1
|
AlZahrani WM, AlGhamdi SA, Sohrab SS, Rehan M. Investigating a Library of Flavonoids as Potential Inhibitors of a Cancer Therapeutic Target MEK2 Using in Silico Methods. Int J Mol Sci 2023; 24:ijms24054446. [PMID: 36901876 PMCID: PMC10002492 DOI: 10.3390/ijms24054446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The second leading cause of death in the world is cancer. Mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinase (ERK) 1 and 2 (MEK1/2) stand out among the different anticancer therapeutic targets. Many MEK1/2 inhibitors are approved and widely used as anticancer drugs. The class of natural compounds known as flavonoids is well-known for their therapeutic potential. In this study, we focus on discovering novel inhibitors of MEK2 from flavonoids using virtual screening, molecular docking analyses, pharmacokinetic prediction, and molecular dynamics (MD) simulations. A library of drug-like flavonoids containing 1289 chemical compounds prepared in-house was screened against the MEK2 allosteric site using molecular docking. The ten highest-scoring compounds based on docking binding affinity (highest score: -11.3 kcal/mol) were selected for further analysis. Lipinski's rule of five was used to test their drug-likeness, followed by ADMET predictions to study their pharmacokinetic properties. The stability of the best-docked flavonoid complex with MEK2 was examined for a 150 ns MD simulation. The proposed flavonoids are suggested as potential inhibitors of MEK2 and drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.A.); (M.R.)
| | - Sayed S. Sohrab
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.A.); (M.R.)
| |
Collapse
|
2
|
Suhail M, Rehan M, Tarique M, Tabrez S, Husain A, Zughaibi TA. Targeting a transcription factor NF-κB by green tea catechins using in silico and in vitro studies in pancreatic cancer. Front Nutr 2023; 9:1078642. [PMID: 36712528 PMCID: PMC9874859 DOI: 10.3389/fnut.2022.1078642] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic cancer remains a lethal disease and a major public health problem globally. Nuclear factor-kappa B (NF-κB) has been identified as a therapeutic target in several cancers and plays an important role in inflammatory responses. Many phytochemicals, including catechins, have been reported in the scientific literature with efficient anticancer potential and minimal side effects. This study aims to gain insights into the inhibitory mechanism of catechin derivatives epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) using in silico and in vitro studies especially considering NF-κB targeting. We explored the binding pose, interacting residues and molecular interactions for catechin derivatives with NF-κB. Docking analysis showed that the catechin derivatives acted as covalent inhibitors with the p65 subunit of NF-κB and interacted with other residues through non-bonding interactions and hydrogen bonds. Further, we validated the effect of EGCG on NF-κB activity in pancreatic cancer cell lines MIAPaCa-2 and SU 86.86. Our in vitro data showed EGCG effectively reduced cell growth and proliferation, induced apoptosis, and inhibited NF-κB activity in the studied cell lines. In addition, EGCG repressed the expression of NF-κB target genes including MMP9, MMP2, cMyc, and BCL-2. Thus, targeting NF-κB with EGCG could be a potential therapeutic alternative for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Mohd Suhail ✉
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amjad Husain
- Innovation and Incubation Centre for Entrepreneurship (IICE), IISER Bhopal, Bhopal, India
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Yadav RP, Chatterjee S, Chatterjee A, Pal DK, Ghosh S, Acharya K, Das M. Identification of novel mycocompounds as inhibitors of PI3K/AKT/mTOR pathway against RCC. J Recept Signal Transduct Res 2022; 42:599-607. [PMID: 36125981 DOI: 10.1080/10799893.2022.2123515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PI3K/AKT/mTOR pathway is one of the frequently disrupted signaling pathways in renal cell carcinoma (RCC) that plays a significant role in tumor formation, disease progression and therapeutic resistance. Therefore, novel natural molecules targeting the critical proteins of this pathway will provide the best alternative to existing drugs, which are toxic and develops resistance. Recent studies have recognized the anti-cancer therapeutic potential of mycocompounds. The current study is focused on screening various mycocompounds from Astraeus hygrometricus against key cancer signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT1) and mammalian target of rapamycin (mTOR). We also studied in-silico cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) profiles to elucidate the molecular mechanism against RCC and also to uncover the pharmacokinetic profile of these compounds. Astrakurkurone and Ergosta-4,6, 8-(14) 22-tetraene-3-one were the two most efficacious compounds with highest interaction scores and bonding. These compounds were both active against RCC4 and VMRC-RCZ cell lines of RCC. The ADME profiles of both were satisfactory based on druglikeness and bioavailability score criteria. Thus, this proposed study identified astrakurkurone and ergosta-4,6, 8-(14) 22-tetraene-3-one as potential anticancer drug candidates, and provides comparative structural insight into their binding to the 3 protein kinases.
Collapse
Affiliation(s)
| | | | | | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022; 27:5710. [PMID: 36080477 PMCID: PMC9457765 DOI: 10.3390/molecules27175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Rat Sarcoma (RAS) family (NRAS, HRAS, and KRAS) is endowed with GTPase activity to regulate various signaling pathways in ubiquitous animal cells. As proto-oncogenes, RAS mutations can maintain activation, leading to the growth and proliferation of abnormal cells and the development of a variety of human cancers. For the fight against tumors, the discovery of RAS-targeted drugs is of high significance. On the one hand, the structural properties of the RAS protein make it difficult to find inhibitors specifically targeted to it. On the other hand, targeting other molecules in the RAS signaling pathway often leads to severe tissue toxicities due to the lack of disease specificity. However, computer-aided drug design (CADD) can help solve the above problems. As an interdisciplinary approach that combines computational biology with medicinal chemistry, CADD has brought a variety of advances and numerous benefits to drug design, such as the rapid identification of new targets and discovery of new drugs. Based on an overview of RAS features and the history of inhibitor discovery, this review provides insight into the application of mainstream CADD methods to RAS drug design.
Collapse
Affiliation(s)
- Ge Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuhao Bai
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Jiarui Cui
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zirui Zong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuan Gao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Novel urea-thiourea hybrids bearing 1,4-naphthoquinone moiety: Anti-inflammatory activity on mammalian macrophages by regulating intracellular PI3K pathway, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hawsawi YM, Shams A, Theyab A, Abdali WA, Hussien NA, Alatwi HE, Alzahrani OR, Oyouni AAA, Babalghith AO, Alreshidi M. BARD1 mystery: tumor suppressors are cancer susceptibility genes. BMC Cancer 2022; 22:599. [PMID: 35650591 PMCID: PMC9161512 DOI: 10.1186/s12885-022-09567-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
The full-length BRCA1-associated RING domain 1 (BARD1) gene encodes a 777-aa protein. BARD1 displays a dual role in cancer development and progression as it acts as a tumor suppressor and an oncogene. Structurally, BARD1 has homologous domains to BRCA1 that aid their heterodimer interaction to inhibit the progression of different cancers such as breast and ovarian cancers following the BRCA1-dependant pathway. In addition, BARD1 was shown to be involved in other pathways that are involved in tumor suppression (BRCA1-independent pathway) such as the TP53-dependent apoptotic signaling pathway. However, there are abundant BARD1 isoforms exist that are different from the full-length BARD1 due to nonsense and frameshift mutations, or deletions were found to be associated with susceptibility to various cancers including neuroblastoma, lung, breast, and cervical cancers. This article reviews the spectrum of BARD1 full-length genes and its different isoforms and their anticipated associated risk. Additionally, the study also highlights the role of BARD1 as an oncogene in breast cancer patients and its potential uses as a prognostic/diagnostic biomarker and as a therapeutic target for cancer susceptibility testing and treatment.
Collapse
Affiliation(s)
- Yousef M Hawsawi
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia. .,College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.,Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Wed A Abdali
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia
| | - Nahed A Hussien
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Department of Biology, College of Science, Taif University, P.O Box 11099, Taif, 21944, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman R Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad O Babalghith
- Medical genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Mousa Alreshidi
- Departement of biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostic and Personalized Therapeutic Unit, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
7
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
8
|
Asad M, Arshad MN, Asiri AM, Musthafa T.N. M, Khan SA, Rehan M, Oves M. Synthesis of N-Methylspiropyrrolidine Hybrids for Their Structural Characterization, Biological and Molecular Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2045330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Musthafa T.N.
- Research & Postgraduate Department of Chemistry, MES Kalladi College, Mannarkkad (Affiliated to University of Calicut), Kerala, India
| | - Salman A. Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Huang M, Duan W, Chen N, Lin G, Wang X. Synthesis and Antitumor Evaluation of Menthone-Derived Pyrimidine-Urea Compounds as Potential PI3K/Akt/mTOR Signaling Pathway Inhibitor. Front Chem 2022; 9:815531. [PMID: 35186896 PMCID: PMC8852737 DOI: 10.3389/fchem.2021.815531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
A series of novel menthone derivatives bearing pyrimidine and urea moieties was designed and synthesized to explore more potent natural product-derived antitumor agents. The structures of the target compounds were confirmed by FTIR, NMR, and HRMS. The in vitro antitumor activity was tested by standard methyl thiazolytetrazolium assay and showed that 4i, 4g, 4s, and 4m are the best compounds with IC50 values of 6.04 ± 0.62µM, 3.21 ± 0.67µM, 19.09 ± 0.49µM, and 18.68 ± 1.53µM, against Hela, MGC-803, MCF-7, and A549, respectively. The results of the preliminary action mechanism studies showed that compound 4i, the representative compound, could induce cell apoptosis in Hela cells in a dose-dependent manner and might arrest the cell cycle in the G2/M phase. Furthermore, the results of network pharmacology prediction and Western blot experiments indicated that compound 4i might inhibit Hela cells through inhibit PI3K/Akt/mTOR signaling pathway. The binding modes and the binding sites interactions between compound 4i and the target proteins were predicted preliminarily by the molecular docking method.
Collapse
Affiliation(s)
- Mei Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- *Correspondence: Wengui Duan, ; Naiyuan Chen,
| | - Naiyuan Chen
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- *Correspondence: Wengui Duan, ; Naiyuan Chen,
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Xiu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
10
|
AlZahrani WM, AlGhamdi SA, Zughaibi TA, Rehan M. Exploring the Natural Compounds in Flavonoids for Their Potential Inhibition of Cancer Therapeutic Target MEK1 Using Computational Methods. Pharmaceuticals (Basel) 2022; 15:195. [PMID: 35215307 PMCID: PMC8876294 DOI: 10.3390/ph15020195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) signaling pathway plays an important role in cancer cell proliferation and survival. MAPKs' protein kinases MEK1/2 serve as important targets in drug designing against cancer. The natural compounds' flavonoids are known for their anticancer activity. This study aims to explore flavonoids for their inhibition ability, targeting MEK1 using virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations. Flavonoids (n = 1289) were virtually screened using molecular docking and have revealed possible inhibitors of MEK1. The top five scoring flavonoids based on binding affinity (highest score for MEK1 is -10.8 kcal/mol) have been selected for further protein-ligand interaction analysis. Lipinski's rule (drug-likeness) and absorption, distribution, metabolism, excretion, and toxicity predictions were followed to find a good balance of potency. The selected flavonoids of MEK1 have been refined with 30 (ns) molecular dynamics (MD) simulation. The five selected flavonoids are strongly suggested to be promising potent inhibitors for drug development as anticancer therapeutics of the therapeutic target MEK1.
Collapse
Affiliation(s)
- Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Asad M, Arshad MN, Asiri AM, Khan SA, Rehan M, Oves M. Synthesis, Characterization, Molecular Docking and Antimicrobial Activity of Novel Spiropyrrolidine Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1936083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman A. Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul-Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Asad M, Khan SA, Arshad MN, Asiri AM, Rehan M. Design and synthesis of novel pyrazoline derivatives for their spectroscopic, single crystal X-ray and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Erianthridin suppresses non-small-cell lung cancer cell metastasis through inhibition of Akt/mTOR/p70 S6K signaling pathway. Sci Rep 2021; 11:6618. [PMID: 33758209 PMCID: PMC7987990 DOI: 10.1038/s41598-021-85675-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer metastasis is a major cause of the high mortality rate in lung cancer patients. The cytoskeletal rearrangement and degradation of extracellular matrix are required to facilitate cell migration and invasion and the suppression of these behaviors is an intriguing approach to minimize cancer metastasis. Even though Erianthridin (ETD), a phenolic compound isolated from the Thai orchid Dendrobium formosum exhibits various biological activities, the molecular mechanism of ETD for anti-cancer activity is unclear. In this study, we found that noncytotoxic concentrations of ETD (≤ 50 μM) were able to significantly inhibit cell migration and invasion via disruption of actin stress fibers and lamellipodia formation. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 was markedly downregulated in a dose-dependent manner after ETD treatment. Mechanistic studies revealed that protein kinase B (Akt) and its downstream effectors mammalian target of rapamycin (mTOR) and p70 S6 kinase (p70S6K) were strongly attenuated. An in silico study further demonstrated that ETD binds to the protein kinase domain of Akt with both hydrogen bonding and van der Waals interactions. In addition, an in vivo tail vein injection metastasis study demonstrated a significant effect of ETD on the suppression of lung cancer cell metastasis. This study provides preclinical information regarding ETD, which exhibits promising antimetastatic activity against non-small-cell lung cancer through Akt/mTOR/p70S6K-induced actin reorganization and MMPs expression.
Collapse
|
14
|
Ahmed F, Sharma M, Al-Ghamdi AA, Al-Yami SM, Al-Salami AM, Refai MY, Warsi MK, Howladar SM, Baeshen MN. A Comprehensive Analysis of cis-Acting RNA Elements in the SARS-CoV-2 Genome by a Bioinformatics Approach. Front Genet 2020; 11:572702. [PMID: 33424918 PMCID: PMC7786107 DOI: 10.3389/fgene.2020.572702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new coronavirus (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for severe respiratory disease in humans termed coronavirus disease of 2019 (COVID-19), became a new global threat for health and the economy. The SARS-CoV-2 genome is about a 29,800-nucleotide-long plus-strand RNA that can form functionally important secondary and higher-order structures called cis-acting RNA elements. These elements can interact with viral proteins, host proteins, or other RNAs and be involved in regulating translation and replication processes of the viral genome and encapsidation of the virus. However, the cis-acting RNA elements and their biological roles in SARS-CoV-2 as well as their comparative analysis in the closely related viral genome have not been well explored, which is very important to understand the molecular mechanism of viral infection and pathogenies. In this study, we used a bioinformatics approach to identify the cis-acting RNA elements in the SARS-CoV-2 genome. Initially, we aligned the full genomic sequence of six different CoVs, and a phylogenetic analysis was performed to understand their evolutionary relationship. Next, we predicted the cis-acting RNA elements in the SARS-CoV-2 genome using the structRNAfinder tool. Then, we annotated the location of these cis-acting RNA elements in different genomic regions of SARS-CoV-2. After that, we analyzed the sequence conservation patterns of each cis-acting RNA element among the six CoVs. Finally, the presence of cis-acting RNA elements across different CoV genomes and their comparative analysis was performed. Our study identified 12 important cis-acting RNA elements in the SARS-CoV-2 genome; among them, Corona_FSE, Corona_pk3, and s2m are highly conserved across most of the studied CoVs, and Thr_leader, MAT2A_D, and MS2 are uniquely present in SARS-CoV-2. These RNA structure elements can be involved in viral translation, replication, and encapsidation and, therefore, can be potential targets for better treatment of COVID-19. It is imperative to further characterize these cis-acting RNA elements experimentally for a better mechanistic understanding of SARS-CoV-2 infection and therapeutic intervention.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | | | | | | | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| | - Saad M. Howladar
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed N. Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Structure-based design, synthesis, biological evaluation, and molecular docking of novel 10-methoxy dibenzo[b,h][1,6]naphthyridinecarboxamides. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, Hawsawi Y, Almatrafi A, Alsagaby SA, Kamal MA, Warsi MK, Choudhry H, Jamal MS. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep 2020; 10:12377. [PMID: 32704157 PMCID: PMC7378827 DOI: 10.1038/s41598-020-69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia.
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia.
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Mahfuz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Yousef Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital, and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ahmed Almatrafi
- Department of Biology, Faculty of Science, University of Taibah, Medinah, Saudi Arabia
| | - Suliman Abdallah Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
17
|
Chen NY, Xie YL, Lu GD, Ye F, Li XY, Huang YW, Huang ML, Chen TY, Li CP. Synthesis and antitumor evaluation of (aryl)methyl-amine derivatives of dehydroabietic acid-based B ring-fused-thiazole as potential PI3K/AKT/mTOR signaling pathway inhibitors. Mol Divers 2020; 25:967-979. [PMID: 32297120 DOI: 10.1007/s11030-020-10081-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/31/2020] [Indexed: 11/30/2022]
Abstract
In an attempt to search for new natural product-based antitumor agents, a series of novel (aryl)methyl-amine derivatives of dehydroabietic acid-based B ring-fused-thiazole were designed and synthesized. The primary bioassay showed that compounds 5r and 5s presented certain inhibitory activity against cancer cells, weak cytotoxic activity against normal cells, and inhibitory activity against PI3K/AKT/mTOR signaling pathway. The binding modes and the binding site interactions between the active compounds and the target proteins were predicted preliminarily by the molecular docking method.
Collapse
Affiliation(s)
- Nai-Yuan Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Yu-Lan Xie
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Guo-Dong Lu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Fang Ye
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xin-Yu Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yu-Wen Huang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Ming-Li Huang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Tie-Yu Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Cui-Ping Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, School of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
18
|
Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, Yang H. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol 2019; 234:15156-15166. [PMID: 30680715 PMCID: PMC6617778 DOI: 10.1002/jcp.28156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC), the most common oral cancer, damages oral epithelial cells after the accumulation of multiple genetic mutations. Although emerging evidence supports the key role of circular RNAs (circRNAs) in various malignancies, the clinical value and function of circRNAs in OSCC remain unclear. In this study, patients with OSCC (n = 8) and controls ( n = 8) were compared using high-throughput sequencing and microarray circRNA expression profiles. The circRNA hsa_circ_0007059 was downregulated in OSCC. Subsequently, hsa_circ_0007059 levels in OSCC tissues and cell lines were assessed by quantitative reverse-transcription chain reaction. Loss-of-function and gain-of-function experiments were performed to determine whether hsa_circ_0007059 affects malignant behavior in SCC15 and CAL27 cells. Importantly, hsa_circ_0007059 upregulation suppressed cell growth, migration, and invasion, facilitating apoptosis of these cells. Furthermore, nude mouse tumor formation was assessed to validate the tumor-suppressive role of hsa_circ_0007059 in vivo. Finally, hsa_circ_0007059 was determined to alter cell growth via AKT/mTOR signaling, representing a potential prognostic/therapeutic target for OSCC.
Collapse
Affiliation(s)
- Wen Su
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, ShenzhenGuangdongChina
| | - Yufan Wang
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Feng Wang
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Biru Zhang
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Hanyu Zhang
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Yuehong Shen
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Hongyu Yang
- Department of Oral and Maxillofacial SurgeryPeking University Shenzhen HospitalShenzhenGuangdongChina
| |
Collapse
|
19
|
Singh D, Rahi A, Kumari R, Gupta V, Gautam G, Aggarwal S, Rehan M, Bhatnagar R. Computational and mutational analysis of TatD DNase of Bacillus anthracis. J Cell Biochem 2019; 120:11318-11330. [PMID: 30719750 DOI: 10.1002/jcb.28408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
The role of TatD DNases as DNA repair enzymes or cell death (apoptotic) nucleases is well established in prokaryotes as well as eukaryotes. The current study aims to characterize the TatD nuclease from Bacillus anthracis (Ba TatD) and to explore its key histidine catalytic residues. Ba TatD was found to be a metal-dependent, nonspecific endonuclease which could efficiently cleave double-stranded DNA substrates. Moreover, Ba TatD nuclease was observed to be thermostable up to 55°C and act in a wide pH range indicating its industrial applicability. Diethyl pyrocarbonate-based histidine-selective alkylation of the Ba TatD resulted in a loss of its nuclease activity suggesting a crucial role of the histidine residues in its activity. The key residues of Ba TatD were predicted using sequence analysis and structure-based approaches, and then the predicted residues were further tested by mutational analysis. Upon mutational analysis, H128 and H153 have been found to be crucial for Ba TatD activity, though H153 seems to bear an important but a dispensable role for the Ba TatD nuclease. Ba TatD had a uniform expression in the cytosol of B. anthracis, which indicates a significant role of the protein in the pathogen's life cycle. This is the first study to identify and characterize the TatD DNase from B. anthracis and will be helpful in gaining more insights on the role of TatD proteins in Gram-positive bacteria where it remains unexplored.
Collapse
Affiliation(s)
- Damini Singh
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Romika Kumari
- Finland Institute for Molecular Medicine (FIMM), Helsinki, Finland
| | - Vatika Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Anticancer compound XL765 as PI3K/mTOR dual inhibitor: A structural insight into the inhibitory mechanism using computational approaches. PLoS One 2019; 14:e0219180. [PMID: 31247018 PMCID: PMC6597235 DOI: 10.1371/journal.pone.0219180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
The PI3K-AKT-mTOR pathway is often a commonly disrupted pathway in human cancer and, therefore, it is widely exploited for cancer therapy. The inhibitors for the important proteins of the pathway including PI3K and mTOR have been increasingly designed. The dual inhibitors targeting PI3K and mTOR both have proven to be more effective than those targeting single protein only. An orally-active compound XL765 is well established as PI3K/mTOR dual inhibitor and have shown in vitro and in vivo anticancer activity against a variety of cancer types and is undergoing clinical trials. The present study explored the exact binding pose and the the interactive forces holding XL765 within the active sites of PI3Kγ and mTOR using molecular docking analyses. The XL765 interacting residues of both the proteins were delineated and the degree of participation in binding was estimated by various methods. In the process, among the interacting residues of PI3Kγ, the Lys-890 and the Met-953 were recognized as the key residues involved in XL765 binding. While, in mTOR case, the Trp-2239 was recognized as the key residue playing role in the XL765 binding. In order to explore the better inhibitors, the study also generated combinatorial chemical library by modifying the scaffold considered from XL765. The virtual screening of the generated compound library led to identification of six novel promising compounds proposed as PI3K/mTOR dual inhibitors. Thus, the present work will through light on the drug inhibitory mechanism of XL765 for PI3K and mTOR, and will also assist in designing novel efficacious drug candidates.
Collapse
|
21
|
Preparation and biological evaluation of quinoline amines as anticancer agents and its molecular docking. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Darooei M, Khan F, Rehan M, Zubeda S, Jeyashanker E, Annapurna S, Shah A, Maddali S, Hasan Q. MED12 somatic mutations encompassing exon 2 associated with benign breast fibroadenomas and not breast carcinoma in Indian women. J Cell Biochem 2018; 120:182-191. [DOI: 10.1002/jcb.27293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mina Darooei
- Department of Genetics and Molecular Medicine Kamineni Hospitals Hyderabad India
- Department of Genetics Osmania University Hyderabad India
| | - Fazal Khan
- Department of Genetics and Molecular Medicine Kamineni Hospitals Hyderabad India
- Department of Biochemistry, Novel Global Community Educational Foundation Hebersham NSW Australia
| | - Mohd Rehan
- Department of Biochemistry, King Fahd Medical Research Center, King Abdulaziz University Jeddah Saudi Arabia
| | - Syeda Zubeda
- Department of Genetics Osmania University Hyderabad India
| | | | - Srirambhatla Annapurna
- Department of Radiology Kamineni Academy of Medical Sciences and Research Centre Hyderabad India
| | - Ashwin Shah
- Department of Oncology Kamineni Hospitals Hyderabad India
| | | | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine Kamineni Hospitals Hyderabad India
- Department of Genetics and Molecular Medicine Kamineni Hospitals Narketpally Telanga India
| |
Collapse
|