1
|
Mao Q, Deng M, Zhao J, Zhou D, Tong W, Xu S, Zhao X. Klotho ameliorates angiotension-II-induced endothelial senescence via restoration of autophagy by inhibiting Wnt3a/GSK-3β/mTOR signaling: A potential mechanism involved in prognostic performance of Klotho in coronary atherosclerotic disease. Mech Ageing Dev 2023; 211:111789. [PMID: 36764463 DOI: 10.1016/j.mad.2023.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE We aimed to evaluate the prognostic performance of circulating Klotho in coronary atherosclerotic disease (CAD), and to further explore the effect of Klotho on stress-mediated endothelial senescence and underlying mechanism. METHODS A cohort of 295 patients had a 12-month follow-up for major adverse cardiovascular events (MACE). Serum Klotho was detected by enzyme linked immunosorbent assay. Cell viability, SA-β-Gal staining, the expression of P53 and P16 were analyzed for endothelial senescence. Oxidative stress was evaluated by measurement of reactive oxygen species, superoxide dismutase and malondialdehyde. LC3, P62, Wnt3a, GSK-3β and mTOR were analyzed by western blotting. Autophagosome formation was detected by adenovirus transfection. RESULTS In epidemiological analysis, low Klotho (≤295.9 pg/ml) was significantly associated with MACE risk (HR=2.266, 95 %CI 1.229-4.176). In experimental analysis, Klotho alleviated endothelial senescence and oxidative stress caused by Ang-II exposure; Klotho restored impaired autophagic flux to ameliorate Ang-II induced endothelial senescence; Ang-II activated Wnt3a/GSK-3β/mTOR signaling to inhibit autophagy, whereas Klotho restored autophagy through blockade of Wnt3a/GSK-3β/mTOR signaling; Klotho ameliorated endothelial senescence by suppressing Wnt3a/GSK-3β/mTOR pathway under Ang-II exposure. CONCLUSIONS Prognostic significance of Klotho in CAD is potentially ascribed to its anti-endothelial senescence effect via autophagic flux restoration by inhibiting Wnt3a/ GSK-3β/mTOR signaling.
Collapse
Affiliation(s)
- Qi Mao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| | - Mengyang Deng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| | - Jianhua Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| | - Denglu Zhou
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| | - Wuyang Tong
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| | - Xiaohui Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital of Army Medical University, Chongqing 400037, China.
| |
Collapse
|
2
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Lei Y, Yang Q, Nie Y, Wan J, Deng M. Small-molecule inhibitor LF3 restrains the development of pulmonary hypertension through the Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1277-1289. [PMID: 34410330 DOI: 10.1093/abbs/gmab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension (PH) associated with congenital heart disease is a progressive hemodynamic disease that can lead to increased pulmonary vascular resistance, vascular remodeling, and even right heart failure and death. LF3 is a novel inhibitor of the reporter gene activity of β-catenin/TCF4 interaction in the Wnt/β-catenin signal pathway. However, whether this action of LF3 can prevent PH development remains unclear. In this study, we investigated the therapeutic effect of LF3 in rat primary pulmonary artery smooth muscle cells (PASMCs) of the PH model. We found that LF3 inhibited the decrease in pulmonary artery acceleration time and ejection time by ultra-high-resolution ultrasound imaging and blocked the increase of pulmonary artery systolic pressure by using the BL420 biological function experimental system and right ventricular hypertrophy index by the electronic scales. Simultaneously, it prevented the increase of α-smooth muscle actin and fibronectin and the decrease of elastin in pulmonary arteries of rats in the PH group, as revealed by an immunohistochemical analysis. Moreover, cell proliferation and migration assays showed that LF3 significantly reduced the proliferation and migration of PASMCs. Western blotting and quantitative real-time polymerase chain reaction analyses revealed that LF3 suppressed the expression of proliferating cell nuclear antigens and Bcl-2 and increased the expression of Bax but did not alter the expressions of β-catenin and TCF4. Taken together, LF3 can reduce the migration and proliferation of PASMCs and induce their apoptosis to prevent the development of PH. It would be worthwhile to explore the potential use of LF3 in the treatment of PH.
Collapse
Affiliation(s)
- Yong Lei
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, China
| | - Qi Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Cardiovascular and Metabolic of Luzhou City, Luzhou 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Cardiovascular and Metabolic of Luzhou City, Luzhou 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Mingbin Deng
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Cardiovascular and Metabolic of Luzhou City, Luzhou 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| |
Collapse
|
4
|
Liu Q, Han B, Zhang Y, Jiang T, Ning J, Kang A, Huang X, Zhang H, Pang Y, Zhang B, Wang Q, Niu Y, Zhang R. Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112659. [PMID: 34418850 DOI: 10.1016/j.ecoenv.2021.112659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Cardiac hypertrophy could be induced by ambient fine particulate matter (PM2.5) exposure. Since cardiac hypertrophy represents an early event leading to heart dysfunction, it is necessary to explore the molecular mechanisms, which are largely unknown. In the present study, an ambient particulate matter exposure mice model was established to explore its adverse effects related to the heart and the potential mechanisms. Forty-eight male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group, and were exposed for 8 and 16 weeks, 6 h/day, respectively. In vitro experiments, the cardiac muscle cell line (HL-1) was treated with PM2.5 (0, 25, 50 and 100 μg/mL) for 24 h. In the present study, cardiac hypertrophy was occurred in vivo and vitro after exposure to PM2.5. Mechanistically, circ_0001859 could sponge miR-29b-3p, which could interact with 3'UTRs of Ctnnb1 (gene name of β-catenin). And Ctnnb1 expression was transcriptionally inhibited by si-circ_0001859 or miR-29b-3p mimic in HL-1 cells. Additionally, miR-29b-3p inhibitor could also make a reversion about the inhibition effect of circ_0001859 silencing on Ctnnb1 mRNA level in HL-1 cells. Functionally, knockout of circ_0001859 or overexpression of miR-29b-3p could inhibit LEF1/IGF-2R pathway and alleviate the progress of hypertrophy induced by PM2.5 in HL-1 cells. And miR-29b-3p inhibitor could reverse the inhibition effect of circ_0001859 silencing on hypertrophic response induced by PM2.5 in HL-1 cells. Consequently, the data demonstrated that circRNA_0001859 promoted the process of cardiac hypertrophy through suppressing miR-29b-3p leading to enhance Ctnnb1 level, and activated downstream pathway molecules LEF1/IGF-2R.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Aijuan Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - XiaoYan Huang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Huaxing Zhang
- Research Core Facilities, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
5
|
Wang F, Zhen Y, Si C, Wang C, Pan L, Chen Y, Liu X, Kong J, Nie Q, Sun M, Han Y, Ye Z, Liu P, Wen J. WNT5B promotes vascular smooth muscle cell dedifferentiation via mitochondrial dynamics regulation in chronic thromboembolic pulmonary hypertension. J Cell Physiol 2021; 237:789-803. [PMID: 34368954 DOI: 10.1002/jcp.30543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by proliferative vascular remodeling. Abnormal vascular smooth muscle cell (VSMC) phenotype switching is crucial to this process, highlighting the need for VSMC metabolic changes to cover cellular energy demand in CTEPH. We report that elevated Wnt family member 5B (WNT5B) expression is associated with vascular remodeling and promotes VSMC phenotype switching via mitochondrial dynamics regulation in CTEPH. Using primary culture of pulmonary artery smooth muscle cells, we show that high WNT5B expression activates VSMC proliferation and migration and results in mitochondrial fission via noncanonical Wnt signaling in CTEPH. Abnormal VSMC proliferation and migration were abolished by mitochondrial division inhibitor 1, an inhibitor of mitochondrial fission. Secreted frizzled-related protein 2, a soluble scavenger of Wnt signaling, attenuates VSMC proliferation and migration by accelerating mitochondrial fusion. These findings indicate that WNT5B is an essential regulator of mitochondrial dynamics, contributing to VSMC phenotype switching in CTEPH.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yongxin Han
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Lan Y, Ng CT, Ong CN, Yu LE, Bay BH. Transcriptomic analysis identifies dysregulated genes and functional networks in human small airway epithelial cells exposed to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111702. [PMID: 33396033 DOI: 10.1016/j.ecoenv.2020.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
7
|
Jiang X, Hui F, Qin X, Wu Y, Liu H, Gao J, Li X, Xu Y, Zhang Y. Diagnosis Accuracy and Prognostic Significance of the Dickkopf-1 Protein in Gastrointestinal Carcinomas: Systematic Review and Network Meta-analysis. J Cancer 2020; 11:7091-7100. [PMID: 33193872 PMCID: PMC7646173 DOI: 10.7150/jca.49970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To evaluate the diagnosis accuracy and prognostic significance of bio-marker dickkopf-1(DKK-1) protein in GIC, and also sub-type of hepatocellular carcinoma (HCC), pancreas carcinomas (PC), oesophageal carcinoma (EPC) and Adenocarcinoma of esophago-gastric junction (AEGJ), etc. Methods: Electronic databases were searched from inception to May 2020. Patients were diagnosed with gastrointestinal carcinomas, and provided data on the correlation between high and low DKK-1 expression and diagnosis or prognosis. Results: Forty-three publications involving 9318 participants were included in the network meta-analysis, with 31 of them providing data for diagnosis value and 18 records were eligible for providing prognosis value of DKK-1. DKK-1 has a moderate diagnostic value for overall GIC, HCC and PC. In addition, for the combined diagnosis value of DKK-1 +AFP, high diagnostic accuracy value could be determined in HCC and early HCC group, respectively. Whereas, diagnosis efficiency of DKK-1+CA19-9 was also better than that of DKK-1 alone with AUC value is above 0.95. For the prognosis meta-analysis of histopathological stratification, we found that EPC and AEGJ ranked the best for the histopathological stratification of prognosis from network meta-analysis. This systematic review protocol was registered with the PROSPERO registry (No.CRD42020167910). Conclusion: DKK-1 has good diagnostic accuracy, especially combination of DKK-1+AFP in HCC and DKK-1+CA19-9 in PC, whereas modest prognostic significant in GIC. Future head-to-head researches are warranted for DKK-1 expression in HCC and PC tissue.
Collapse
Affiliation(s)
- Xiaowen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fuhai Hui
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Haihan Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Gao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiang Li
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Xu
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
8
|
Li T, Hu R, Chen Z, Li Q, Huang S, Zhu Z, Zhou LF. Fine particulate matter (PM 2.5): The culprit for chronic lung diseases in China. Chronic Dis Transl Med 2018; 4:176-186. [PMID: 30276364 PMCID: PMC6160608 DOI: 10.1016/j.cdtm.2018.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/22/2022] Open
Abstract
Air pollution is a world public health problem. Particulate matter (PM), a mix of solid and liquid particles in the air, becomes an increasing concern in the social and economic development of China. For decades, epidemiological studies have confirmed the association between fine particle pollutants and respiratory diseases. It has been reported in different populations that increased Fine particulate matter (PM2.5) concentrations cause elevated susceptibility to respiratory diseases, including acute respiratory distress, asthma, chronic obstructive pulmonary disease, and lung cancer. This review will discuss the pathophysiology of PM2.5 in respiratory diseases, which are helpful for the prevention of air pollution and treatment of respiratory tract inflammatory diseases.
Collapse
Affiliation(s)
- Tao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rong Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Section of Allergy and Clinical Immunology, Internal Medicine and Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Qiyuan Li
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology, Internal Medicine and Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Respiratory Medicine, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, Jiangsu 215228, China
| |
Collapse
|