers, microRNAs (miRNAs) have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. It has been shown that deregulation of miRNAs targeting a variety of cellular and molecular pathways such as Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad could be involved in COPD pathogenesis. Multiple lines of evidence have indicated that extracellular vesicles such as exosomes could carry a variety of cargos (i.e., mRNAs, miRNAs, and proteins) which transfer various cellular and molecular signals to recipient cells. Here, we summarized various miRNAs which could be applied as diagnostic and prognostic biomarkers in the treatment of patients with COPD. Moreover, we highlighted the role of extracellular vesicles containing miRNAs as diagnostic and prognostic biomarkers in COPD patients.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdullah Moridikia
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Asghar Beigi Harchegani
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|