1
|
Alam NF, Ahmed R, Mahmud Z, Tamanna S, Shaon MA, Howlader MZH. Genetic association and computational analysis of MTHFR gene polymorphisms rs1801131 and rs1801133 with breast cancer in the Bangladeshi population. Sci Rep 2024; 14:24232. [PMID: 39414907 PMCID: PMC11484754 DOI: 10.1038/s41598-024-75656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in regulating one-carbon metabolism. Polymorphisms within the MTHFR gene have been found to increase the risk of breast cancer in different populations. In this study, we evaluated the association of polymorphisms of the MTHFR gene (rs1801133 and rs1801131) with the risk of breast cancer in the Bangladeshi population. This case‒control study included 202 breast cancer patients and 104 healthy controls. After the organic extraction of DNA, genotyping was performed via the PCR-RFLP method. Sanger sequencing was performed to validate the RFLP data. Statistical analyses were performed to evaluate the associations of the polymorphisms. Different computational tools were used to predict the structural and functional consequences of the SNPs. Our study revealed that the MTHFR gene polymorphism rs1801131 is associated with an increased risk of developing breast cancer (p < 0.001, OR = 3.85, 95% CI = 2.06-7.25 for the AC genotype and p < 0.001, OR = 7.82, 95% CI = 2.69-22.05 for the CC genotype). An association was also observed in the dominant model (AC + CC) (p < 0.001, OR = 4.19, 95% CI = 2.28-7.78). For rs1801131, premenopausal status was significantly associated with breast cancer risk (p < 0.001). For rs1801133, no significant association was found with breast cancer risk (p > 0.05, OR = 1.57, 95% CI = 0.90-2.74 for the CT genotype; p > 0.05, OR = 1.35, 95% CI = 0.36-4.92 for the TT genotype). Computational analyses predicted rs1801131 to be tolerated and rs1801133 to be deleterious. Structural analyses demonstrated no significant changes in protein structure but revealed alterations in neighboring interactions according to both bond distances and angles. In conclusion, rs1801131 but not rs1801133 is significantly associated with breast cancer risk in the Bangladeshi population. Moreover, in silico analyses demonstrated changes in the interaction pattern of polymorphic residues with adjacent amino acids.
Collapse
Affiliation(s)
- Nazia Fairooz Alam
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rubaiat Ahmed
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Zimam Mahmud
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sonia Tamanna
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Akeruzzaman Shaon
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
2
|
Huang Y, Su T, Duan Q, Wei X, Fan X, Wan J, Liu L, Dian Z, Zhang G, Sun Y, Zhou T, Xu Y. Association of Methylenetetrahydrofolate Reductase rs1801133 Gene Polymorphism with Cancer Risk and Septin 9 Methylation in Patients with Colorectal Cancer. J Gastrointest Cancer 2024; 55:778-786. [PMID: 38252186 PMCID: PMC11186932 DOI: 10.1007/s12029-024-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common malignancies, with a high incidence and mortality worldwide. Methylated Septin 9 (mSEPT9) has been used clinically as an auxiliary tool for CRC screening. The aim of the present study was to investigate the association of the methylenetetrahydrofolate reductase (MTHFR) rs1801133 polymorphism with the risk of CRC and the methylation status of Septin 9 in CRC. METHODS Information of 540 patients with a confirmed diagnosis of CRC and with a physical examination were utilized to assess the association of the MTHFR rs1801133 polymorphism with CRC and the methylation of SEPT9. MTHFR rs1801133 polymorphism was genotyped using polymerase chain reaction (PCR). The commercial Septin 9 Gene Methylation(mSEPT9) Detection Kit was used for plasma SEPT9 methylation analysis. RESULTS Among 540 patients, 61.48% were men and the median age was 54.47 ± 13.14. 65.37% of all colorectal tumors developed in the rectum. 195 patients had negative mSEPT9 methylation, while 345 had positive results. 87 individuals with stage I, 90 with stage II, 287 with stage III, and 76 with stage IV colorectal cancer were included in the sample. The results demonstrated that the positivity rate and degree of methylation of mSEPT9 were remarkably higher in patients with more advanced TNM stages than in those with less advanced stages. The frequencies of the MTHFR rs1801133 CC genotype and allele C carriers in patients with CRC were significantly higher than those in healthy individuals (P = 0.006 and P = 0.001, respectively). The positivity rate of the mSEPT9 assay was significantly higher among the MTHFR rs1801133 TT genotype and allele T carriers than among the CC and allele C carriers respectively. The MTHFR rs1801133 TT genotype and allele T carriers were positively associated with the methylation of SEPT9 (OR = 3.320, 95% CI 1.485-7.424, P = 0.003 and OR = 1.783, 95% CI 1.056-3.010, P = 0.030, respectively). CONCLUSION In conclusion, individuals harboring the MTHFR rs1801133 CC genotype had a higher risk of CRC and the MTHFR rs1801133 TT carriers were more susceptible to Septin 9 gene methylation.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ting Su
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qiuting Duan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiangcong Wei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xin Fan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jinxiu Wan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Luping Liu
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ziqin Dian
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Guiqian Zhang
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yi Sun
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Tao Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, Yunnan, 650500, P.R. China.
| | - Ya Xu
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China.
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
3
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
4
|
Nazari E, Naderi H, Tabadkani M, ArefNezhad R, Farzin AH, Dashtiahangar M, Khazaei M, Ferns GA, Mehrabian A, Tabesh H, Avan A. Breast cancer prediction using different machine learning methods applying multi factors. J Cancer Res Clin Oncol 2023; 149:17133-17146. [PMID: 37773467 DOI: 10.1007/s00432-023-05388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE Breast cancer (BC) is a multifactorial disease and is one of the most common cancers globally. This study aimed to compare different machine learning (ML) techniques to develop a comprehensive breast cancer risk prediction model based on features of various factors. METHODS The population sample contained 810 records (115 cancer patients and 695 healthy individuals). 45 attributes out of 85 were selected based on the opinion of experts. These selected attributes are in genetic, biochemical, biomarker, gender, demographic and pathological factors. 13 Machine learning models were trained with proposed attributes and coefficient of attributes and internal relationships were calculated. RESULT Compared to other methods random forest (RF) has higher performance (accuracy 99.26%, precision 99%, and area under the curve (AUC) 99%). The results of assessing the impact and correlation of variables using the RF method based on PCA indicated that pathology, biomarker, biochemistry, gene, and demographic factors with a coefficient of 0.35, 0.23, 0.15, 0.14, and 0.13 respectively, affected the risk of BC (r2 = 0.54). CONCLUSION Breast cancer has several risk factors. Medical experts use these risk factors for early diagnosis. Therefore, identifying related risk factors and their effect can increase the accuracy of diagnosis. Considering the broad features for predicting breast cancer leads to the development of a comprehensive prediction model. In this study, using RF technique a breast cancer prediction model with 99.3% accuracy was developed based on multifactorial features.
Collapse
Affiliation(s)
- Elham Nazari
- Faculty of Medicine, Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Naderi
- Faculty of Medicine, Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Tabadkani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza ArefNezhad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Majid Khazaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Amin Mehrabian
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Hamed Tabesh
- Faculty of Medicine, Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
| |
Collapse
|
5
|
Beihaghi M, Sahebi R, Beihaghi MR, Nessiani RK, Yarasmi MR, Gholamalizadeh S, Shahabnavaie F, Shojaei M. Evaluation of rs10811661 polymorphism in CDKN2A / B in colon and gastric cancer. BMC Cancer 2023; 23:985. [PMID: 37845622 PMCID: PMC10577985 DOI: 10.1186/s12885-023-11461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
One of the causes of colon and gastric cancer is the dysregulation of carcinogenic genes, tumor inhibitors, and micro-RNA. The purpose of this study is to apply rs10811661 polymorphism in CDKN2A /B gene as an effective biomarker of colon cancer and early detection of gastric cancer. As a result,400 blood samples, inclusive of 200 samples from healthy individuals and 200 samples (100 samples from intestinal cancer,100 samples from stomach cancer) from the blood of someone with these cancers, to determine the genotype of genes in healthful and ill people through PCR-RFLP approach and Allelic and genotypic tests of SPSS software. To observe the connection between gastric cancer and bowel cancer risk and genotypes, the t-student test for quantitative variables and Pearson distribution for qualitative variables have been tested and the results have been evaluated using the Chi-square test. The effects confirmed that the highest frequency of TT genotypes is in affected individuals and CC genotype is in healthful individuals. In addition, it confirmed that women were more inclined than men to T3 tumor invasion and most grade II and III colon cancers, and in older sufferers with gastric cancer, the grade of tumor tended to be grade I. Among genetic variety and rs10811661, with invasiveness, there is a tumor size and degree in the affected person. In summary, our findings suggest that the rs10811661 polymorphism of the CDKN2A / B gene is strongly associated with the occurrence of intestinal cancer and stomach is linked to its potential role as a prognostic biomarker for the management of bowel cancer and stomach.
Collapse
Affiliation(s)
- Maria Beihaghi
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran.
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Beihaghi
- Department of Public Health, Sheffield Hallam University, Sheffield, South Yorkshire, England
| | | | | | | | | | - Mitra Shojaei
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ruan Y, Xie L, Zou A. Association of CDKN2A/B mutations, PD-1, and PD-L1 with the risk of acute lymphoblastic leukemia in children. J Cancer Res Clin Oncol 2023; 149:10841-10850. [PMID: 37314514 PMCID: PMC10423156 DOI: 10.1007/s00432-023-04974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Currently, the significance of CDKN2A/B mutations in the pathogenesis and prognosis of acute lymphoblastic leukemia (ALL) is inconclusive. In this study, we analyzed the genetic and clinical features of children with CDKN2A/B mutations in ALL. In addition, we evaluated the expression and significance of programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in serum and explored their role in the susceptibility of childhood ALL. METHODS We sequenced CDKN2A/B in the peripheral blood of 120 children with ALL and 100 healthy children with physical examination. The levels of CD4+ T, CD8+ T, and NK cells were measured by flow cytometry (FCM). Furthermore, the expression of PD-1 and PD-L1 was detected by ELISA. RESULTS We found 32 cases of CDKN2A rs3088440 and 11 of CDKN2B rs2069426 in 120 ALL children. Children with ALL in the CDKN2A rs3088440 were more likely to have hepatosplenomegaly (P = 0.019) and high risk (P = 0.014) than the wild group. In contrast, CDKN2B rs2069426 was more likely to develop lymph node metastasis (P = 0.017). The level of PD-L1 in the serum of ALL children was significantly higher than that of the control group, and there was no significant difference in PD-1 (P < 0.001). Additionally, children with CDKN2A rs3088440 had reduced CD8+ T cell counts than the wild group (P = 0.039). CONCLUSION CDKN2A rs3088440 and CDKN2B rs2069426 may be related to the occurrence and development of ALL in Chinese children. Additionally, PD-1/PD-L1 may be involved in the immune escape process of ALL, which is expected to become a new target for the treatment of the disease.
Collapse
Affiliation(s)
- Yang Ruan
- Department of Laboratory Medicine, Hunan Children's Hospital, Changsha, 410007, China.
| | - Longlong Xie
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China
| | - Aijun Zou
- Department of Laboratory Medicine, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
7
|
Pourgholi M, Abazari O, Pourgholi L, Ghasemi-Kasman M, Boroumand M. Association between rs3088440 (G > A) polymorphism at 9p21.3 locus with the occurrence and severity of coronary artery disease in an Iranian population. Mol Biol Rep 2021; 48:5905-5912. [PMID: 34313925 DOI: 10.1007/s11033-021-06587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Several genome-wide association studies showed that a series of genetic variants located at the chromosome 9p21 locus are strongly associated with coronary artery disease (CAD). RATIONALE AND PURPOSE OF THE STUDY In the present study, the relationship of rs3088440 (G > A) in cyclin-dependent kinase inhibitor 2A (CDKN2A) gene site with the presence of coronary artery disease (CAD) and its severity was evaluated in an Iranian population. METHODS AND RESULTS The presence of rs3088440 (G > A) genotypes was assessed by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique in 324 CAD patients and 148 normal controls. rs3088440 (G > A) polymorphism was associated with increased risk of CAD in the total population (adjusted OR = 1.76, 95% CI = 1.10-2.82; p-value = 0.017) or in women (adjusted OR = 2.96, 95% CI = 1.34-6.55; p-value = 0.007), but not in the men (adjusted OR = 1.35, 95% CI = 0.70-2.6; p-value = 0.368). CONCLUSIONS Our findings suggest that the presence of rs3088440 (G > A) is potentially linked with the risk of CAD and its severity in whole study subjects or in women only, independent of CAD risk factors.
Collapse
Affiliation(s)
- Mitra Pourgholi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Leyla Pourgholi
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran.
| | - Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Thymidylate synthase and methylenetetrahydrofolate reductase polymorphisms and breast cancer susceptibility in a Brazilian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Petrone I, Bernardo PS, dos Santos EC, Abdelhay E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes (Basel) 2021; 12:587. [PMID: 33920562 PMCID: PMC8073588 DOI: 10.3390/genes12040587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Folate (vitamin B9) is found in some water-soluble foods or as a synthetic form of folic acid and is involved in many essential biochemical processes. Dietary folate is converted into tetrahydrofolate, a vital methyl donor for most methylation reactions, including DNA methylation. 5,10-methylene tetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate metabolism pathway that converts 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, which produces a methyl donor for the remethylation of homocysteine to methionine. MTHFR polymorphisms result in reduced enzyme activity and altered levels of DNA methylation and synthesis. MTHFR polymorphisms have been linked to increased risks of several pathologies, including cancer. Breast cancer, gliomas and gastric cancer are highly heterogeneous and aggressive diseases associated with high mortality rates. The impact of MTHFR polymorphisms on these tumors remains controversial in the literature. This review discusses the relationship between the MTHFR C677T and A1298C polymorphisms and the increased risk of breast cancer, gliomas, and gastric cancer. Additionally, we highlight the relevance of ethnic and dietary aspects of population-based studies and histological stratification of highly heterogeneous tumors. Finally, this review discusses these aspects as potential factors responsible for the controversial literature concerning MTHFR polymorphisms.
Collapse
Affiliation(s)
- Igor Petrone
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Paula Sabbo Bernardo
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Everton Cruz dos Santos
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Eliana Abdelhay
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| |
Collapse
|
10
|
Methylenetetrahydrofolate reductase C677T (Ala>Val, rs1801133 C>T) polymorphism decreases the susceptibility of hepatocellular carcinoma: a meta-analysis involving 12,628 subjects. Biosci Rep 2021; 40:222027. [PMID: 32010931 PMCID: PMC7033308 DOI: 10.1042/bsr20194229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
C677T (Ala>Val, rs1801133 C>T), a non-synonymous variant of methylenetetrahydrofolate reductase (MTHFR) gene, has been found to be associated with an impair enzyme activity of MTHFR. The relationship of MTHFR rs1801133 with hepatocellular carcinoma (HCC) has been extensively investigated. However, the findings were conflicting. Recently, more investigations have been conducted on the relationship of MTHFR rs1801133 with HCC. To obtain a more precise assessment on the effect of this non-synonymous variant to the development of HCC, a pooled-analysis was performed. This meta-analysis consisted of 19 independent case–control studies. By using the odds ratio (OR) combined with 95% confidence interval (CI), the relationship of MTHFR rs1801133 with HCC risk was determined. A total of 19 independent case–control studies were included. Finally, 6,102 HCC cases and 6,526 controls were recruited to examine the relationship of MTHFR rs1801133 with HCC risk. In recessive model (TT vs. CC/CT), the findings reached statistical significance (OR, 0.90; 95%CI, 0.82–0.98; P = 0.016). Subgroup analysis also found an association between MTHFR rs1801133 polymorphism and the decreased risk of HCC in hepatitis/virus related patients (recessive model: OR, 0.85; 95%CI, 0.72–0.99; P = 0.035, and allele model: OR, 0.90; 95%CI, 0.81–0.99; P = 0.028). Subgroup analyses indicated that extreme heterogeneity existed in Asian population, larger sample size investigation, hospital-based study and normal/healthy control subgroups. The shape of Begger’s seemed symmetrical. Egger’s linear regression test also confirmed these evaluations. Sensitivity analyses suggested that our findings were stable. In summary, our results highlight that MTHFR rs1801133 polymorphism decreases HCC susceptibility. The relationship warrants a further assessment.
Collapse
|
11
|
Rezaee M, Akbari H, Momeni-Moghaddam MA, Moazzen F, Salahi S, Jahankhah R, Tahmasebi S. Association of C677T (rs1081133) and A1298C (rs1801131) Methylenetetrahydrofolate Reductase Variants with Breast Cancer Susceptibility Among Asians: A Systematic Review and Meta-Analysis. Biochem Genet 2021; 59:367-397. [PMID: 33387129 DOI: 10.1007/s10528-020-10020-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
This systematic review and meta-analysis were conducted to investigate the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms with breast cancer (BC) in Asians. Systematic searches were conducted in PubMed, EMBASE, Web of Science, and Scopus by May 2020. Inter-study heterogeneity was also assessed with a Q test, along with I2 statistics. Random-effects models were applied to pooled crude ORs with corresponding 95% CIs for the genetic models. A total of 1097 identified results, along with 36 qualified studies were included: for MTHFR C677T polymorphism, a total of 36 studies was comprised of 11,261 cases and 13,318 controls and for MTHFR A1298C polymorphism, a number of 19 studies contained 7424 cases and 8204 controls. Likewise, for C677T polymorphism, an increased risk of BC was seen for the allelic (OR 1.21, 95% CI 1.09-1.33, P < 0.01, I2 = 78.9%), dominant (OR 1.17, 95% CI 1.05-1.30, P < 0.01, I2 = 71.8%), recessive (OR 1.43, 95% CI 1.23-1.67, P < 0.01, I2 = 55.8%), and homozygous models (OR 1.48, 95% CI 1.25-1.75, P < 0.01, I2 59.9%) among BC patients compared to controls. Also, in terms of A1298C polymorphism, an association was found between the allelic (OR 1.15, 95% CI 1.04-1.28, P < 0.01, I2 70.4%) and homozygous models (OR 1.38, 95% CI 1.15-1.66, P < 0.01, I2 44.2%) with the risk of BC. In conclusion, findings revealed that MTHFR C677T variant might be a factor that predisposes BC in Asians. Furthermore, it was found that A1298C variant acts as a BC risk factor, particularly in a Western Asia population.
Collapse
Affiliation(s)
- Maryam Rezaee
- Dermatology Department, Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Akbari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Moazzen
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sarvenaz Salahi
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jahankhah
- Department of Radiology, Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Tahmasebi
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Karimian M, Rezazadeh N, Khamehchian T. Association Analysis of Methylenetetrahydrofolate Reductase Common Gene Polymorphisms with Breast Cancer Risk in an Iranian Population: A Case-Control Study and a Stratified Analysis. Asian Pac J Cancer Prev 2020; 21:2709-2714. [PMID: 32986372 PMCID: PMC7779462 DOI: 10.31557/apjcp.2020.21.9.2709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene may alter the risk of breast cancer. This study aimed to investigate the association of MTHFR C677T and A1298C genetic polymorphisms with breast cancer risk in case-control studies which was followed by stratified analysis. In the case-control study, 300 subjects including 150 women with breast cancer and 150 healthy women were enrolled. After blood sample collection, the C677T and A1298C polymorphisms genotyping were done by the PCR-RFLP method. Our data revealed a significant association between MTHFR C677T and A1298C polymorphisms and breast cancer risk. But, as a preliminary study, stratified analysis revealed no significant association between C677T and A1298C polymorphisms and tumor size and also lymph node metastasis in breast cancer. According to the mentioned findings, the C677T and A1298C polymorphisms in the MTHFR gene could be molecular risk factors for breast cancer in our studied population. However, further studies with larger sample sizes are required to obtain a more accurate conclusion in stratified analysis.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Nasrin Rezazadeh
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Khamehchian
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Shen W, Gao C, Cueto R, Liu L, Fu H, Shao Y, Yang WY, Fang P, Choi ET, Wu Q, Yang X, Wang H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol 2020; 28:101322. [PMID: 31605963 PMCID: PMC6812029 DOI: 10.1016/j.redox.2019.101322] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Homocysteine-Methionine (HM) cycle produces universal methyl group donor S-adenosylmethione (SAM), methyltransferase inhibitor S-adenosylhomocysteine (SAH) and homocysteine (Hcy). Hyperhomocysteinemia (HHcy) is established as an independent risk factor for cardiovascular disease (CVD) and other degenerative disease. We selected 115 genes in the extended HM cycle (31 metabolic enzymes and 84 methyltransferases), examined their protein subcellular location/partner protein, investigated their mRNA levels and mapped their corresponding histone methylation status in 35 disease conditions via mining a set of public databases and intensive literature research. We have 6 major findings. 1) All HM metabolic enzymes are located only in the cytosol except for cystathionine-β-synthase (CBS), which was identified in both cytosol and nucleus. 2) Eight disease conditions encountered only histone hypomethylation on 8 histone residues (H3R2/K4/R8/K9/K27/K36/K79 and H4R3). Nine disease conditions had only histone hypermethylation on 8 histone residues (H3R2/K4/K9/K27/K36/K79 and H4R3/K20). 3) We classified 9 disease types with differential HM cycle expression pattern. Eleven disease conditions presented most 4 HM cycle pathway suppression. 4) Three disease conditions had all 4 HM cycle pathway suppression and only histone hypomethylation on H3R2/K4/R8/K9/K36 and H4R3. 5) Eleven HM cycle metabolic enzymes interact with 955 proteins. 6) Five paired HM cycle proteins interact with each other. We conclude that HM cycle is a key metabolic sensor system which mediates receptor-independent metabolism-associated danger signal recognition and modulates SAM/SAH-dependent methylation in disease conditions and that hypomethylation on frequently modified histone residues is a key mechanism for metabolic disorders, autoimmune disease and CVD. We propose that HM metabolism takes place in the cytosol, that nuclear methylation equilibration requires a nuclear-cytosol transfer of SAM/SAH/Hcy, and that Hcy clearance is essential for genetic protection.
Collapse
Affiliation(s)
- Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chao Gao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|