1
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
2
|
Ho M, Bonavida B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024; 13:864. [PMID: 38786085 PMCID: PMC11119125 DOI: 10.3390/cells13100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
4
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
5
|
Sun J, Zhong H, Kang B, Lum T, Liu D, Liang S, Hao J, Guo R. Roles of PD-L1 in human adipose-derived mesenchymal stem cells under inflammatory microenvironment. J Cell Biochem 2024; 125:e30544. [PMID: 38450777 DOI: 10.1002/jcb.30544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jinqiu Sun
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Hannah Zhong
- College of Letters and Science, University of California, Los Angeles, California, USA
| | - Bo Kang
- Department of Health Policy and Management, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Trenton Lum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Dongxue Liu
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Shengxian Liang
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Rui Guo
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
6
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Shi C, Chen L, Pi H, Cui H, Fan C, Tan F, Qu X, Sun R, Zhao F, Song Y, Wu Y, Chen M, Ni W, Qu L, Mao R, Fan Y. Identifying a locus in super-enhancer and its resident NFE2L1/MAFG as transcriptional factors that drive PD-L1 expression and immune evasion. Oncogenesis 2023; 12:56. [PMID: 37985752 PMCID: PMC10662283 DOI: 10.1038/s41389-023-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Although the transcriptional regulation of the programmed death ligand 1 (PD-L1) promoter has been extensively studied, the transcription factor residing in the PD-L1 super-enhancer has not been comprehensively explored. Through saturated CRISPR-Cas9 screening of the core region of the PD-L1 super-enhancer, we have identified a crucial genetic locus, referred to as locus 22, which is essential for PD-L1 expression. Locus 22 is a potential binding site for NFE2:MAF transcription factors. Although genetic silencing of NRF2 (NFE2L2) did not result in a reduction of PD-L1 expression, further analysis reveals that MAFG and NFE2L1 (NRF1) play a critical role in the expression of PD-L1. Importantly, lipopolysaccharides (LPS) as the major component of intratumoral bacteria could greatly induce PD-L1 expression, which is dependent on the PD-L1 super-enhancer, locus 22, and NFE2L1/MAFG. Mechanistically, genetic modification of locus 22 and silencing of MAFG greatly reduce BRD4 binding and loop formation but have minimal effects on H3K27Ac modification. Unlike control cells, cells with genetic modification of locus 22 and silencing of NFE2L1/MAFG failed to escape T cell-mediated killing. In breast cancer, the expression of MAFG is positively correlated with the expression of PD-L1. Taken together, our findings demonstrate the critical role of locus 22 and its associated transcription factor NFE2L1/MAFG in super-enhancer- and LPS-induced PD-L1 expression. Our findings provide new insight into understanding the regulation of PD-L1 transcription and intratumoral bacteria-mediated immune evasion.
Collapse
Affiliation(s)
- Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Liuting Chen
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hui Pi
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Henglu Cui
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chenyang Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Fangzheng Tan
- Shanghai Chongming Center for Disease Control and Prevention, Shanghai, 202150, China
| | - Xuanhao Qu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Rong Sun
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Fengbo Zhao
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China.
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Tengesdal IW, Dinarello CA, Marchetti C. NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther 2023; 251:108545. [PMID: 37866732 PMCID: PMC10710902 DOI: 10.1016/j.pharmthera.2023.108545] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Fernandez-Prades L, Brasal-Prieto M, Alba G, Martin V, Montserrat-de la Paz S, Cejudo-Guillen M, Santa-Maria C, Dakhaoui H, Granados B, Sobrino F, Palomares F, Lopez-Enriquez S. Sulforaphane Reduces the Chronic Inflammatory Immune Response of Human Dendritic Cells. Nutrients 2023; 15:3405. [PMID: 37571342 PMCID: PMC10421388 DOI: 10.3390/nu15153405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Sulforaphane (SFN) is an isothiocyanate of vegetable origin with potent antioxidant and immunomodulatory properties. The characterization of its pleiotropic activity in human dendritic cells (DCs) is poorly summarized. The aim of this work was to study the immunomodulatory power of SFN in response to an inflammatory microenvironment on human monocyte-derived DCs (moDCs). METHODS We studied the immunological response induced by SFN. Apoptosis and autophagy assays were performed using flow cytometry on moDCs and a cancer cell line (THP-1). These included moDC maturation, lymphocyte proliferation and cytokine production under different experimental conditions. We investigated whether these results were associated with an inflammatory microenvironment induced by lipopolysaccharides (LPSs). RESULTS Our results demonstrated that SFN could interact with moDCs, significantly reducing the autophagy process and enhancing apoptosis similarly to cancer cell line THP-1 cells in a chronic inflammatory microenvironment. Under chronic inflammation, SFN modulated the phenotypical characteristics of moDCs, reducing the expression of all markers (CD80, CD83, CD86, HLA-DR and PD-L1). SFN significantly reduced the Th2 proliferative response, with a decrease in the IL-9 and IL-13 levels. Although we did not observe any changes in the regulatory proliferative response, we noted an increase in the IL-10 levels. CONCLUSIONS These findings demonstrate that SFN exerts protective effects against LPS-induced inflammation via the modulation of moDCs/T cells towards a regulatory profile. SFN may be a potential candidate for the treatment of pathologies with an inflammatory profile.
Collapse
Affiliation(s)
- Laura Fernandez-Prades
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Mariano Brasal-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Victoria Martin
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain;
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Beatriz Granados
- Distrito Sanitario Málaga, Servicio Andaluz de Salud, 29006 Málaga, Spain;
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| |
Collapse
|
10
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
11
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
12
|
PD-L1: expression regulation. BLOOD SCIENCE 2023; 5:77-91. [DOI: 10.1097/bs9.0000000000000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
|
13
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
14
|
Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol 2022; 13:923477. [PMID: 35967444 PMCID: PMC9371381 DOI: 10.3389/fimmu.2022.923477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Collapse
Affiliation(s)
- Ruiyi Deng
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Huiling Zheng
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| | - Hongzhen Cai
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Man Li
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University Third Medical School, Beijing, China
| | - Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| |
Collapse
|
15
|
Wan H, Gao N, Lu W, Lu C, Chen J, Wang Y, Dong H. NCX1 coupled with TRPC1 to promote gastric cancer via Ca 2+/AKT/β-catenin pathway. Oncogene 2022; 41:4169-4182. [PMID: 35882979 PMCID: PMC9418000 DOI: 10.1038/s41388-022-02412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Plasma membrane Na+/Ca2+ exchanger 1 (NCX1) is a bidirectional ion transporter to operate in Ca2+ entry or exit modes, and TRPC1 is Ca2+-permeable channel. Both NCX1 and TRPC1 play critical roles in maintaining cytosolic free Ca2+ ([Ca2+]cyt) homeostasis in mammalian cells. Although either TRPC1 channel or Ca2+ entry mode of NCX1 is implicated in some tumorigenesis, it has not been explored if a coordination of NCX1 and TRPC1 involves in the pathogenesis of H. pylori-associated human gastric cancer (GC). Here we found the protein expression of NCX1 was significantly enhanced in human GC specimens, which correlated with tumor progression and poor survival in GC patients. TRPC1 and NCX1 were parallelly enhanced, co-localized and bound in human GC cells. By a functional coupling, TRPC1 drives NCX1 to the Ca2+ entry mode, raising [Ca2+]cyt in GC cells. Moreover, CaCl2, H. pylori and their virulence factors all enhanced expressions and activities of NCX1 and TRPC1, and evoked aberrant Ca2+ entry to promote proliferation, migration, and invasion of GC cells through AKT/β-catenin pathway. Tumor growth and metastasis also depended on the enhanced expression of NCX1 in subcutaneously xenografted GC mouse model. Overall, our findings indicate that TRPC1/NCX1 coupling may promote H. pylori-associated GC through the Ca2+/AKT/β-catenin pathway. Since the Ca2+ exit mode and the Ca2+ entry mode of NCX1 play different roles under mostly physiological and pathological conditions respectively, targeting TRPC1/NCX1 coupling could be a novel strategy for selectively blocking Ca2+ entry mode to potentially treat digestive cancer with less side effect.
Collapse
Affiliation(s)
- Hanxing Wan
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China.,Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China. .,Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
16
|
Unveiling the Molecular Mechanisms Driving the Capsaicin-Induced Immunomodulatory Effects on PD-L1 Expression in Bladder and Renal Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14112644. [PMID: 35681623 PMCID: PMC9179445 DOI: 10.3390/cancers14112644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Over time, capsaicin (CPS) has been considered both a potential anti-cancer and pro-cancer molecule. Hence, the diversity of CPS functioning has already been established. Now, exploration of its application with immunotherapies might open up a new avenue in cancer therapy. Herein, the application of CPS as an immunoadjuvant to overcome the tumor’s immune-escaping mechanisms or to increase immune checkpoint therapy has been approached. In bladder cancer, the interaction of CPS with its receptor TRPV1 increases PD-L1 expression, promoting a tumorigenic effect and also providing a target for anti-PD-1/PD-L1 immunotherapy. On the contrary, in renal cell carcinoma, CPS downregulates PD-L1 expression in a TRPV1-independent manner, suggesting a potential application of CPS as an immune-adjuvant in this type of cancer. Abstract The blockade of the PD-L1/PD-1 immune checkpoint has promising efficacy in cancer treatment. However, few patients with bladder cancer (BC) or renal cell carcinoma (RCC) respond to this approach. Thus, it is important to implement a strategy to stimulate the immune anti-tumor response. In this scenario, our study evaluated the effects of a low capsaicin (CPS) dose in BC and RCC cell lines. Western blot, qRT-PCR and confocal microscopy were used to assess PD-L1 mRNA and protein expression. Alterations to the cellular oxidative status and changes to the antioxidant NME4 levels, mRNA modulation of cytokines, growth factors, transcriptional factors and oncogene, and the activation of Stat1/Stat3 pathways were examined using Western blot, cytofluorimetry and qRT-PCR profiling assays. In BC, CPS triggers an altered stress oxidative-mediated DNA double-strand break response and increases the PD-L1 expression. On the contrary, in RCC, CPS, by stimulating an efficient DNA damage repair response, thus triggering protein carbonylation, reduces the PD-L1 expression. Overall, our results show that CPS mediates a multi-faceted approach. In modulating PD-L1 expression, there is a rationale for CPS exploitation as a stimulus that increases BC cells’ response to immunotherapy or as an immune adjuvant to improve the efficacy of the conventional therapy in RCC patients.
Collapse
|
17
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
18
|
Mekadim C, Skalnikova HK, Cizkova J, Cizkova V, Palanova A, Horak V, Mrazek J. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol 2022; 22:63. [PMID: 35216552 PMCID: PMC8881828 DOI: 10.1186/s12866-022-02458-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/29/2022] [Indexed: 12/11/2022] Open
Abstract
Background The microbiome alterations are associated with cancer growth and may influence the immune system and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to melanoma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and spontaneous regression. Results Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in 8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequencing of the V4-V5 region of the 16S rRNA gene. A significant difference in microbiome diversity and richness between melanoma tissue and healthy skin and between the faecal microbiome of MeLiM piglets and control piglets were observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities between different bacterial communities. Linear discriminant analysis effect size at the genus level determined different potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebacterium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella, Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacteroides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MeLiM piglets. Potential functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal permeability and alteration of the intestinal mucosal barrier. Conclusion The associations between melanoma progression and dysbiosis in the skin microbiome as well as dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local skin and gut microbiome involvement in melanoma progression and may support the development of new therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02458-5.
Collapse
Affiliation(s)
- Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Jana Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Veronika Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 128 00, Prague, Czech Republic
| | - Anna Palanova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Jakub Mrazek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
19
|
Zhang Y, Zhu S, Du Y, Xu F, Sun W, Xu Z, Wang X, Qian P, Zhang Q, Feng J, Xu Y. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res 2022; 41:66. [PMID: 35177112 PMCID: PMC8851785 DOI: 10.1186/s13046-022-02243-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background
The interaction between programmed death receptor (PD-1) and its ligand (PD-L1) is essential for suppressing activated T-lymphocytes. However, the precise mechanisms underlying PD-L1 overexpression in tumours have yet to be fully elucidated. Here, we describe that RelB participates in the immune evasion of prostate cancer (PCa) via cis/trans transcriptional upregulation of PD-L1.
Methods
Based on transcriptome results, RelB was manipulated in multiple human and murine PCa cell lines. Activated CD4+ and CD8+ T cells were cocultured with PCa cells with different levels of RelB to examine the effect of tumourous RelB on T cell immunity. Male mice were injected with murine PCa cells to validate the effect of RelB on the PD-1/PD-L1-mediated immune checkpoint using both tumour growth and metastatic experimental models.
Results
PD-L1 is uniquely expressed at a high level in PCa with high constitutive RelB and correlates with the patients’ Gleason scores. Indeed, a high level of PD-L1 is associated with RelB nuclear translocation in AR-negative aggressive PCa cells. Conversely, the silencing of RelB in advanced PCa cells resulted in reduced PD-L1 expression and enhanced susceptibility of PCa cells to the T cell immune response in vitro and in vivo. Mechanistically, a proximal NF-κB enhancer element was identified in the core promoter region of the human CD274 gene, which is responsible for RelB-mediated PD-L1 transcriptional activation. This finding provides an informative insight into immune checkpoint blockade by administering RelB within the tumour microenvironment.
Conclusion
This study deciphers the molecular mechanism by which tumourous RelB contributes to immune evasion by inhibiting T cell immunity via the amplification of the PD-L1/PD-1-mediated immune checkpoint. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02243-2.
Collapse
Affiliation(s)
- Yanyan Zhang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Shuyi Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Du
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Fan Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhi Xu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiumei Wang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Peipei Qian
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qin Zhang
- Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Jifeng Feng
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Yong Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Chen J, Zhou Z, Zheng C, Liu Y, Hao R, Ji X, Xi Q, Shen J, Li Z. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. Carbohydr Polym 2022; 277:118869. [PMID: 34893274 DOI: 10.1016/j.carbpol.2021.118869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiqi Hao
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaolin Ji
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiaoer Xi
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
21
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
22
|
Dong W, Zhang D, Zhu A, Hu Y, Li W. High concentration of Dezocine induces immune escape of lung cancer and promotes glucose metabolism through up-regulating PD-L1 and activating NF-κB pathway. Curr Mol Med 2021; 22:919-928. [PMID: 34951362 DOI: 10.2174/1566524022666211222155118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dezocine is an opioid analgesic that can affect the immune system. Here, we explored the synergy of high concentration of Dezocine and Programmed death-ligand 1 (PD-L1) with regards to immune escape and glucose metabolism in lung cancer (LC). METHODS PD-L1 level in human LC cell lines was determined and the influence of Dezocine at different concentrations for the proliferation of LC cells was identified. Next, LC cells were transfected to alter PD-L1 level, and exposed to Dezocine at 8 μg/mL to explore their effects on cell proliferation, production of interferon-γ (IFN-γ), contents of glucose, lactate and NADPH/NADP+ and activation of the nuclear factor-κB (NF-κB) pathway. RESULTS PD-L1 level was increased in LC cells and Dezocine (8 μg/mL) impaired the proliferation of LC cells. Down-regulating PD-L1 inhibited cell proliferation, enhanced production of IFN-γ and reduced the contents of glucose, lactate and NADPH/NADP+ while up-regulating PD-L1 caused the opposite results. Dezocine (8 μg/mL) induced immune escape and glucose metabolism in LC, and Dezocine-induced effects were reversed by down-regulating PD-L1. Dezocine (8 μg/mL) up-regulated PD-L1 by activating the NF-κB pathway. CONCLUSION Dezocine at 8 μg/mL promotes immune escape and glucose metabolism in LC through up-regulating PD-L1 and activating the NF-κB pathway.
Collapse
Affiliation(s)
- Weiping Dong
- Department of Anesthesiology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong. China
| | - Dong Zhang
- Department of Health Respiratory, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong. China
| | - Aiyun Zhu
- Department of Health Urology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong. China
| | - Yanli Hu
- Department of Health Urology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong. China
| | - Wei Li
- Department of Anesthesiology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong. China
| |
Collapse
|
23
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
24
|
Gao Y, Bi D, Xie R, Li M, Guo J, Liu H, Guo X, Fang J, Ding T, Zhu H, Cao Y, Xing M, Zheng J, Xu Q, Xu Q, Wei Q, Qin H. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther 2021; 6:398. [PMID: 34795206 PMCID: PMC8602417 DOI: 10.1038/s41392-021-00795-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022] Open
Abstract
Given that only a subset of patients with colorectal cancer (CRC) benefit from immune checkpoint therapy, efforts are ongoing to identify markers that predict immunotherapeutic response. Increasing evidence suggests that microbes influence the efficacy of cancer therapies. Fusobacterium nucleatum induces different immune responses in CRC with different microsatellite-instability (MSI) statuses. Here, we investigated the effect of F. nucleatum on anti-PD-L1 therapy in CRC. We found that high F. nucleatum levels correlate with improved therapeutic responses to PD-1 blockade in patients with CRC. Additionally, F. nucleatum enhanced the antitumor effects of PD-L1 blockade on CRC in mice and prolonged survival. Combining F. nucleatum supplementation with immunotherapy rescued the therapeutic effects of PD-L1 blockade. Furthermore, F. nucleatum induced PD-L1 expression by activating STING signaling and increased the accumulation of interferon-gamma (IFN-γ)+ CD8+ tumor-infiltrating lymphocytes (TILs) during treatment with PD-L1 blockade, thereby augmenting tumor sensitivity to PD-L1 blockade. Finally, patient-derived organoid models demonstrated that increased F. nucleatum levels correlated with an improved therapeutic response to PD-L1 blockade. These findings suggest that F. nucleatum may modulate immune checkpoint therapy for CRC.
Collapse
Affiliation(s)
- Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Jing Guo
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Xianling Guo
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Tingting Ding
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Yuan Cao
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Meichun Xing
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Qian Xu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072, Shanghai, China.
| |
Collapse
|
25
|
Qin H, Wang C, Hua Y. LINC01123 is associated with prognosis of oral squamous cell carcinoma and involved in tumor progression by sponging miR-34a-5p. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:50-59. [PMID: 34511356 DOI: 10.1016/j.oooo.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a malignant tumor. This study aimed to investigate the role of a long noncoding RNA (lncRNA), LINC01123, in OSCC prognosis and progression and to explore the underlying mechanisms. STUDY DESIGN OSCC tissues were collected from 102 patients, and 4 OSCC cell lines were analyzed. The expression levels of LINC01123 and miR-34a-5p were estimated using quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) and Transwell assays were used to assess the proliferation, migration, and invasion of OSCC cells. Kaplan-Meier survival analysis was used to analyze the prognostic value of LINC01123 in OSCC. RESULTS The analysis results showed that LINC01123 was overexpressed in OSCC tumor tissues; also, the prognosis of patients with OSCC with high LINC01123 expression levels was poor. The knockdown of LINC01123 inhibited the proliferation, migration, and invasion of OCSS cells. MiR-34a-5p was a target of LINC01123, and its inhibitor could reverse the effect of silenced LINC01123 on the progression of OSCC. CONCLUSIONS Highly expressed LINC01123 was associated with poor prognosis of OSCC and regulated OSCC cell proliferation, invasion, and migration by sponging miR-34a-5p. Therefore, the LINC01123/miR-34a-5p axis may provide new ideas for the prognosis and treatment of OSCC.
Collapse
Affiliation(s)
- Huan Qin
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Changlei Wang
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Yingjie Hua
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China..
| |
Collapse
|
26
|
Impact of Environmental and Pharmacologic Changes on the Upper Gastrointestinal Microbiome. Biomedicines 2021; 9:biomedicines9060617. [PMID: 34072493 PMCID: PMC8229529 DOI: 10.3390/biomedicines9060617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Diseases of the upper gastrointestinal tract have become more prevalent over time. Mechanisms of disease formation are still only partially understood. Recent literature has shown that the surrounding microbiome affects the propensity for disease formation in various parts of the upper gastrointestinal tract. A review was performed of any literature to our best knowledge concerning the effects of pharmacologic agents, environmental changes, and surgical intervention on the microbiome of the upper gastrointestinal tract. Searches of the literature were performed using specific keywords related to drugs, surgical procedures, and environmental factors. Many prescription and nonprescription drugs that are commonly used have varying effects on the upper gastrointestinal tract. Proton pump inhibitors may affect the relative prevalence of some organisms in the lower esophagus and have less effect in the proximal esophagus. Changes in the esophageal microbiome correlate with some esophageal diseases. Drugs that induce weight loss have also been shown to affect the microbiomes of the esophagus and stomach. Common surgical procedures are associated with shifts in the microbial community in the gastrointestinal tract. Environmental factors have been shown to affect the microbiome in the upper gastrointestinal tract, as geographic differences correlate with alterations in the microbiome of the gastrointestinal tract. Understanding the association of environmental and pharmacologic changes on the microbiome of the upper gastrointestinal tract will facilitate treatment plans to reduce morbidity from disease.
Collapse
|
27
|
Zhou K, Sun M, Xia Y, Xie Y, Shu R. LPS stimulates gingival fibroblasts to express PD-L1 via the p38 pathway under periodontal inflammatory conditions. Arch Oral Biol 2021; 129:105161. [PMID: 34090065 DOI: 10.1016/j.archoralbio.2021.105161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The overall aim of this research was to investigate the differences in the expression of programmed death ligand 1 (PD-L1) in human gingival fibroblasts (HGFs) between a periodontal healthy group and a periodontal inflammatory group. and explore the possible mechanism involved. METHODS Differences in PD-L1 mRNA and protein expression in HGFs from a periodontal healthy group and a periodontal inflammatory group were examined by qPCR and western blotting, respectively, and were further tested after lipopolysaccharide (LPS) stimulation in both groups. The effects of a p38 pathway inhibitor on the changes in p38 phosphorylation levels and PD-L1 expression after LPS stimulation were investigated in both groups. RESULTS PD-L1 mRNA and protein levels in HGFs in the periodontal inflammatory group were significantly higher than those in the periodontal healthy group (p < 0.05). After 10 μg/mL LPS stimulation, PD-L1 mRNA levels in HGFs from both groups increased significantly (p < 0.05), peaking at 4 h, and the peak was significantly higher in the periodontal inflammatory group than in the periodontal healthy group (p < 0.05). However, PD-L1 protein expression was upregulated only in the inflammatory group (p < 0.05). Inhibition of the p38 pathway in HGFs decreased p38 phosphorylation in both groups (p < 0.05) but this treatment reversed the LPS-induced increase in PD-L1 mRNA and protein levels only in the inflammatory group (p < 0.05). CONCLUSION In the periodontal inflammatory state, the expression of PD-L1 in HGFs is more easily activated, and may be influenced by the p38 pathway.
Collapse
Affiliation(s)
- Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Messeha SS, Zarmouh NO, Soliman KFA. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients 2021; 13:nu13051718. [PMID: 34069461 PMCID: PMC8159140 DOI: 10.3390/nu13051718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Investigating dietary polyphenolic compounds as antitumor agents are rising due to the growing evidence of the close association between immunity and cancer. Cancer cells elude immune surveillance for enhancing their progression and metastasis utilizing various mechanisms. These mechanisms include the upregulation of programmed death-ligand 1 (PD-L1) expression and Epithelial-to-Mesenchymal Transition (EMT) cell phenotype activation. In addition to its role in stimulating normal embryonic development, EMT has been identified as a critical driver in various aspects of cancer pathology, including carcinogenesis, metastasis, and drug resistance. Furthermore, EMT conversion to another phenotype, Mesenchymal-to-Epithelial Transition (MET), is crucial in developing cancer metastasis. A central mechanism in the upregulation of PD-L1 expression in various cancer types is EMT signaling activation. In breast cancer (BC) cells, the upregulated level of PD-L1 has become a critical target in cancer therapy. Various signal transduction pathways are involved in EMT-mediated PD-L1 checkpoint overexpression. Three main groups are considered potential targets in EMT development; the effectors (E-cadherin and Vimentin), the regulators (Zeb, Twist, and Snail), and the inducers that include members of the transforming growth factor-beta (TGF-β). Meanwhile, the correlation between consuming flavonoid-rich food and the lower risk of cancers has been demonstrated. In BC, polyphenols were found to downregulate PD-L1 expression. This review highlights the effects of polyphenols on the EMT process by inhibiting mesenchymal proteins and upregulating the epithelial phenotype. This multifunctional mechanism could hold promises in the prevention and treating breast cancer.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan National Board for Technical & Vocational Education, Misrata LY72, Libya;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
- Correspondence: ; Tel.: +1-850-599-3306; Fax: +1-850-599-3667
| |
Collapse
|
29
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
30
|
Ruan Z, Liang M, Shang L, Lai M, Deng X, Su X. Shikonin-mediated PD-L1 degradation suppresses immune evasion in pancreatic cancer by inhibiting NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. Pancreatology 2021; 21:630-641. [PMID: 33707115 DOI: 10.1016/j.pan.2021.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly fatal malignancy with few effective therapies currently available. Recent studies have shown that PD-L1 inhibitors could be potential therapeutic targets for the treatment of PC. The present study aims to investigate the effect of Shikonin on immune evasion in PC with the involvement of the PD-L1 degradation. METHODS Initially, the expression patterns of PD-L1 and NF-κB in PC were predicted in-silico using the GEPIA database, and were subsequently validated using PC tissues. Thereafter, the correlation of NF-κB with STAT3, CSN5 and PD-L1 was examined. PC cells were treated with Shikonin, NF-κB inhibitor, STAT3 activator, and CSN5 overexpression plasmid to investigate effects on PD-L1 glycosylation and immune evasion in PC. Finally, in vivo tumor formation was induced in C57BL/6J mice, in order to verify the in vitro results. RESULTS PD-L1, NF-κB, NF-κB p65, STAT3, and CSN5 were highly expressed in PC samples, and NF-κB was positively correlated with STAT3/CSN5/PD-L1. Inhibition of NF-κB decreased PD-L1 glycosylation and increased PD-L1 degradation, whereas activated STAT3 and overexpressed CSN5 reversed these trends. Shikonin blocked immune evasion in PC, and lowered the expression of PD-L1, NF-κB, NF-κB p65, STAT3 and CSN5 in vivo and in vitro. CONCLUSION The findings indicated Shikonin inhibited immune evasion in PC by inhibiting PD-L1 glycosylation and activating the NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. These effects of Shikonin on PC cells may bear important potential therapeutic implications for the treatment of PC.
Collapse
Affiliation(s)
- Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Minhua Liang
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Ling Shang
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Manxiang Lai
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xinguo Su
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China.
| |
Collapse
|
31
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
32
|
Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development. Cells 2021; 10:cells10010067. [PMID: 33406733 PMCID: PMC7824562 DOI: 10.3390/cells10010067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal cancer is highly associated with inflammatory processes inducing the release of cytokines from cancer or immune cells, including interferons, interleukins, chemokines, colony-stimulating factors, and growth factors, which promote or suppress tumor progression. Inflammatory cytokines within the tumor microenvironment promote immune cell infiltration. Infiltrating immune, and tumor-surrounding stromal cells support tumor growth, angiogenesis, metastasis, and immunosuppression through communication with inflammatory cytokines and cell adhesion molecules. Notably, infiltrating immune and tumor cells present immunosuppressive molecules, such as programmed death-ligand 1 (PD-L1) and CD80/CD86. Suppression of cytotoxic T cells promotes tumor avoidance of immune surveillance and greater malignancy. Moreover, glycosylation and sialylation of proteins hyperexpressed on the cancer cell surface have been shown to enhance immune escape and metastasis. Cytokine treatments and immune checkpoint inhibitors are widely used in clinical practice. However, the tumor microenvironment is a rapidly changing milieu involving several factors. In this review, we have provided a summary of the interactions of inflammation and cell adhesion molecules between cancer and other cell types, to improve understanding of the tumor microenvironment.
Collapse
|
33
|
Deng Y, Tang D, Hou P, Shen W, Li H, Wang T, Liu R. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb Pathog 2020; 150:104709. [PMID: 33378710 DOI: 10.1016/j.micpath.2020.104709] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
A number of studies have identified that gut microbiota influences the development of cancer. However, there is little known about gut microbiota and esophageal cancer (EC). The aim of this study was to investigate the gut microbiota profile associated with EC. In this study, 23 patients with EC and 23 sex- and age-matched healthy controls (NC) were recruited between July 2019 and August 2019 at Huai'an First People's Hospital (Huai'an, China) and the gut microbiota was analyzed by 16S rRNA gene sequencing of fresh stool samples. We found that the microbial richness of intestinal flora in patients with EC were higher than NC, whereas evenness did not change obviously. Principal coordinate analysis (PCoA) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) analysis both revealed that a distinct separation in bacterial community composition between the EC and NC. At the phylum level, the EC group showed significantly higher abundances of Firmicutes and Actinobacteria, but a lower Bacteroidetes than NC. At the genus level, a significantly increased abundance of Streptococcus, Bifidobacterium, Subdoligranulum, Blautia, Romboutsia, Collinsella, Paeniclostridium, Dorea, and Atopobium were observed in EC patients, while Lachnospira, Bacteroides, Agathobacter, Lachnoclostridium, Parabacteroides, Paraprevotella, Butyricicoccus, Tyzzerella, Fusicatenibacter, and Sutterella were reduced. Receiver operating characteristic (ROC) analysis revealed that Lachnospira, Bacteroides, Streptococcus, and Bifidobacterium both achieved a high accuracy in EC diagnosis (area under the curve was more than 0.85), and the Lachnospira was found to be the best classifier. This study firstly characterized the gut microbiota composition of EC patients and screened out the optimal potential microbiota biomarkers for EC diagnosis. It may provide a fundamental reference for further studies on the gut microbiome for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- YaLi Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - DeRong Tang
- Department of Thoracic Surgery, The Affiliated Huaian Peoples NO.1 Hospital of Nanjing Medical University, Huaian, 223001, China
| | - PanFei Hou
- Department of Clinical Laboratory, Lianshui County People's Hospital, Lianshui, 223400, China
| | - WeiTao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - HuiLin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
35
|
Protective Role of Somatostatin in Sepsis-Induced Intestinal Barrier Dysfunction through Inhibiting the Activation of NF- κB Pathway. Gastroenterol Res Pract 2020; 2020:2549486. [PMID: 33376482 PMCID: PMC7746440 DOI: 10.1155/2020/2549486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Somatostatin (SST) has a protective role in intestinal injury, inflammatory response, and intestinal mucosal barrier in rats with acute pancreatitis. However, its function in sepsis-induced intestinal barrier dysfunction remains largely unknown. A mouse sepsis model was constructed, and SST was injected into the tail vein. Then, hematoxylin and eosin staining (HE) was used to detect the intestinal barrier dysfunction. Enzyme-linked immunosorbent assay was used to detect the level of tumor necrosis factor α- (TNF-) α, interleukin- (IL-) 6, and interleukin- (IL-) 10 in the ileum. Expressions of tight junction proteins, zonula occludens- (ZO-) 1 and Claudin-1, and NF-κB p65 in the ileum were detected using western blot and immunohistochemistry as needed. Furthermore, JSH-23 as an inhibitor of the NF-κB pathway was injected into sepsis mice with SST or not. Mice with sepsis showed an obvious intestinal barrier dysfunction with decreasing specific somatostatin receptor subtype (SSTRs), and increasing TNF-α, IL-6, and IL-10 in the ileum. SST could relieve the injury, the decrease of SSTRs, and the increase of TNF-α and IL-6 induced by sepsis and also further enhanced the expression of IL-10. Further analysis showed that ZO-1 and Claudin-1 were reduced in the ileum by sepsis but enhanced by SST. NF-κB p65 was promoted in the ileum by sepsis but inhibited by SST. Further experiments confirmed that NF-κB inhibitor JSH-23 could repair the intestinal barrier dysfunction and enhance the protective effect of SST on the intestinal barrier. SST, with a protective effect on intestinal barrier dysfunction through suppression of NF-κB, could be a potential therapeutic drug for sepsis-induced intestinal barrier dysfunction.
Collapse
|
36
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
37
|
Alpha-Fetoprotein Regulates the Expression of Immune-Related Proteins through the NF- κB (P65) Pathway in Hepatocellular Carcinoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:9327512. [PMID: 32774373 PMCID: PMC7407027 DOI: 10.1155/2020/9327512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Background The prognosis of patients with hepatocellular carcinoma (HCC) is poor, with 60% to 70% of patients developing recurrence and metastasis within five years of radical resection. Alpha-fetoprotein (AFP) plays a significant role in predicting the recurrence and metastasis of HCC after surgery. However, its role in modulating tumor immunity has not been investigated. Our objective was to examine the effect of AFP on the expression of B7 family and activation of the NF-κB (P65) pathway in HCC. Methods We generated human hepatoma SMMC-7721 cell lines with or without recombinant AFP transfection (AFPup and control groups). Colony formation assay, Transwell invasion assay, and wound healing assay were used to detect the function of AFP. Liver cancer xenografts were made in BALB/c nude male mice (N = 6 per group). After 28 days of inoculation, the expression of immune genes in the HCC tissues, including PD-L (B7-H1), B7-H3, B7-H4, and P65, was evaluated by quantitative real-time PCR (qPCR) and western blot. In addition, immunofluorescence was used to determine the subcellular localization of the P65 protein, a key factor in the NF-κB pathway. An online HCC patients' dataset was also used to detect the connection between AFP and P65. Results Overexpression of AFP could enhance proliferation, invasion, and migration of HCC cells. Both qPCR and western blot results demonstrated that the expressions of PD-L1, B7-H4, and P65 were significantly higher in the AFP group compared to the controls (P < 0.05). Immunofluorescence results indicated that the majority of the P65 protein was located in the cytoplasm in the control group but was translocated to the nucleus in the AFPup group. The Spearman correlation coefficient confirms that AFP has a positive correlation with P65 in HCC patients (R = 0.33, P=0.05). Conclusion AFP could enhance proliferation, invasion, and migration in HCC cells. The upregulation of AFP would increase the PD-L1 and B7-H4 mRNA and protein expression in HCC tissues through the upregulation and activation of the P65 protein.
Collapse
|
38
|
Profiles of PD-1, PD-L1, PD-L2 in Gastric Cancer and Their Relation with Mutation, Immune Infiltration, and Survival. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2496582. [PMID: 32596285 PMCID: PMC7298268 DOI: 10.1155/2020/2496582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Background Although multiple types of cancers demonstrated favorable outcome after immunotherapy of PD-1/PD-L1 blockade, the specific regulatory mechanism of PD genes in gastric cancer (GC) remains largely unknown. Materials and Methods Expression of RNA, copy number variants, and clinical parameters of GC individuals from TCGA were analyzed. Coexpressed genes for PD-1, PD-L1, and PD-L2 were selected by correlation analysis and confirmed by STRING. Gene Ontology and KEGG pathway analyses were performed by clusterProfiler. The influence of PD-1/PD-L1/PD-L2 on immune cell infiltration was investigated by MCP-counter. Results PD-L2 demonstrated significant relation with clinical stage of GC (P = 0.043). Survival analysis showed that PD-1 expression was correlated with better prognosis of GC patients (HR = 0.70, P = 0.031), but PD-L2 expression was related with worse survival (HR = 1.42, P = 0.032). Mutation of PIK3CA could alter the level of PD-1, PD-L1, and PD-L2 (P < 0.001), and TP53 mutation demonstrated significant correlation with PD-L1 (P = 0.015) and PD-L2 (P = 0.014) expression. Enrichment analysis of PD-1/PD-L1/PD-L2 coexpressed genes indicated a biological process of mononuclear cell proliferation, leukocyte cell-cell adhesion, and lymphocyte activation as well as KEGG pathways including cell differentiation of Th1 and Th2, cell differentiation of Th17, and hematopoietic cell landscape. As for immune infiltration analysis, PD-1 was mainly related with cytotoxic lymphocytes and endothelial cells; PD-L1 were associated with monocytic lineage; PD-L2 showed significant correlation with myeloid dendritic cells. Conclusion PD-1 expression showed association with better prognosis of GC, and PD-L2 expression was related with worse survival. Mutations of PIK3CA and TP53 significantly correlated with PD-1/PD-L1/PD-L2 axis. PD-1/PD-L1/PD-L2 coexpressed genes demonstrated enrichment in mononuclear cell proliferation, leukocyte cell-cell adhesion, and lymphocyte activation as well as KEGG pathways including cell differentiation of Th1, Th2, and Th17.
Collapse
|
39
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
40
|
Miliotis CN, Slack FJ. Multi-layered control of PD-L1 expression in Epstein-Barr virus-associated gastric cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 34212113 PMCID: PMC8244904 DOI: 10.20517/2394-4722.2020.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide. In approximately 10% of GC cases, cancer cells show ubiquitous and monoclonal Epstein-Barr virus (EBV) infection. A significant feature of EBV-associated GC (EBVaGC) is high lymphocytic infiltration and high expression of immune checkpoint proteins, including programmed death-ligand 1 (PD-L1). This highlights EBVaGC as a strong candidate for immune checkpoint blockade therapy. Indeed, several recent studies have shown that EBV positivity in GC correlates with positive response to programmed cell death protein 1 (PD-1)/PD-L1 blockade therapy. Understanding the mechanisms that control PD-L1 expression in EBVaGC can indicate new predictive biomarkers for immunotherapy, as well as therapeutic targets for combination therapy. Various mechanisms have been implicated in PD-L1 expression regulation, including structural variations, post-transcriptional control, oncogenic activation of intrinsic signaling pathways, and increased sensitivity to extrinsic signals. This review provides the most recent updates on the multilayered control of PD-L1 expression in EBVaGC.
Collapse
Affiliation(s)
- Christos N Miliotis
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Kang X, Li P, Zhang C, Zhao Y, Hu H, Wen G. The TLR4/ERK/PD‑L1 axis may contribute to NSCLC initiation. Int J Oncol 2020; 57:456-465. [PMID: 32468028 PMCID: PMC7307593 DOI: 10.3892/ijo.2020.5068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Infection and inflammation serve an important role in tumor development. Toll-like receptor 4 (TLR4) is a pivotal component of the innate and adaptive immune response during infection and inflammation. Programmed-death ligand 1 (PD-L1) is hypothesized as an important factor for non-small cell lung cancer (NSCLC) immune escape. In the present study, the relationship between TLR4 and PD-L1, in addition to the associated molecular mechanism, were investigated. TLR4 and PD-L1 expression in lung cancer tissues were detected using immunohistochemistry, whilst overall patient survival was measured using the Kaplan-Meier method. The A549 cell line stimulated using lipopolysaccharide (LPS) was applied as the in vitro inflammatory NSCLC model. Associated factors were investigated using reverse transcription-quantitative PCR and western blotting. Lung cancer tissues exhibited increased PD-L1 and TLR4 levels compared with those of adjacent para-cancerous tissues, where there was a positive correlation between TLR4 and PD-L1 expression. In addition, increased expression of these two proteins was found to be linked with poorer prognoses. Following the stimulation of A549 cells with LPS, TLR4 and PD-L1 expression levels were revealed to be upregulated in a dose-dependent manner, where the ERK and PI3K/AKT signaling pathways were found to be activated. Interestingly, in the presence of inhibitors of these two pathways aforementioned, upregulation of PD-L1 expression was only inhibited by the MEK inhibitor PD98059, which can inhibit ERK activity. These data suggested that the ERK signaling pathway is necessary for the TLR4/PD-L1 axis. In conclusion, data from the present study suggest that TLR4 and PD-L1 expression can serve as important prognostic factors for NSCLC, where TLR4 activation may induce PD-L1 expression through the ERK signaling pathway.
Collapse
Affiliation(s)
- Xiuhua Kang
- Department of Pulmonary and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Penghui Li
- Department of Pulmonary and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuibin Zhang
- Department of Respiratory medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Yunshan Zhao
- Department of Pulmonary and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huoli Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guilan Wen
- Department of Pulmonary and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
42
|
Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, Zhu Q, Shou H, Zhang K, Li Y, Chu Y, Gu J, Ge D. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal 2020; 18:17. [PMID: 32014008 PMCID: PMC6998358 DOI: 10.1186/s12964-020-0510-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Esophageal squamous cell cancer (ESCC) is one kind of frequent digestive tumor. The inflammatory environment plays an important role in the tumorigenesis and development of ESCC. Cancer stem cells are a small group of tumor cells with stem cell characteristics, which can potentially hinder the tumor management and treatment. METHODS ELISA was performed to detect the lipopolysaccharide concentration in cancer tissues. qPCR, Western blot, FACS, Immunohistochemistry, Immunofluorescence and Dot blot were applied to detect target genes expression. CCK-8, Colony-formation, Transwell, Sphere and Xenograft were conducted to investigate the function of cells, influenced by risk factors. The survival curve was drawn with the Kaplan-Meier product limit estimator. Nano-hmC-Seal-seq was utilized to detect the downstream target of TET3. ChIP-qPCR was adopted to demonstrate the transcriptional regulation of stem cell-associated genes by HOXB2. RESULTS Lipopolysaccharide concentration was significantly up-regulated in ESCC. High concentration of lipopolysaccharide stimulation induced the stemness of ESCC cells. TET3 expression was elevated with lipopolysaccharide stimulation via p38/ERK-MAPK pathway in ESCC and negatively correlated with patients' survival. TET3 induced the stemness of ESCC cells. Nano-hmC-Seal-seq showed that TET3 overexpression led to a significant increase in 5hmC levels of HOXB2 gene region, which was thus identified as the downstream target of TET3. The binding of HOXB2 to NANOG and cMYC was verified by ChIP-qPCR. CONCLUSIONS Lipopolysaccharide served as a tumor promotor in ESCC by inducing cancer cell stemness through the activation of a LPS-TET3-HOXB2 signaling axis, which might provide a novel therapeutic strategy for ESCC. Video Abstract.
Collapse
Affiliation(s)
- Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhonghe Liu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ronghua Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Mao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Huankai Shou
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yiwei Chu
- Department of Immunology, Fudan University, Shanghai, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
43
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
44
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|