1
|
Manríquez V, Brito R, Pavez M, Sapunar J, Fonseca L, Molina V, Ortiz E, Baeza R, Reimer C, Charles M, Schneider C, Hirata MH, Hirata RDC, Cerda A. Adenovirus 36 seropositivity is related to the expression of anti-adipogenic lncRNAs GAS5 and MEG3 in adipose tissue obtained from subjects with obesity. Int J Obes (Lond) 2024; 48:1414-1420. [PMID: 38898229 DOI: 10.1038/s41366-024-01555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Human Adenovirus D-36 (HAdV-D36) promotes adipogenesis in cellular and animal models and may contribute to the development of human obesity. Induction of PPARγ by HAdV-D36 seems to have a central role in the maintenance of adipogenic status. There is limited information about epigenetic mechanisms contributing to this process in human adipose tissue. This study evaluated the expression of lncRNAs (ADINR, GAS5 and MEG3) and miRNAs (miR-18a and miR-140) involved in the adipogenic process in visceral adipose tissue (VAT) of subjects with obesity with previous HAdV-D36 infection (seropositive) and unexposed (seronegative) subjects with obesity. METHODS Individuals with obesity were grouped according to the presence of antibodies against HAdV-D36 (Seropositive: HAdV-D36[+], n = 29; and Seronegative: HAdV-D36[-], n = 28). Additionally, a group of individuals without obesity (n = 17) was selected as a control group. The HAdV-D36 serology was carried out by ELISA. Biopsies of VAT were obtained during an elective and clinically indicated surgery (bariatric or cholecystectomy). RNA extraction from VAT was performed and the expression of PPARG and non-coding RNAs was evaluated by qPCR. RESULTS HAdV-D36[+] individuals had lower expression of anti-adipogenic lncRNAs GAS5 (p = 0.016) and MEG3 (p = 0.035) compared with HAdV-D36[-] subjects with obesity. HAdV-D36[+] subjects also presented increased expression of the adipogenic miRNA miR-18a (p = 0.042), which has been reported to be modulated by GAS5 through a RNA sponging mechanism during adipogenic differentiation. Additionally, an inverse correlation of GAS5 with PPARG expression was observed (r = -0.917, p = 0.01). CONCLUSION Our results suggest that HAdV-D36 is related to non-coding RNAs implicated in adipogenesis, representing a potential mechanism by which previous HAdV-D36 infection could be associated with the long-term maintenance of adipogenic status, probably through the GAS5/miR-18a axis.
Collapse
Affiliation(s)
- Víctor Manríquez
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Roberto Brito
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Monica Pavez
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jorge Sapunar
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile
| | - Luis Fonseca
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Víctor Molina
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Eugenia Ortiz
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Romilio Baeza
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Camila Reimer
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Maria Charles
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Constance Schneider
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile.
- Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile.
- Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Cheng Y, Liang Y, Tan X, Liu L. Host long noncoding RNAs in bacterial infections. Front Immunol 2024; 15:1419782. [PMID: 39295861 PMCID: PMC11408731 DOI: 10.3389/fimmu.2024.1419782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
3
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
4
|
Liu Y, Wu J, Chen L, Zou J, Yang Q, Tian H, Zheng D, Ji Z, Cai J, Li Z, Chen Y. ncRNAs-mediated overexpression of TET3 predicts unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer. Heliyon 2024; 10:e24855. [PMID: 38318018 PMCID: PMC10838756 DOI: 10.1016/j.heliyon.2024.e24855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Breast cancer is the most frequent form of cancer in women and the primary cause of cancer-related deaths globally. DNA methylation and demethylation are important processes in human tumorigenesis. Ten-eleven translocation 3 (TET3) is a DNA demethylase. Prior research has demonstrated that TET3 is highly expressed in various human malignant tumors. However, the exact function and mechanism of TET3 in breast cancer remain unclear. In this study, we investigated TET3 expression in breast cancer and its correlation with clinicopathological characteristics of breast cancer patients. The results presented that TET3 expression was significantly increased in breast cancer and associated with the PAM50 subtype. Subsequently, we performed receiver operating characteristic, survival, and Cox hazard regression analyses. These results suggest that TET3 expression is associated with a poor prognosis and may be an indirect independent prognostic indicator in breast cancer. We also established a protein-protein interaction (PPI) network of TET3 and executed enrichment analyses of TET3 co-expressed genes, revealing their primary association with the cell cycle. Moreover, we identified noncoding RNAs (ncRNAs) contributing to TET3 overexpression using expression, correlation, and survival analyses. We identified the LINC01521/hsa-miR-29a-3p axis as the primary TET3 upstream ncRNA-related pathway in breast cancer. Furthermore, TET3 expression was positively associated with immune cell infiltration, immune cell biomarkers, and eight immune checkpoint gene expressions in breast cancer. TET3 expression also correlated with patient responses to immunotherapy. Finally, we conducted subcellular localization and immunohistochemical staining analysis of TET3 in breast cancer. We found that TET3 localized to the nucleoplasm, vesicles, and cytosol in the MCF-7 cell line, and TET3 expression was significantly upregulated in breast cancer tissues compared to para-tumor tissues. Our findings indicate that ncRNA-mediated overexpression of TET3 predicts an unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Juan Zou
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Daitian Zheng
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
5
|
Lian Z, Tian P, Ma S, Chang T, Liu R, Feng Q, Li J. Long noncoding RNA MEG3 regulates cell proliferation and apoptosis by disrupting microRNA-9-5p-mediated inhibition of NDRG1 in prostate cancer. Aging (Albany NY) 2024; 16:1938-1951. [PMID: 38271137 PMCID: PMC10866422 DOI: 10.18632/aging.205472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Long noncoding RNA MEG3 has been described to be involved in the regulation of gene expression and cancer progression. However, the role of lncMEG3 in prostate cancer (PCa) remains largely uncharted. METHODS Differential expression of lncMEG3 was identified in PCa tissues using RNA-sequencing analysis. qRT-PCR was performed to examine the level of lncMEG3. Additionally, cellular fractionation and fluorescent in situ hybridization techniques were employed to determine the localization. Subsequently, functional assays were conducted to evaluate the impact of lncMEG3 and miR-9-5p on PCa proliferation and apoptosis in vitro and in vivo. The interaction between lncMEG3 and miR-9-5p was confirmed using RNA immunoprecipitation. Moreover, luciferase reporter assays were also utilized to investigate the relationship between miR-9-5p and NDRG1. RESULTS We observed downregulation of lncMEG3 in PCa cells and tissues. Patients with lower levels of lncMEG3 had a higher likelihood of experiencing biochemical recurrence. Overexpression of lncMEG3 resulted in the inhibition of PCa cell proliferation and the promotion of apoptosis. Moreover, lncMEG3 is competitively bound to miR-9-5p, preventing its inhibitory effect on the target gene NDRG1. This ultimately led to the inhibition of PCa cell proliferation and the promotion of apoptosis. Furthermore, increasing lncMEG3 levels also demonstrated inhibitory effects on PCa proliferation and promotion of apoptosis in vivo. CONCLUSIONS Our findings uncover a crucial role for lncMEG3 in inhibiting PCa proliferation and promoting apoptosis through disruption of miR-9-5p-mediated inhibition of NDRG1.
Collapse
Affiliation(s)
- Zhenpeng Lian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Pei Tian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shenfei Ma
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Taihao Chang
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ranlu Liu
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingchuan Feng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
6
|
Li J, Huang S, Shi L, Chen G, Liu X, Liu M, Guo G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun Inflamm Dis 2024; 12:e1129. [PMID: 38270295 PMCID: PMC10777888 DOI: 10.1002/iid3.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) are a group of RNAs that cannot synthesize proteins, but are critical in gene expression regulation. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), the two major family members, are intimately involved in controlling immune response, cell proliferation, apoptosis, differentiation and polarization, and cytokine secretion. Their interactions significantly influence lung inflammatory diseases and could be potential therapeutic targets. OBJECTIVES The review aims to elucidate the role of ncRNAs, especially the interactions between lncRNA and miRNA in lung diseases, including acute and chronic lung inflammatory diseases, as well as lung cancer. And provide novel insights into disease mechanisms and potential therapeutic methods. METHODS We conducted a comprehensive review of the latest studies on lncRNA and miRNA in lung inflammatory diseases. Our research involved searching through electronic databases like PubMed, Web of Science, and Scopus. RESULTS We explain the fundamental characteristics and functions of miRNA and lncRNA, their potential interaction mechanisms, and summarize the newly explorations on the role of lncRNA and miRNA interactions in lung inflammatory diseases. CONCLUSIONS Numerous lncRNAs and miRNAs have been found to partipicate in all stages of lung inflammatory diseases. While ncRNA-based therapies have been validated and developed, there remain challenges in developing more stable and effective drugs for clinical use.
Collapse
Affiliation(s)
- Jiaqi Li
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liangliang Shi
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guochang Chen
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
7
|
Moradi MT, Fadaei R, Sharafkhaneh A, Khazaie H, Gozal D. The role of lncRNAs in intermittent hypoxia and sleep Apnea: A review of experimental and clinical evidence. Sleep Med 2024; 113:188-197. [PMID: 38043330 DOI: 10.1016/j.sleep.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
In this narrative review, we present a comprehensive assessment on the putative roles of long non-coding RNAs (lncRNAs) in intermittent hypoxia (IH) and sleep apnea. Collectively, the evidence from cell culture, animal, and clinical research studies points to the functional involvement of lncRNAs in the pathogenesis, diagnosis, and potential treatment strategies for this highly prevalent disorder. Further research is clearly warranted to uncover the mechanistic pathways and to exploit the therapeutic potential of lncRNAs, thereby improving the management and outcomes of patients suffering from sleep apnea.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amir Sharafkhaneh
- Sleep Disorders and Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA.
| |
Collapse
|
8
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
9
|
Ghasemian A, Omear HA, Mansoori Y, Mansouri P, Deng X, Darbeheshti F, Zarenezhad E, Kohansal M, Pezeshki B, Wang Z, Tang H. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Front Genet 2023; 14:1297093. [PMID: 38094755 PMCID: PMC10716712 DOI: 10.3389/fgene.2023.1297093] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 10/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the main fatal cancers. Cell signaling such as Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling substantially influences the process of gene expression and cell growth. Long non-coding RNAs (lncRNAs) play regulatory roles in cell signaling, cell proliferation, and cancer fate. Hence, lncRNAs can be considered biomarkers in cancers. The inhibitory or activating effects of different lncRNAs on the JAK/STAT pathway regulate cancer cell proliferation or tumor suppression. Additionally, lncRNAs regulate immune responses which play a role in immunotherapy. Mechanisms of lncRNAs in CRC via JAK/STAT regulation mainly include cell proliferation, invasion, metastasis, apoptosis, adhesion, and control of inflammation. More profound findings are warranted to specifically target the lncRNAs in terms of activation or suppression in hindering CRC cell proliferation. Here, to understand the lncRNA cross-talk in CRC through the JAK/STAT signaling pathway, we collected the related in vitro and in vivo data. Future insights may pave the way for the development of novel diagnostic tools, therapeutic interventions, and personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hadeel A. Omear
- College of Science, University of Tikrit University, Tikrit, Iraq
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Farzaneh Darbeheshti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
10
|
Hussain MS, Majami AA, Ali H, Gupta G, Almalki WH, Alzarea SI, Kazmi I, Syed RU, Khalifa NE, Bin Break MK, Khan R, Altwaijry N, Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol Res Pract 2023; 251:154850. [PMID: 37839358 DOI: 10.1016/j.prp.2023.154850] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
MEG3, a significant long non-coding RNA (lncRNA), substantially functions in diverse biological processes, particularly breast cancer (BC) development. Within the imprinting DLK-MEG3 region on human chromosomal region 14q32.3, MEG3 spans 35 kb and encompasses ten exons. It exerts regulatory effects through intricate interactions with miRNAs, proteins, and epigenetic modifications. MEG3's multifaceted function in BC is evident in gene expression modulation, osteogenic tissue differentiation, and involvement in bone-related conditions. Its role as a tumor suppressor is highlighted by its influence on miR-182 and miRNA-29 expression in BC. Additionally, MEG3 is implicated in acute myocardial infarction and endothelial cell function, emphasising cell-specific regulatory mechanisms. MEG3's impact on gene activity encompasses transcriptional and post-translational adjustments, including DNA methylation, histone modifications, and interactions with transcription factors. MEG3 dysregulation is linked to unfavourable outcomes and drug resistance. Notably, higher MEG3 expression is associated with enhanced survival in BC patients. Overcoming challenges such as unravelling context-specific interactions, understanding epigenetic control, and translating findings into clinical applications is imperative. Prospective endeavours involve elucidating underlying mechanisms, exploring epigenetic alterations, and advancing MEG3-based diagnostic and therapeutic approaches. A comprehensive investigation into broader signaling networks and rigorous clinical trials are pivotal. Rigorous validation through functional and molecular analyses will shed light on MEG3's intricate contribution to BC progression.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, 11115, Sudan
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint, Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rahul Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| |
Collapse
|
11
|
Ziegler JN, Tian C. Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. Int J Mol Sci 2023; 24:15206. [PMID: 37894887 PMCID: PMC10607082 DOI: 10.3390/ijms242015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound vesicles used by cells to deliver biological cargo such as proteins, mRNA, and other biomolecules from one cell to another, thus inducing a specific response in the target cell and are a powerful method of cell to cell and organ to organ communication, especially during the pathogenesis of human disease. Thus, EVs may be utilized as prognostic and diagnostic biomarkers, but they also hold therapeutic potential just as mesenchymal stem cells have been used in therapeutics. However, unmodified EVs exhibit poor targeting efficacy, leading to the necessity of engineered EVS. To highlight the advantages and therapeutic promises of engineered EVs, in this review, we summarized the research progress on engineered EVs in the past ten years, especially in the past five years, and highlighted their potential applications in therapeutic development for human diseases. Compared to the existing stem cell-derived EV-based therapeutic strategies, engineered EVs show greater promise in clinical applications: First, engineered EVs mediate good targeting efficacy by exhibiting a targeting peptide that allows them to specifically target a specific organ or even cell type, thus avoiding accumulation in undesired locations and increasing the potency of the treatment. Second, engineered EVs can be artificially pre-loaded with any necessary biomolecular cargo or even therapeutic drugs to treat a variety of human diseases such as cancers, neurological diseases, and cardiovascular ailments. Further research is necessary to improve logistical challenges in large-scale engineered EV manufacturing, but current developments in engineered EVs prove promising to greatly improve therapeutic treatment for traditionally difficult to treat diseases.
Collapse
Affiliation(s)
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
12
|
Liang J, Ye C, Chen K, Gao Z, Lu F, Wei K. Non-coding RNAs in breast cancer: with a focus on glucose metabolism reprogramming. Discov Oncol 2023; 14:72. [PMID: 37204526 DOI: 10.1007/s12672-023-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Breast cancer is the tumor with the highest incidence in women worldwide. According to research, the poor prognosis of breast cancer is closely related to abnormal glucose metabolism in tumor cells. Changes in glucose metabolism in tumor cells are an important feature. When sufficient oxygen is available, cancer cells tend to undergo glycolysis rather than oxidative phosphorylation, which promotes rapid proliferation and invasion of tumor cells. As research deepens, targeting the glucose metabolism pathway of tumor cells is seen as a promising treatment. Non-coding RNAs (ncRNAs), a recent focus of research, are involved in the regulation of enzymes of glucose metabolism and related cancer signaling pathways in breast cancer cells. This article reviews the regulatory effect and mechanism of ncRNAs on glucose metabolism in breast cancer cells and provides new ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chun Ye
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Kaiqin Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zihan Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
13
|
Chiu KL, Chang WS, Tsai CW, Mong MC, Hsia TC, Bau DT. Novel genetic variants in long non-coding RNA MEG3 are associated with the risk of asthma. PeerJ 2023; 11:e14760. [PMID: 36726728 PMCID: PMC9885862 DOI: 10.7717/peerj.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Background Asthma is the most common chronic inflammatory airway disease worldwide. Asthma is a complex disease whose exact etiologic mechanisms remain elusive; however, it is increasingly evident that genetic factors play essential roles in the development of asthma. The purpose of this study is to identify novel genetic susceptibility loci for asthma in Taiwanese. We selected a well-studied long non-coding RNA (lncRNA), MEG3, which is involved in multiple cellular functions and whose expression has been associated with asthma. We hypothesize that genetic variants in MEG3 may influence the risk of asthma. Methods We genotyped four single nucleotide polymorphisms (SNPs) in MEG3, rs7158663, rs3087918, rs11160608, and rs4081134, in 198 patients with asthma and 453 healthy controls and measured serum MEG3 expression level in a subset of controls. Results The variant AG and AA genotypes of MEG3 rs7158663 were significantly over-represented in the patients compared to the controls (P = 0.0024). In logistic regression analyses, compared with the wild-type GG genotype, the heterozygous variant genotype (AG) was associated with a 1.62-fold [95% confidence interval (CI) [1.18-2.32], P = 0.0093] increased risk and the homozygous variant genotype (AA) conferred a 2.68-fold (95% CI [1.52-4.83], P = 0.003) increased risk of asthma. The allelic test showed the A allele was associated with a 1.63-fold increased risk of asthma (95% CI [1.25-2.07], P = 0.0004). The AG plus AA genotypes were also associated with severe symptoms (P = 0.0148). Furthermore, the AG and AA genotype carriers had lower serum MEG3 expression level than the GG genotype carriers, consistent with the reported downregulation of MEG3 in asthma patients. Conclusion MEG3 SNP rs7158663 is a genetic susceptibility locus for asthma in Taiwanese. Individuals carrying the variant genotypes have lower serum MEG3 level and are at increased risks of asthma and severe symptoms.
Collapse
Affiliation(s)
- Kuo-Liang Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer. Cancers (Basel) 2022; 14:cancers14246032. [PMID: 36551518 PMCID: PMC9775699 DOI: 10.3390/cancers14246032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| |
Collapse
|
15
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
16
|
Mehana NA, Ghaiad HR, Hassan M, Elsabagh YA, Labib S, Abd-Elmawla MA. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behçet's disease and systemic lupus erythematosus. Life Sci 2022; 309:120965. [PMID: 36155183 DOI: 10.1016/j.lfs.2022.120965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Behçet's disease (BD) and systemic lupus erythematosus (SLE) are two autoimmune inflammatory diseases of indefinite etiology. However, up till now, no study has explored the exact regulatory mechanisms of lncRNA maternally expressed gene-3 (MEG3) over the balance between regulatory T-cells (Treg) and T helper-17 (Th17) cells in BD and SLE. AIM The current study aimed to investigate the role of lncRNA MEG3 in the interplay between the anti-inflammatory Treg/transcription factor forkhead box P3 (FOXP3) axis versus the pro-inflammatory Th17/retinoic acid orphan receptor-γt (RORγt) axis. MAIN METHODS 100 subjects, 35 with BD and 35 with SLE in addition to 30 healthy participants were included in the study. Gene expression analysis was performed and ShinyGO database was utilized for in-depth analysis and graphical visualization of the gene ontology (GO) and pathway enrichment analysis for lncRNA and the other target genes. KEY FINDINGS The current results demonstrate the upregulation of lncRNA MEG3 in BD but not SLE patients. Moreover, significant differences in RORγt and FOXP3 were found between BD and SLE patients. The present findings linked lncRNA MEG3 to BD activity scores as well as CRP levels. Finally, lncRNA MEG3 showed excellent diagnostic power for BD, in addition to adequate discriminative power that can be used to differentiate between BD and SLE. SIGNIFICANCE The current study objectively elucidated a framework for the involvement of Treg/Th17 through transcription factors RORγt and FOXP3, in addition to their links to the downstream cytokines network including TGF-ꞵ, IL-10, IL-17 and IL-23 in BD and SLE pathogenesis and activity.
Collapse
Affiliation(s)
- Noha A Mehana
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Labib
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Zhang Z, Li J, Yan B, Tu H, Huang C, Costa M. Loss of MEG3 and upregulation of miR-145 play an important role in the invasion and migration of Cr(VI)-transformed cells. Heliyon 2022; 8:e10086. [PMID: 36046536 PMCID: PMC9421329 DOI: 10.1016/j.heliyon.2022.e10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium (Cr(VI)) causes malignant cell transformation. These transformed cells exhibit increases in migration and invasion. Neuronal precursor of developmentally downregulated protein 9 (NEDD9) is upregulated in Cr(VI)-transformed cells compared to that of passage-matched normal BEAS-2B cells. Knockdown of NEDD9 by its shRNA reduced invasion and migration of Cr(VI)-transformed cells. Maternally expressed gene 3 (MEG3), a long noncoding RNA, was lost and microRNA 145 (miR-145) was upregulated in Cr(VI)-transformed cells. MEG3 was bound to miR-145 and this binding reduced its activity. Overexpression of MEG3 or inhibition of miR-145 decreased invasion and migration of Cr(VI)-transformed cells. Overexpression of MEG3 was able to decrease miR-145 level and NEDD9 protein level in Cr(VI)-transformed cells. Ectopic expression of MEG3 was also shown to reduce β-catenin activation. Inhibition of miR-145 in Cr(VI)-transformed cells decreased Slug, an important transcription factor that regulates epithelial-to-mesenchymal transition (EMT). Inhibition of miR-145 was found to increase MEG3 in Cr(VI)-transformed cells. Further studies showed that mutation of MEG3 at the binding site for miR-145 did not change NEDD9 and failed to decrease invasion and migration. The present study demonstrated that loss of MEG3 and upregulation of miR-145 elevated NEDD9, resulting in activation of β-catenin and further upregulation of EMT, leading to increased invasion and migration of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Bo Yan
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Huailu Tu
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| |
Collapse
|
18
|
Gao W, Zhang J, Wu R, Yuan J, Ge J. Integrated Analysis of Angiogenesis Related lncRNA-miRNA-mRNA in Patients With Coronary Chronic Total Occlusion Disease. Front Genet 2022; 13:855549. [PMID: 35547243 PMCID: PMC9081538 DOI: 10.3389/fgene.2022.855549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Coronary chronic total occlusion (CTO) disease is common and its specific characteristic is collateral formation. The Integrated analysis of angiogenesis related lncRNA-miRNA-mRNA network remains unclear and might provide target for future studies. Methods: A total of five coronary artery disease (control group) and five CTO (CTO group) patients were selected for deep RNA and miRNA sequencing. The expression profiles of lncRNAs, mRNAs circRNA and miRNAs were obtained. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were then performed. The expression of a 14q32 miRNA gene cluster, including miRNA-494, miRNA-495 and miRNA-329, were selected to be determined in another larger patient cohort. Analysis of the lncRNA-miRNA495-mRNA network was constructed to find potential targets for future studies. Results: A total of 871 lncRNAs, 1,080 mRNAs, 138 circRNAs and 56 miRNAs were determined as differentially expressed (DE) in CTO patients compared with control patients. GO and KEGG analyses revealed that the top terms included MAPK signaling pathway, HIF-1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, embryonic organ development, wound healing, MAPK signaling pathway and JAK-STAT signaling pathway, which are related to angiogenesis. The expression of miRNA-494, miRNA-495 and miRNA-329 were all significantly down-regulated in CTO patients and they were confirmed to be down-regulated in another cohort of 68 patients. Then we divided the CTO patients into two groups according to CC grade (poor CC group, CC = 0 or one; good CC group, CC = 2). MiRNA-494, miRNA-495 and miRNA-329 were found to be down-regulated in good CC group compared with poor CC group. Analysis of the lncRNA-miRNA495-mRNA network showed 3 DE lncRNA sponges (NONHSAG008675, NONHSAG020957 and NONHSAG010989), 4 DE lncRNA targets (NONHSAT079547.2, NONHSAT081776.2, NONHSAT148555.1 and NONHSAT150928.1) and 2 DE mRNA targets (RAD54L2 and ZC3H4) of miRNA495. Conclusion: This study revealed that the lncRNA-miRNA-mRNA network might play a critical role in angiogenesis in CTO patients.
Collapse
Affiliation(s)
- Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianhui Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
20
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
21
|
Sivagurunathan N, Ambatt ATS, Calivarathan L. Role of Long Non-coding RNAs in the Pathogenesis of Alzheimer's and Parkinson's Diseases. Curr Aging Sci 2022; 15:84-96. [PMID: 35081899 DOI: 10.2174/1874609815666220126095847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases are a diverse group of diseases that are now one of the leading causes of morbidity in the elderly population. These diseases include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), etc. Although these diseases have a common characteristic feature of progressive neuronal loss from various parts of the brain, they differ in the clinical symptoms and risk factors, leading to the development and progression of the diseases. AD is a neurological condition that leads to dementia and cognitive decline due to neuronal cell death in the brain, whereas PD is a movement disorder affecting neuro-motor function and develops due to the death of the dopaminergic neurons in the brain, resulting in decreased dopamine levels. Currently, the only treatment available for these neurodegenerative diseases involves reducing the rate of progression of neuronal loss. This necessitates the development of efficient early biomarkers and effective therapies for these diseases. Long non-coding RNAs (LncRNAs) belong to a large family of non-coding transcripts with a minimum length of 200 nucleotides. They are implied to be involved in the development of the brain, a variety of diseases, and epigenetic, transcriptional, and posttranscriptional levels of gene regulation. Aberrant expression of lncRNAs in the CNS is considered to play a major role in the development and progression of AD and PD, two of the most leading causes of morbidity among elderly populations. In this mini-review, we discuss the role of various long non-coding RNAs in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, which can further be studied for the development of potential biomarkers and therapeutic targets for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Aghil T S Ambatt
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Latchoumycandane Calivarathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
22
|
Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol Psychiatry 2022; 27:4064-4076. [PMID: 35338311 PMCID: PMC9718683 DOI: 10.1038/s41380-022-01481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Social anxiety disorder is characterized by a persistent fear and avoidance of social situations, but available treatment options are rather unspecific. Using an established mouse social fear conditioning (SFC) paradigm, we profiled gene expression and chromatin alterations after the acquisition and extinction of social fear within the septum, a brain region important for social fear and social behaviors. Here, we particularly focused on the successful versus unsuccessful outcome of social fear extinction training, which corresponds to treatment responsive versus resistant patients in the clinics. Validation of coding and non-coding RNAs revealed specific isoforms of the long non-coding RNA (lncRNA) Meg3 regulated, depending on the success of social fear extinction. Moreover, PI3K/AKT was differentially activated with extinction success in SFC-mice. In vivo knockdown of specific Meg3 isoforms increased baseline activity of PI3K/AKT signaling, and mildly delayed social fear extinction. Using ATAC-Seq and CUT&RUN, we found alterations in the chromatin structure of specific genes, which might be direct targets of lncRNA Meg3.
Collapse
|
23
|
Torkamandi S, Bahrami S, Ghorashi T, Dehani M, Bayat H, Hoseini SM, Rezaei S, Soosanabadi M. Dysregulation of long noncoding RNA MEG3 and NLRC5 expressions in patients with relapsing-remitting multiple sclerosis: is there any correlation? Genes Immun 2021; 22:322-326. [PMID: 34782775 DOI: 10.1038/s41435-021-00154-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA MEG3 and NLRC5 genes are both involved in the immune system and the regulation of NLRC5 by MEG3 is documented in rheumatoid arthritis. Therefore, we intended to evaluate the association between the expressions of MEG3 and NLRC5 in multiple sclerosis (MS). Forty relapsing and remitting MS (RRMS) patients (20 in each group) and twenty healthy individuals were enrolled. The expression level of MEG3 and NLRC5 was assessed in peripheral blood mononuclear cells. Sub-group analysis demonstrated that the expression level of MEG3 is reduced in the relapse patient group compared to remission and healthy groups (p < 0.001). The expression level of NLRC5 was higher in whole patients compared with healthy controls (p < 0.05). Moreover, a negative correlation was observed between the expression of these two genes (r = -0.73, p < 0.0001). To conclude, our findings showed the dysregulation of MEG3 and NLRC5 expressions in RRMS patients. Also, the converse association of MEG3 and NLRC5 reflects that the role of MEG3 in MS development is probably mediated by modulation of NLRC5.
Collapse
Affiliation(s)
- Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Bahrami
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Ghorashi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Dehani
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular genetics, Faculty of biological sciences, Tarbiat modares university, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.,Department of Neurology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
24
|
Ning JZ, He KX, Cheng F, Li W, Yu WM, Li HY, Rao T, Ruan Y. Long Non-coding RNA MEG3 Promotes Pyroptosis in Testicular Ischemia-Reperfusion Injury by Targeting MiR-29a to Modulate PTEN Expression. Front Cell Dev Biol 2021; 9:671613. [PMID: 34222244 PMCID: PMC8249820 DOI: 10.3389/fcell.2021.671613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence shows that the abnormal long non-coding RNAs (lncRNAs) expression is closely related to ischemia-reperfusion injury (I/R) progression. Studies have previously described that lncRNA MEG3 regulates pyroptosis in various organs I/R. Nevertheless, the related mechanisms of MEG3 in testicular I/R has not been clarified. The aim of this research is to unravel underlying mechanisms of the regulation of pyroptosis mediated by MEG3 during testicular I/R. We have established a testicular torsion/detorsion (T/D) model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated spermatogenic cell model. Testicular ischemic injury was assessed by H&E staining. Western blotting, quantitative real-time PCR, MDA, and SOD tests and immunohistochemistry measured the expression of MEG3 and related proteins and the level of ROS production in testicular tissues. Quantitative real-time PCR and western blotting determined the relative expression of MEG3, miR-29a, and relevant proteins in GC-1. Cell viability and cytotoxicity were measured by CCK-8 and LDH assays. Secretion and expression levels of inflammatory proteins were determined by ELISA, immunofluorescence and western blotting. The interaction among MEG3, miR-29a, and PTEN was validated through a dual luciferase reporter assay and Ago2-RIP. In this research, we identified that MEG3 was upregulated in animal specimens and GC-1. In loss of function or gain of function assays, we verified that MEG3 could promote pyroptosis. Furthermore, we found that MEG3 negatively regulated miR-29a expression at the posttranscriptional level and promoted PTEN expression, and further promoted pyroptosis. Therefore, we explored the interaction among MEG3, miR-29a and PTEN and found that MEG3 directly targeted miR-29a, and miR-29a targeted PTEN. Overexpression of miR-29a effectively eliminated the upregulation of PTEN induced by MEG3, indicating that MEG3 regulates PTEN expression by targeting miR-29a. In summary, our research indicates that MEG3 contributes to pyroptosis by regulating miR-29a and PTEN during testicular I/R, indicating that MEG3 may be a potential therapeutic target in testicular torsion.
Collapse
Affiliation(s)
- Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai-Xiang He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao-Yong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
De Martino M, Esposito F, Pallante P. Long non-coding RNAs regulating multiple proliferative pathways in cancer cell. Transl Cancer Res 2021; 10:3140-3157. [PMID: 35116622 PMCID: PMC8797882 DOI: 10.21037/tcr-21-230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) belong to an extremely heterogeneous class of non-coding RNAs with a length ranging from 200 to 100,000 bp. They modulate a series of cellular pathways in both physiological and pathological context. It is no coincidence that they are expressed in an aberrant way in pathologies such as cancer, so as to deserve to be subclassified as oncogenes or tumor suppressors. These molecules are also involved in the regulation of cancer cell proliferation. Several lncRNAs are able to modulate cell growth both positively and negatively, and in this review we have focused on a small group of them, characterized by the simultaneous action on different pathways regulating cell proliferation. They have been considered in the light of their behavior in three different subtypes of proliferative pathways that we can define as (I) tumor suppressor, (II) oncogenic and (III) transcriptionally-driven. More specifically, we have characterized some lncRNAs considered oncogenes (such as H19, linc-ROR, MALAT1, HULC, HOTAIR and ANRIL), tumor suppressors (such as MEG3 and lincRNA-p21), and both oncogenes/tumor suppressors (UCA1 and TUG1) in a little more detail. As can be understood from the review, the interactions between lncRNAs and their molecular targets, only in the context of controlling cell proliferation, give rise to an intricate molecular network, the understanding of which, in the future, will certainly be of help for the treatment of molecular diseases such as cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
26
|
Lee WJ, Shin CH, Ji H, Jeong SD, Park MS, Won HH, Pandey PR, Tsitsipatis D, Gorospe M, Kim HH. hnRNPK-regulated LINC00263 promotes malignant phenotypes through miR-147a/CAPN2. Cell Death Dis 2021; 12:290. [PMID: 33731671 PMCID: PMC7969774 DOI: 10.1038/s41419-021-03575-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Malignant characteristics of cancers, represented by rapid cell proliferation and high metastatic potential, are a major cause of high cancer-related mortality. As a multifunctional RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK) is closely associated with cancer progression in various types of cancers. In this study, we sought to identify hnRNPK-regulated long intergenic non-coding RNAs (lincRNAs) that play a critical role in the regulation of cancer malignancy. We found that hnRNPK controlled malignant phenotypes including invasiveness, proliferation, and clonogenicity. RNA sequencing and functional studies revealed that LINC00263, a novel target of hnRNPK, is involved in the oncogenic functions of hnRNPK. Knockdown of LINC00263 mitigated the malignant capabilities. Conversely, increased malignant phenotypes were observed in LINC00263-overexpressing cells. Since LINC00263 was mainly localized in the cytosol and highly enriched in Argonaute 2-immunoprecipitation (Ago2-IP), we hypothesized that LINC00263 acts as a competitive endogenous RNA (ceRNA), and thus sought to identify LINC00263-associated microRNAs. Using small RNA sequencing followed by antisense oligonucleotide pull-down, miR-147a was selected for further study. We found that miR-147a negatively regulates LINC00263 via direct interaction, thus suppressing malignant capabilities. Moreover, knockdown of hnRNPK and LINC00263 upregulated miR-147a, indicating that LINC00263 serves as a ceRNA for miR-147a. By analyzing RNA sequencing data and miRNA target prediction, calpain 2 (CAPN2) was identified as a putative target of miR-147a. Ago2-IP and luciferase reporter assay revealed that miR-147a suppressed CAPN2 expression by directly binding to the 3′UTR of CAPN2 mRNA. In addition, we found that the weakened malignant capabilities following knockdown of hnRNPK or LINC00263 were restored by miR-147a inhibition or CAPN2 overexpression. Furthermore, our findings were validated in various other types of cancer cells including lung cancer, colorectal cancer, neuroblastoma, and melanoma. Collectively, we demonstrate that hnRNPK-regulated LINC00263 plays an important role in cancer malignancy by acting as a miR-147a decoy and thus upregulating CAPN2.
Collapse
Affiliation(s)
- Woo Joo Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Seong Dong Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Mi-So Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea. .,Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
27
|
He T, Liu W, Cao L, Liu Y, Zou Z, Zhong Y, Wang H, Mo Y, Peng S, Shuai C. CircRNAs and LncRNAs in Osteoporosis. Differentiation 2020; 116:16-25. [PMID: 33157509 DOI: 10.1016/j.diff.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a systemic bone disease with bone fragility and increased fracture risk. The non-coding RNAs (ncRNAs) have appeared as important regulators of cellular signaling and pertinent human diseases. Studies have demonstrated that circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) are involved in the progression of osteoporosis through a variety of pathways, and are considered as targets for the prophylaxis and treatment of osteoporosis. Based on an in-depth understanding of their roles and mechanisms in osteoporosis, we summarize the functions and molecular mechanisms of circRNAs and lncRNAs involved in the progression of osteoporosis and provide some new insights for the prognosis, diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tiantian He
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Institute of Metabolism and Endocrinology, The Second Xiang-Ya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Zou
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Wang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China.
| |
Collapse
|
28
|
Moradi MT, Fallahi H, Rahimi Z. The clinical significance of circulating DSCAM-AS1 in patients with ER-positive breast cancer and construction of its competitive endogenous RNA network. Mol Biol Rep 2020; 47:7685-7697. [DOI: 10.1007/s11033-020-05841-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
29
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
30
|
Liang J, Wang Q, Li JQ, Guo T, Yu D. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol 2019; 325:113139. [PMID: 31794744 DOI: 10.1016/j.expneurol.2019.113139] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Inflammasome contributes to ischemic brain injury by inducing pyroptosis and inflammation. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3)-mediated regulation of absent in melanoma 2 (AIM2) inflammasome during cerebral ischemia/reperfusion (I/R). METHODS In vivo middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes model were generated. TTC, H&E staining and TUNEL were performed to assess the cerebral ischemic injury. LDH and MTT assays were used to detect cell viability and cytotoxicity. qRT-PCR was used to detect the expression levels of MEG3, miR-485 and AIM2. Immunohistochemistry (IHC) and immunofluorescence were conducted to detect the AIM2 expression. ELISA and Western blotting were performed to determine the secretion and protein levels of inflammasome signaling proteins. Dual luciferase reporter assay and Ago2-RIP were used to validate the direct interaction among MEG3, miR-485 and AIM2. RESULTS In both MCAO rats and OGD/R-treated neurocytes, MEG3 and AIM2 were significantly up-regulated, whereas miR-485 was down-regulated. MCAO induces pyroptosis and release of IL-1β and IL-18 in ischemia brain. MEG3 acted as a molecular sponge to suppress miR-485, and AIM2 was identified as a direct target of miR-485. Knockdown of MEG3 inhibited OGD/R-induced pyroptosis and inflammation, and lack of MEG3 inhibited caspase1 signaling and decreased the expression of AIM2, ASC, cleaved-caspase1 and GSDMD-N. While overexpression of MEG3 exerted opposite effects. CONCLUSION MEG3/miR-485/AIM2 axis contributes to pyroptosis via activating caspase1 signaling during cerebral I/R, suggesting that this axis may be a potent therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Ji Liang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Qiang Wang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Jun-Qi Li
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Tie Guo
- Department of ICU, The First Affiliated Hospital of Zhengzhou University, PR China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China.
| |
Collapse
|
31
|
Wang D, Fu CW, Fan DQ. Participation of tumor suppressors long non-coding RNA MEG3, microRNA-377 and PTEN in glioma cell invasion and migration. Pathol Res Pract 2019; 215:152558. [PMID: 31378455 DOI: 10.1016/j.prp.2019.152558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Glioma is a common and fatal intracranial tumor. Both miR-377 and lncRNA MEG3 are tumor suppressors. This study was performed to investigate the association between miR-377 and lncRNA MEG3 in glioma cells. METHODS U118 and U251 cell lines were incubated in Dulbecco's modified Eagle's medium supplemented with miR-377 mimics, MEG3 siRNA (si-MEG3) and/or MEG3 overexpression plasmids (pc-MEG3) for 48 h. Cell migration, invasion, apoptosis, cell cycle distribution and the expression of E26 tansformation-specific-1 (ETS-1), phosphatase and tensin homologue (PTEN), E-cadherin, N-cadherin and β-catenin were detected. RESULTS MiR-377 mimics increased MEG3 expression and decreased the number of migrated and invaded U118 and U251 cells, without influence on apoptosis in both cell lines. Si-MEG3 transfection increased U118 cell migration and invasion and rescued miR-377 mimics-induced inhibitory in cell migration and invasion. Si-MEG3 decreased U118 cell apoptosis and induced G0/G1 cell cycle arrest, and pc-MEG3 increased U251 cell apoptosis via arresting cell cycle at G2/M phage. MiR-377 mimics and si-MEG3 increased the relative expression level of N-cadherin mRNA, and both si-MEG3 and pc-MEG3 increased E-cadherin in glioma cells. MiR-377 mimics increased ETS-1 mRNA in U118 cells, but decreased it in U251 cells. PTEN was increased by miR-377 mimics and si-MEG3 and decreased by pc-MEG3 in glioma cells. CONCLUSIONS These results suggested the link interaction of MEG3 with miR-377 and PTEN, but not functioning as the competing endogenous RNA. MiR-377 mimics and MEG3 were tumor suppressors in glioma cells through regulating PTEN expression.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, China; Department of Central Laboraotory, Fuling Central Hospital of Chongqing City, Chongqing, 408099, China; Second Clinical College, Chongqing Medical University, Chongqing, 400010, China.
| | - Cheng-Wei Fu
- Department of Radiology, Fuling Central Hospital of Chongqing City, Chongqing, 408099, China
| | - De-Qing Fan
- Department of Hepatobiliary Surgery, Fuling Central Hospital of Chongqing City, Chongqing, 408099, China
| |
Collapse
|
32
|
Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 2019; 118:109129. [PMID: 31326791 DOI: 10.1016/j.biopha.2019.109129] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) located on chromosome 14q32.3. Direct sequencing experiments have shown monoallelic expression of this lncRNA. Several studies have shown down-regulation of this lncRNA in human cancers. In some cases, hypermethylation of the promoter region has been suggested as the underlying mechanism. Functional studies have shown that this lncRNA controls expression of several tumor suppressor genes and oncogenes among them are p53, RB, MYC and TGF-β. Through regulation of Wnt-β-catenin pathway, it also affects epithelial-mesenchymal transition. In vitro studies have demonstrated contribution of MEG3 in defining response to chemotherapeutic agents such as paclitaxel, cisplatin and oxaliplatin. Certain polymorphisms within MEG3 are implicated in cancer risk (rs7158663, rs4081134 and rs11160608) or therapeutic response of cancer patients (rs10132552). Taken together, this lncRNA is regarded as a putative cancer biomarker and treatment target. In the current review, several aspects of the participation of MEG3 in carcinogenesis are discussed.
Collapse
|
33
|
Maternally expressed gene 3 in metabolic programming. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194396. [PMID: 31271897 DOI: 10.1016/j.bbagrm.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Maternally Expressed Gene 3 (MEG3) is a long noncoding RNA (lncRNA) that coordinates a diverse array of cellular processes requiring epigenetic regulation of genes and interactions with key signaling proteins and by acting as a competitive endogenous (ce)RNA. Epigenetic modifications driven by in utero nutrition affect MEG3 expression and its role in the development of multiple metabolic disorders. This review examines how epigenetic modification of MEG3 expression can confer adaptedness to different metabolic environments. To this end, we discuss how nutritional status that leads to an increase of MEG3 expression can protect against cancer and metabolic dysfunctions, while interventions that promote MEG3 downregulation minimize the pleiotropic costs associated with its expression. Lastly, we identify research directions that would further shed light on the role of MEG3 in metabolic regulation and in functional imprinted gene networks. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
|