1
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
2
|
Pan D, Di X, Yan B, Su X. Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis. Int J Gen Med 2024; 17:1419-1431. [PMID: 38617054 PMCID: PMC11016256 DOI: 10.2147/ijgm.s455707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Pulmonary fibrosis is a group of chronic, progressive, and irreversible interstitial lung diseases, which are common to most end-stage lung diseases and are one of the most difficult diseases of the respiratory system. In recent years, due to the frequent occurrence of air pollution and smog, the incidence of pulmonary fibrosis in China has increased year by year, the morbidity and mortality rates of pulmonary fibrosis have gradually increased and the age of the disease tends to be younger. However, the pathogenesis of pulmonary fibrosis is not yet fully understood and is needed to further explore new drug targets. Studies have shown that non-coding RNAs play an important role in regulating the process of pulmonary fibrosis, non-coding RNAs and their specifically expressed can promote or inhibit the process. Here, we review the role of some in the regulation of pulmonary fibrosis signaling pathways and provide new ideas for the clinical diagnosis and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dengyun Pan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaomin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Zhu M, Zhao L, Zhang X, Zhao R. Astragaloside IV restrains pulmonary fibrosis progression via the circ_0008898/miR-211-5p/HMGB1 axis. Chem Biol Drug Des 2024; 103:e14508. [PMID: 38514749 DOI: 10.1111/cbdd.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Pulmonary Fibrosis (PF) is a fatal lung disease with complicated pathogenesis. Astragaloside IV (ASV) has been discovered to alleviate PF progression, and the potential molecular mechanism of ASV in the development of PF need to be further clarified. Bleomycin (BLM) was used to construct PF in vivo model. Expression levels of circ_0008898, miR-211-5p, high mobility group protein B1 (HMGB1), alpha smooth muscle Actin (α-SMA) and Collagen I were examined by Quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Cell survival was analyzed using Cell Counting Kit-8 (CCK-8) and EdU (5-ethynyl-2'-deoxyuridine) assay. The invasion abilities were investigated by transwell assay. The levels of inflammatory factors were tested via using Enzyme-linked immunosorbent assay (ELISA). The relationship between circ_0008898 or HMGB1 and miR-211-5p was identified by dual-luciferase reporter assay. The results showed that ASV attenuated BLM-induced pulmonary fibrosis in vivo. In vitro study, ASV alleviated TGF-β1-induced fibrogenesis in HFL1 cells. Circ_0008898 was increased in TGF-β1-induced HFL1 cells. ASV-induced impacts were abrogated by circ_0008898 overexpression in TGF-β1-induced HFL1 cells. Mechanistically, circ_0008898 competitively bound to miR-211-5p to increase the expression of its target HMGB1. MiR-211-5p deficiency rescued ASV-mediated effects in TGF-β1-induced HFL1 cells. In addition, HMGB1 overexpression partially overturned circ_0008898 interference-induced impacts in HFL1 cells upon TGF-β1 treatment. In conclusion, our work manifested that ASV hindered PF process by mediating the circ_0008898/miR-211-5p/HMGB1 network.
Collapse
Affiliation(s)
- Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Xueying Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Ruijuan Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| |
Collapse
|
4
|
TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD. Biomedicines 2023; 11:biomedicines11020437. [PMID: 36830972 PMCID: PMC9953666 DOI: 10.3390/biomedicines11020437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium, through pattern recognition receptors expressed transmembrane or intracellularly, acts as a first line of defense for the lungs against many environmental triggers. It is involved in the release of alarmin cytokines, which are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Knowledge of the role of epithelial cells in orchestrating the immune response and mediating the clearance of invading pathogens and dead/damaged cells to facilitate resolution of inflammation is necessary to understand how, in many chronic lung diseases, there is a persistent inflammatory response that becomes the basis of underlying pathogenesis. This review will focus on the role of pulmonary epithelial cells and of airway epithelial cell alarmins, in particular thymic stromal lymphopoietin (TSLP) and high mobility group box 1 (HMGB1), as key mediators in driving the inflammation of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), evaluating the similarities and differences. Moreover, emerging concepts regarding the therapeutic role of molecules that act on airway epithelial cell alarmins will be explored for a precision medicine approach in the context of pulmonary diseases, thus allowing the use of these molecules as possible predictive biomarkers of clinical and biological response.
Collapse
|
5
|
Deng N, Lv Y, Bing Q, Li S, Han B, Jiang H, Yang Q, Wang X, Wu P, Liu Y, Zhang Z. Inhibition of the Nrf2 signaling pathway involved in imidacloprid-induced liver fibrosis in Coturnix japonica. ENVIRONMENTAL TOXICOLOGY 2022; 37:2354-2365. [PMID: 35716027 DOI: 10.1002/tox.23601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Li T, Tan X, Huang Y, Cui J, Chen F, Xiong Y. MicroRNA miR-627-5p restrains pulmonary artery smooth muscle cell dysfunction by targeting MAP 2 K4 and PI3K/AKT signaling. Genes Environ 2022; 44:23. [PMID: 36163195 PMCID: PMC9513949 DOI: 10.1186/s41021-022-00251-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary vascular remodeling, which can be caused by abnormal proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). Several microRNAs were demonstrated to regulate the PASMC dysfunction. Our study intends to evaluate whether miR-627-5p affects cigarette smoke extract (CSE)-induced aberrant biological behaviors of PASMCs. METHODS PASMCs was treated with CSE to create the in vitro cellular model of COPD. The viability and LDH release of PASMCs was detected by CCK-8 assay and LDH release assay. MiR-627-5p and MAP 2 K4 expression in CSE (2%)-treated PASMCs was detected by qRT-PCR. PASMC proliferation was observed under a microscope, and PASMC migration was assessed by Transwell migration assays. The binding of miR-627-5p on MAP 2 K4 was verified by dual-luciferase reporter assay. Protein levels of MAP2K4 and the PI3K/AKT signaling markers were examined by western blotting. RESULTS The viability of PASMCs treated with 2% CSE reached a peak. CSE dose-dependently downregulated miR-627-5p expression in PASMCs. MiR-627-5p overexpression attenuated the CSE-induced abnormal proliferation and migration of PASMCs. However, MAP2K4 overexpression antagonized the effects of miR-627-5p on PASMC dysfunction. Importantly, miR-627-5p inhibited CSE-stimulated activation of the PI3K/AKT pathway via downregulating MAP2K4. CONCLUSION MiR-627-5p improves CSE-induced abnormal proliferation and migration of PASMCs by inhibiting MAP2K4 expression and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ting Li
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China
| | - Xiaoqin Tan
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China
| | - Yuexia Huang
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China
| | - Jun Cui
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China
| | - Fan Chen
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China
| | - Ying Xiong
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, 430000, China.
- Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, Hubei, China.
| |
Collapse
|
7
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
8
|
Xie Y, Du D, Zhang L, Yang Y, Zou Z, Li Z, Zhou L, Shang R, Zhou P. TJ-M2010-5, A self-developed MyD88 inhibitor, attenuates liver fibrosis by inhibiting the NF-κB pathway. Chem Biol Interact 2022; 354:109839. [PMID: 35101388 DOI: 10.1016/j.cbi.2022.109839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/09/2023]
Abstract
Liver fibrosis is the result of most chronic inflammatory liver damage and seriously endangers human health. However, no drugs have been approved to treat this disease. Previous studies showed that the Toll-like receptors (TLRs)/myeloid differentiation factor-88 (MyD88)/nuclear factor-κB (NF-κB) pathway plays a key role in liver fibrosis. TJ-M2010-5 is a self-developed small molecule MyD88 inhibitor, which has been proven to have a good protective effect in a variety of inflammatory disease models. In the present study, to investigate the anti-fibrotic effect of TJ-M2010-5, mice were injected with carbon tetrachloride (CCl4) in vivo and LX2 cells (a human hepatic stellate cell line) were treated with TGF-β1 in vitro to induce liver fibrosis. In vivo studies showed that TJ-M2010-5 attenuated the CCl4-induced liver damage, collagen accumulation, and the activation of hepatic stellate cells by inhibiting the nuclear transfer of NF-κB. Moreover, in vitro experiments of LX2 cells stimulated with TGF-β1 further indicated that the NF-κB pathway is involved in the development of liver fibrosis. TJ-M2010-5 significantly inhibited the proliferation and activation of LX2 cells. In addition, TJ-M2010-5 upregulated the expression of bone morphogenetic protein and membrane-bound inhibitor (BAMBI) in LX2 cells by blocking the activation of MyD88/NF-κB, thereby inhibiting the phosphorylation of Smad2/3 and the expression of collagen I (COL1A1) induced by TGF-β1. In conclusion, this study illustrates the anti-hepatic fibrosis effect of TJ-M2010-5 and provides a new treatment method for liver fibrosis.
Collapse
Affiliation(s)
- Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Limin Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Ding M, Zhang Y, Xu W, Fang C, Zhang K. MicroRNA-200b-3p as a biomarker for diagnosis and survival prognosis of multiple organ dysfunction syndrome caused by acute paraquat poisoning. Hum Exp Toxicol 2022; 41:9603271221094008. [PMID: 35442113 DOI: 10.1177/09603271221094008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute paraquat poisoning-induced multiple organ dysfunction syndrome (MODS) leads to the high mortality. This study aimed to investigate the clinical significance of microRNA-200b-3p (miR-200b-3p), an upstream inhibitor of high-mobility group box 1 (HMGB1), in acute paraquat poisoning patients for the prediction of MODS and survival. METHODS This study enrolled 80 patients with MODS induced by paraquat and 94 healthy volunteers. The interaction between miR-200b-3p and HMGB1 was identified by luciferase reporter assay. miR-200b-3p levels were measured by quantitative real-time (QRT) PCR. High-mobility group box 1 levels were measured by enzyme-linked immune sorbent assay (ELISA). Receiver operating characteristic analysis was used to evaluate the diagnostic value of miR-200b-3p in screening MODS patients. The relationship between miR-200b-3p and the 28-day survival of MODS patients was evaluated by Kaplan-Meier curves and log-rank test. Cox regression analysis was used to assess the prognostic value of miR-200b-3p. Correlation between miR-200b-3p and HMGB1 was confirmed by Pearson's correlation analysis. RESULTS miR-200b-3p directly target HMGB1. miR-200b-3p, decreased in MODS patients, had high diagnostic value to screen MODS patients from healthy controls. Additionally, serum miR-200b-3p was decreased in non-survivors, and patients with low miR-200b-3p level had poor 28-day survival. Serum miR-200b-3p could independently predict the survival prognosis. Moreover, serum HMGB1 level was increased in MODS patients, and was negatively correlated with miR-200b-3p level. CONCLUSION Decreased miR-200b-3p may function as a biomarker for the diagnosis and survival prognosis of MODS patients, and miR-200b-3p may be involved in the progression of acute paraquat-induced MODS via regulating inflammatory responses by targeting HMGB1.
Collapse
Affiliation(s)
- Minggang Ding
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Yi Zhang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Weijun Xu
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Chongtao Fang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| | - Kaitai Zhang
- Emergency Department, 155177Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, Shandong, China
| |
Collapse
|
10
|
Thottakara T, Lund N, Krämer E, Kirchhof P, Carrier L, Patten M. A Novel miRNA Screen Identifies miRNA-4454 as a Candidate Biomarker for Ventricular Fibrosis in Patients with Hypertrophic Cardiomyopathy. Biomolecules 2021; 11:1718. [PMID: 34827715 PMCID: PMC8615621 DOI: 10.3390/biom11111718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Left ventricular hypertrophy, myocardial disarray and interstitial fibrosis are the hallmarks of hypertrophic cardiomyopathy (HCM). Access to the myocardium for diagnostic purposes is limited. Circulating biomolecules reflecting the myocardial disease processes could improve the early detection of HCM. Circulating miRNAs have been found to reflect disease processes in several cardiovascular diseases. (2) Methods: We quantified circulating miRNA molecules in the plasma of 24 HCM and 11 healthy controls using the Human v3 miRNA Expression Assay Kit Code set (Nanostring Tech., Seattle, WA, USA) and validated differentially expressed miRNAs using RT-PCR. (3) Results: In comparison to healthy controls, the levels of six miRNAs (miR-1, miR-3144, miR-4454, miR-495-3p, miR-499a-5p and miR-627-3p) were higher in the plasma of HCM patients than healthy individuals (p < 0.05). Of these, higher levels of miR-1, miR-495 and miR-4454 could be validated by real-time PCR. In addition, elevated miR-4454 levels were significantly correlated with cardiac fibrosis, detected by magnetic resonance imaging in HCM patients. (4) Conclusions: Circulating miR-1, miR-495-3p and miR-4454 levels are elevated in the plasma of HCM patients. To the best of our knowledge, this is the first report showing a correlation between miR-4454 levels and cardiac fibrosis in HCM. This suggests miR-4454 as a potential biomarker for fibrosis in these patients.
Collapse
Affiliation(s)
- Tilo Thottakara
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20253 Hamburg, Germany; (T.T.); (N.L.); (P.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; (E.K.); (L.C.)
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, CA 94158, USA
| | - Natalie Lund
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20253 Hamburg, Germany; (T.T.); (N.L.); (P.K.)
| | - Elisabeth Krämer
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; (E.K.); (L.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20253 Hamburg, Germany; (T.T.); (N.L.); (P.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; (E.K.); (L.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucie Carrier
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; (E.K.); (L.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Monica Patten
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20253 Hamburg, Germany; (T.T.); (N.L.); (P.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; (E.K.); (L.C.)
| |
Collapse
|
11
|
Zhu ZH, Li X, He LF, Cai HF, Ye B, Wu ZM. Glycyrrhizic acid, as an inhibitor of HMGB1, alleviates bleomycin-induced pulmonary toxicity in mice through the MAPK and Smad3 pathways. Immunopharmacol Immunotoxicol 2021; 43:461-470. [PMID: 34142927 DOI: 10.1080/08923973.2021.1939371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM High-mobility group box 1 (HMGB1) protein has been noticed particularly for its pivotal role in several pathologies. However, the relevance between HMGB1 and pathological progress in lung toxicity still remains unclear. In the study, we evaluated the effect of glycyrrhizic acid as an HMGB1 inhibitor on the early inflammation and late fibrosis in bleomycin-induced pulmonary toxicity in mice. METHODS We established a bleomycin-induced pulmonary toxicity model to detect the relevance between HMGB1 and pathological changes in the early inflammatory and late fibrotic stages. RESULTS We found that bleomycin-induced increase in inflammatory cytokines interleukin (IL)-β1, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and inflammatory lesions in lung tissue in the early stage of the model. However, markers of fibrosis such as transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) were significantly elevated on day 7 after bleomycin instillation. Interestingly, HMGB1 also began to rise on day 7, rather than in the early inflammatory phase. However, early (from day 0 to 14 after bleomycin instillation) or late (from day 14 to 28) intervention with HMGB1 neutralizing antibody or glycyrrhizic acid alleviated inflammation and fibrosis through down-regulating the inflammatory signaling mitogen-activated protein kinase (MAPK) and fibrotic signaling Smad3 pathway. CONCLUSION Our results suggested that HMGB1 mediates both inflammation and fibrosis in this model. The development of high-potency and low-toxicity HMGB1 inhibitors may be a class of potential drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhen-Hua Zhu
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Xing Li
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Lin-Feng He
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - He-Fei Cai
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Bin Ye
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Zhong-Min Wu
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, China
| |
Collapse
|
12
|
Wu CH, Chen CH, Hsieh PF, Lee YH, Kuo WWT, Wu RCY, Hung CH, Yang YL, Lin VC. Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF-β pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1080-1089. [PMID: 33522686 DOI: 10.1002/tox.23107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Prostate cancer has significant mortality and metastasis rate in the male. Unfortunately, effective treatment for patients with advanced prostate cancer is still lacking. Verbascoside, a phenylethanoid glycoside, displays various pharmacological properties, such as the anti-cancer activities. The present study aimed to evaluate the effects of purified verbascoside on human prostate cancer and the associated molecular mechanisms. MATERIALS AND METHODS The human prostate cancer cell lines, Du-145 and PC-3, were treated with various concentrations of verbascoside (0.1, 1, 10 μM) for 24 h followed by the examination of cell viability using MTT and trypan blue exclusion assays. Cell migration and invasion capacities were assessed by wound healing assay and transwell system. Western blot and immunofluorescence staining were used to detect the expression of epithelial-mesenchymal transition (EMT)-associated factors, components of transforming growth factor (TGF-β)/Smad signaling, and high-mobility group box (HMGB)/receptor for advanced glycation end-products (RAGE) axis. RESULTS Verbascoside treatment significantly inhibited cell proliferation, migration, and invasion abilities of Du-145 and PC-3 cells. We showed that verbascoside decreased the expression of EMT promotors, Snail and Slug, and increased the expression of E-cadherin. Moreover, the expression level of alpha-smooth muscle actin was downregulated by verbascoside as well. Besides, we found that the TGF-β pathway was suppressed, which was demonstrated by the diminished expression of type I and II TGF-β receptors and phosphorylated Smad2/3 along with the upregulated Smad7. Our data suggested that this downregulation of TGF-β signaling was mediated by repression of HMGB 1 (HMGB1)/RAGE axis. CONCLUSION Verbascoside mitigated the cell proliferation and aggressiveness of prostate cancer via downregulation of TGF-β-associated EMT progression through HMGB1/RAGE suppression. Collectively, our findings revealed that verbascoside may be a beneficial dietary supplement for prostate cancer patients.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsien Chen
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Fang Hsieh
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Hsi Lee
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Urology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Wade Wei-Ting Kuo
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Richard Chen-Yu Wu
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Lin Yang
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Zou H, Ming B, Li J, Xiao Y, Lai L, Gao M, Xu Y, Tan Z, Gong F, Zheng F. Extracellular HMGB1 Contributes to the Chronic Cardiac Allograft Vasculopathy/Fibrosis by Modulating TGF-β1 Signaling. Front Immunol 2021; 12:641973. [PMID: 33777037 PMCID: PMC7988222 DOI: 10.3389/fimmu.2021.641973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac allograft vasculopathy (CAV) charactered with aberrant remodeling and fibrosis usually leads to the loss of graft after heart transplantation. Our previous work has reported that extracellular high-mobility group box 1 (HMGB1) participated in the CAV progression via promoting inflammatory cells infiltration and immune damage. The aim of this study was to investigate the involvement of HMGB1 in the pathogenesis of CAV/fibrosis and potential mechanisms using a chronic cardiac rejection model in mice. We found high levels of transforming growth factor (TGF)-β1 in cardiac allografts after transplantation. Treatment with HMGB1 neutralizing antibody markedly prolonged the allograft survival accompanied by attenuated fibrosis of cardiac allograft, decreased fibroblasts-to-myofibroblasts conversion, and reduced synthesis and release of TGF-β1. In addition, recombinant HMGB1 stimulation promoted release of active TGF-β1 from cardiac fibroblasts and macrophages in vitro, and subsequent phosphorylation of Smad2 and Smad3 which were downstream of TGF-β1 signaling. These data indicate that HMGB1 contributes to the CAV/fibrosis via promoting the activation of TGF-β1/Smad signaling. Targeting HMGB1 might become a new therapeutic strategy for inhibiting cardiac allograft fibrosis and dysfunction.
Collapse
Affiliation(s)
- Huijuan Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Reproductive Medicine Center, Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
14
|
Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, Chen Z, Liang Y. The MIR155 host gene/microRNA-627/HMGB1/NF-κB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci 2021; 269:119085. [PMID: 33482190 DOI: 10.1016/j.lfs.2021.119085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis (PF), which is characterized by excessive matrix formation, may ultimately lead to irreversible lung damage and thus death. Fibroblast activation has been regarded as a central event during PF pathogenesis. In our previous study, we confirmed that the miR-627/high-mobility group box protein 1 (HMGB1)/Nuclear factor kappa beta (NF-κB) axis modulates transforming growth factor beta 1 (TGFβ1)-induced pulmonary fibrosis. In the present study, we investigated the upstream factors leading to miR-627 dysregulation in the process of pulmonary fibroblast activation and PF. The lncRNA MIR155 host gene (MIR155HG) was found to be abnormally upregulated in pulmonary fibrosis tissues and TGFβ1-stimulated normal human primary lung fibroblasts (NHLFs). By directly binding to miR-627, MIR155HG inhibited miR-627 expression. MIR155HG overexpression enhanced TGFβ1-induced increases in HMGB1 protein expression and p65 phosphorylation, NHLF proliferation, and extracellular matrix (ECM) deposition. In contrast, miR-627 overexpression attenuated the TGFβ1-induced changes in NHLFs and significantly reversed the effects of MIR155HG overexpression. Under TGFβ1 stimulation, miR-627 inhibition promoted, whereas JSH-23 treatment inhibited NF-κB activation; in NHLFs, NF-κB overexpression upregulated, whereas JSH-23 treatment downregulated MIR155HG expression. In tissue samples, HMGB1 protein levels and p65 phosphorylation were increased; MIR155HG was negatively correlated with miR-627 and positively correlated with HMGB1. In conclusion, we validated that the MIR155HG/miR-627/HMGB1/NF-κB axis formed a regulatory loop that modulates TGFβ1-induced NHLF activation. Considering the critical role of NHLF activation in PF pathogenesis, the NF-κB/MIR155HG/miR-627/HMGB1 regulatory loop could exert a vital effect on PF pathogenesis. Further in vivo and clinical investigations are required to confirm this model.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Xueyu Zhang
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Tao Wang
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Jinghong Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Qi Su
- Medical Department, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Cheng Zhong
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Zhongshu Chen
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China.
| | - Ying Liang
- Department of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
15
|
Li D, Wang L, Feng J, Shen YW, Liu LN, Wang Y. RP11‑284F21.9 promotes lung carcinoma proliferation and invasion via the regulation of miR‑627‑3p/CCAR1. Oncol Rep 2020; 44:1638-1648. [PMID: 32945522 PMCID: PMC7448446 DOI: 10.3892/or.2020.7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/10/2020] [Indexed: 11/11/2022] Open
Abstract
Lung carcinoma is a prominent cause of mortality among patients with cancer. Previous studies have reported the vital role of long non-coding RNAs (lncRNAs) in the malignant progression of lung cancer. lncRNA RP11-284F21.9 was originally identified to be expressed in lung carcinoma, but its specific function remains unknown. Therefore, the present study aimed to elucidate the role of lncRNA RP11-284F21.9 in lung carcinoma progression. The expression of RP11-284F21.9 in lung cell lines and tissues was measured using reverse transcription-quantitative PCR. The endogenous expression of RP11-284F21.9 was silenced using RNA interference, and cell viabilities were measured with a Cell Counting Kit-8 assay. The invasion and apoptosis of cells were determined via Transwell assays and flow cytometry, respectively. The protein expression levels were measured by western blotting. An increased expression of RP11-284F21.9 was identified in both lung carcinoma tissues and cells. Knockdown of RP11-284F21.9 in lung carcinoma cells inhibited cell proliferation and invasion, but promoted cell apoptosis. The present study identified the existence of a direct interaction between RP11-284F21.9 and microRNA (miRNA/miR)-627-3p. Mechanistically, it was demonstrated that RP11-284F21.9 promoted the proliferation and invasiveness of lung carcinoma cells, in part, via the regulation of miR-627-3p. Furthermore, cell division cycle and apoptosis regulator 1 (CCAR1) was identified as a target gene of miR-627-3p. The in vivo tumor growth assay also demonstrated that the knockdown of RP11-284F21.9 suppressed tumor growth, upregulated miR-627-3p and downregulated CCAR1 in the xenograft model of nude mice. Thus, the present findings indicated the tumor promoting functions of RP11-284F21.9 in the progression of lung carcinoma, and provided a novel lncRNA/miRNA axis as a target for the management of lung cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Wei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Na Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Cheng L, Tu C, Min Y, He D, Wan S, Xiong F. MiR-194 targets Runx1/Akt pathway to reduce renal fibrosis in mice with unilateral ureteral obstruction. Int Urol Nephrol 2020; 52:1801-1808. [PMID: 32661617 DOI: 10.1007/s11255-020-02544-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Chronic kidney disease (CKD) has become a global public health problem and accompanied by renal fibrosis. MiR-194, a tumor suppressor gene, has been previously reported to be associated with the pathogenesis of tissue fibrosis. However, the role of miR-194 in the pathogenesis of renal fibrosis remains unknown. METHODS A renal fibrosis model was constructed by unilateral ureteral obstruction (UUO) in male C57BL/6 mice. HE and MASSON stainings were used for histological analysis. The expression level of miR-194 was detected by RT-qPCR. The protein expression was detected by western blotting. The levels of inflammatory cytokines were detected by ELISA. The relationship between miR-194 and Runx1 was further verified by dual luciferase reporter assay. RESULTS The results showed that miR-194 level was downregulated in kidney tissue of UUO mice, accompanied by significantly pathological damage and renal fibrosis. MiR-194 mimics significantly reduced pathological damage and alleviated renal fibrosis that caused by UOO, and inhibited the expression levels of α-SMA and collagen I. In addition, miR-194 mimics also reduced the expression level of serum inflammatory factors. Moreover, in vitro analysis indicated that Runx1 was a downstream target gene of miR-194. Furthermore, mechanism analysis indicated that miR-194 reduced mouse renal fibrosis by inhibiting the Runx1/AKT pathway in vivo and in vitro. CONCLUSION The present findings suggested that miR-194 targets Runx1/Akt pathway to reduce renal fibrosis in UOO-induced mice. This study provides a novel strategy for the prevention and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Li Cheng
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China
| | - Can Tu
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China
| | - Yonglong Min
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China
| | - Da He
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China
| | - Sheng Wan
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China
| | - Fei Xiong
- Department of Nephrology, Hubei Province, Wuhan No. 1 Hospital, 215# Zhongshan Avenue, Wuhan, 430022, China.
| |
Collapse
|
17
|
Zhang YZ, Yao JN, Zhang LF, Wang CF, Zhang XX, Gao B. Effect of NLRC5 on activation and reversion of hepatic stellate cells by regulating the nuclear factor-κB signaling pathway. World J Gastroenterol 2019; 25:3044-3055. [PMID: 31293340 PMCID: PMC6603813 DOI: 10.3748/wjg.v25.i24.3044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/27/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The formation of liver fibrosis is mainly caused by the activation of hepatic stellate cells (HSCs) and the imbalance of extracellular matrix (ECM) production and degradation. The treatment of liver fibrosis mainly includes removing the cause, inhibiting the activation of HSCs, and inhibiting inflammation. NOD-like receptor (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5/NOD27/CLR16.1 (NLRC5) is a highly conserved member of the NLR family and is involved in inflammation and immune responses by regulating various signaling pathways such as nuclear factor-κB (NF-κB) signaling. It has been found that NLRC5 plays an important role in liver fibrosis, but its specific effect and possible mechanism remain to be fully elucidated.
AIM To investigate the role of NLRC5 in the activation and reversion of HSCs induced with transforming growth factor-β (TGF-β) and MDI, and to explore its relationship with liver fibrosis.
METHODS A total of 24 male C57BL/6 mice were randomly divided into three groups, including normal, fibrosis, and recovery groups. Twenty-four hours after a liver fibrosis and spontaneous reversion model was established, the mice were sacrificed and pathological examination of liver tissue was performed to observe the degree of liver fibrosis in each group. LX-2 cells were cultured in vitro and treated with TGF-β1 and MDI. Real-time quantitative PCR (qPCR) and Western blot were used to analyze the expression levels of NLRC5, α-smooth muscle actin (α-SMA), and collagen type I alpha1 (Col1a1) in each group. The activity of NF-κB in each group of cells transfected with NLRC5-siRNA was detected.
RESULTS Compared with the normal mice, the expression level of NLRC5 increased significantly (P < 0.01) in the fibrosis group, but decreased significantly in the recovery group (P < 0.01). In in vitro experiments, the content of NLRC5 was enhanced after TGF-β1 stimulation and decreased to a lower level when treated with MDI (P < 0.01). The expression of α-SMA and Col1a1 proteins and mRNAs in TGF-β1-mediated cells was suppressed by transfection with NLRC5-siRNA (P < 0.01). Western blot analysis showed that the expression of NF-κB p65 protein and phosphorylated IκBα (p-IκBα) was increased in the liver of mice in the fibrosis group but decreased in the recovery group (P < 0.01), and the protein level of nuclear p65 and p-IκBα was significantly increased after treatment with NLRC5-siRNA (P < 0.01).
CONCLUSION NLRC5 may play a key role in the development and reversal of hepatic fibrosis through the NF-κB signaling pathway, and it is expected to be one of the clinical therapeutic targets.
Collapse
Affiliation(s)
- Yan-Zhen Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian-Ning Yao
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lian-Feng Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chun-Feng Wang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xue-Xiu Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing Gao
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
18
|
Nie Y, Zhang D, Qian F, Wu Y. Baccatin III ameliorates bleomycin-induced pulmonary fibrosis via suppression of TGF-β1 production and TGF-β1-induced fibroblast differentiation. Int Immunopharmacol 2019; 74:105696. [PMID: 31229901 DOI: 10.1016/j.intimp.2019.105696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and generally lethal lung disease with a high mortality rate. Current therapeutic drugs exhibit limited efficacy but severe adverse effects. Paclitaxel has been identified to exert both anti-inflammatory and anti-fibrosis activity. Baccatin III (BAC), an important precursor of paclitaxel, has been identified as exhibiting immunomodulatory activity with decisively lower toxicity. However, its effects on pulmonary fibrosis remain unknown. In this study, the role of BAC in bleomycin (BLM)-induced pulmonary fibrosis and inflammation in mice was investigated in addition to elucidation of its mechanism of action. Our results demonstrated that administration of BAC in a dose-dependent manner reduced inflammatory infiltration, secretion of the pro-fibrotic mediator TGF-β1 and deposition of collagen and other components of the extracellular matrix (ECM), including alpha smooth muscle actin (α-SMA) and fibronectin. Administration of BAC to treat isolated macrophages stimulated with IL-13, known to activate macrophages, the principal source of TGF-β1, resulted in markedly reduced TGF-β1 expression from macrophages. The AKT/STAT6 signaling pathway was shown to be involved in this process. In addition, we have provided in vitro evidence that BAC inhibits TGF-β1-induced fibroblast differentiation via the Smad2/3 signaling pathway. Furthermore, intratracheal injection of rTGF-β1 significantly exacerbated the degree of fibrosis which was down-regulated by treatment with BAC. Taken together, our data suggest that BAC exerts a protective effect against lung fibrosis and may serve as a potential therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Dan Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|