1
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
2
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Shi J, Wang Y, Liang T, Wang X, Xie J, Huang R, Xu X, Wei X. DMDD, isolated from Averrhoa carambola L., ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-autophagy crosstalk. Chin Med 2024; 19:125. [PMID: 39267098 PMCID: PMC11391757 DOI: 10.1186/s13020-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Studies have shown that Averrhoa carambola L. possesses therapeutic potential for diabetes and related complications. However, the specific beneficial effects and molecular mechanisms of 2-dodecyl-6-meth-oxycyclohexa-2,5-diene-1,4-dione (DMDD) isolated from Averrhoa carambola L. on diabetic nephropathy (DN) require further investigation. METHODS 80 C57BL/6 J male mice were subjected to a 1-week adaptive feeding, followed by a high-fat diet and intraperitoneal injection of 100 mg/kg streptozotocin (STZ) to construct an in vivo DN model. Additionally, human renal proximal tubular epithelial cells (HK-2) induced by high glucose (HG) were used as an in vitro DN model. The expression levels of epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS), and autophagy-related proteins in renal tubular cells were detected by Western Blot, flow cytometry, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) staining. Transcriptome analysis revealed was conducted to elucidate the specific mechanism of by which DMDD mitigates DN by inhibiting ERS and autophagy. HK-2 cells were transfected with IRE1α overexpression lentivirus to reveal the role of IRE1α overexpression in HG-induced HK-2. RESULTS The experimental data showed that DMDD significantly reduced blood glucose levels and improved renal pathological alterations in DN mice. Additionally, DMDD inhibited the calcium (Ca2+) pathway, manifested by decreased autophagosome formation and downregulation of LC3II/I, Beclin-1, and ATG5 expression. Moreover, in HG-induced HK-2 cells, DMDD suppressed the overexpression of GRP78, CHOP, LC3II/I, Beclin1, and ATG5. Notably, IRE1α overexpression significantly increased autophagy incidence; however, DMDD treatment subsequently reduced the expression of LC3II/I, Beclin1, and ATG5. CONCLUSION DMDD effectively inhibits excessive ERS and autophagy, thereby reducing renal cell apoptosis through the IRE1α pathway and Ca 2+ pathway.
Collapse
Affiliation(s)
- Jianmei Shi
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China
| | - Yuxiang Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Liang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University), Nanning, 530021, Guangxi, China
| | - Xixi Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China
| | - Jingxiao Xie
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaohui Xu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| | - Xiaojie Wei
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Sun Y, Tao Q, Cao Y, Yang T, Zhang L, Luo Y, Wang L. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytother Res 2023. [PMID: 36726236 DOI: 10.1002/ptr.7740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
COVID-19 has infected 272 million patients and caused 5.33 million deaths around the world, and it remains the main global threat. Previous studies revealed that Chinese traditional medicine is an effective treatment for COVID-19 infection. This study aims to reveal the pharmacological effects of kaempferol, which is the active component of Radix Bupleuri and Tripterygii Radix, and potential mechanisms for the treatment of COVID-19. Here, we employed the bioinformatics methods to filter the anti-COVID-19 candidate genes of kaempferol, which mainly enriched in inflammation (TNF, JUN, etc.) and virus infection (AKT1, JNK, etc.). The Transcription levels of AKT1, JNK and JUN were significantly reduced by kaempferol treatment in the LPS-activated macrophages. In addition, kaempferol reduced the secretion of inflammatory factors by LPS-stimulated macrophages, inhibited MAPK/NF-κB signaling and regulated macrophage polarization to M2 type in vitro, and suppressed endotoxin-induced cytokine storm and improved survival in mice. Molecular docking analysis demonstrated that kaempferol was probable to bind the COVID-19 protein 5R84 and formatted hydrogen bond with the residues, the free binding energy of which was lower than the original ligand. In summary, our current work indicates that kaempferol has anti-COVID-19 potential through the reduction of COVID-19-induced body dysfunction and molecule-protein interaction, and bioinformatics results clarify that some of these key target genes might serve as potential molecular markers for detecting COVID-19.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yang Cao
- College of Arts & Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Tingting Yang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yifeng Luo
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Province hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Abstract
Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.
Collapse
|
7
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
8
|
Xia D, Chen D, Cai T, Zhu L, Lin Y, Yu S, Zhu K, Wang X, Xu L, Chen Y. Nimbolide attenuated the inflammation in the liver of autoimmune hepatitis's mice through regulation of HDAC3. Toxicol Appl Pharmacol 2021; 434:115795. [PMID: 34780724 DOI: 10.1016/j.taap.2021.115795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
A chronic liver disease named autoimmune hepatitis (AIH) will carry elevated levels of inflammatory cytokines, but there is currently no effective treatment to cure it. Histone deacetylase 3 (HDAC3) takes an important position in regulating the expression of inflammatory genes. Nimbolide (NIB) is a limonoid extracted from the neem tree (Azadirachta indica) that has been found to be effective against many diseases, including cancer, scleroderma, and acute respiratory distress syndrome. Here, we investigated the protective effect of nimbolide on AIH liver. Mice and AML12 cells were employed to establish AIH model with liver antigen S100 and cell injury model of LPS, and then treated with different concentrations of nimbolide. After the successful establishment of the animal model and cell model, inflammatory cytokines of IL-1β, IL-6 and TNF-α as well as cellular signaling related to inflammation such as STAT3, IκB-α and NF-κB were examined. We observed for the first time about nimbolide can effectively inhibit inflammation in AIH mice's liver and AML12 cells by inhibiting HDAC3 expression. HDAC3 knocked down by siRNA in cells can also effectively alleviate the inflammation in AML12 cells, further confirming that HDAC3 plays an important role in the inflammation of liver cells. These results suggest nimbolide could be a potential new treatment for autoimmune hepatitis, and HDAC3 may become a new target for autoimmune hepatitis.
Collapse
Affiliation(s)
- Dingchao Xia
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Dazhi Chen
- Department of Gastroenterology, The First Hospital of Peking University, BeiJing 100032, China
| | - Tingchen Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Lujian Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Yanhan Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Sijie Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Kailu Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Xiaodong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
9
|
Lei L, Zhao J, Liu XQ, Chen J, Qi XM, Xia LL, Wu YG. Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3131-3150. [PMID: 34295152 PMCID: PMC8291679 DOI: 10.2147/dddt.s310882] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Introduction Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. Materials and Methods STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2μM, 4μM, 8μM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. Results The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. Conclusion Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Jing Zhao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xue-Qi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Juan Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xiang-Ming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Ling-Ling Xia
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yong-Gui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
10
|
Lei W, Liu D, Sun M, Lu C, Yang W, Wang C, Cheng Y, Zhang M, Shen M, Yang Z, Chen Y, Deng C, Yang Y. Targeting STAT3: A crucial modulator of sepsis. J Cell Physiol 2021; 236:7814-7831. [PMID: 33885157 DOI: 10.1002/jcp.30394] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cellular signal transcription factor that has recently attracted a great deal of attention. It can trigger a variety of genes transcription in response to cytokines and growth factors stimulation, which plays an important role in many cellular biological processes involved in anti/proinflammatory responses. Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. As a converging point of multiple inflammatory responses pathways, accumulating studies have presented the elaborate network of STAT3 in sepsis pathophysiology; these results generally indicate a promising therapeutic application for targeting STAT3 in the treatment of sepsis. In the present review, we evaluated the published literature describing the use of STAT3 in the treatment of experimental and clinical sepsis. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Dianxiao Liu
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Department of Cardiology, School of Life Sciences and Medicine, Xi'an No.3 Hospital, Northwest University, Xi'an, China
| | - Ye Cheng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yin Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Wang Y. Tripterine ameliorates monosodium urate crystal-induced gouty arthritis by altering macrophage polarization via the miR-449a/NLRP3 axis. Inflamm Res 2021; 70:323-341. [PMID: 33559709 DOI: 10.1007/s00011-021-01439-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Tripterine (Trip) is frequently applied to alleviate inflammation in various diseases such as rheumatoid arthritis. Macrophages have both anti-inflammatory and pro-inflammatory functions. However, whether Trip can inhibit cell inflammation in gouty arthritis (GA) remains undiscovered and whether the mechanism involved in macrophage polarization is also undetermined. This paper aims to study the effects of Trip on inflammation and macrophage polarization in GA. METHODS Monosodium urate (MSU) crystals were used to establish GA mouse models, and bone marrow-derived macrophages (BMDMs) were induced to construct GA cell models. Pretreatments of Trip and injection of Antagomir-449a/Agomir-449a were performed on mice for 6 days. The effects of Trip and miR-449 on toe swelling, joint damage of GA mouse were examined. The alternations on cell morphology, cell proliferation marker Ki67, inflammatory cytokines, NLRP3 inflammasome, and NF-κB signaling-related proteins were also determined both in vivo and in vitro. Dual-luciferase reporter gene assay and RIP assay were adopted to estimate the targeting relationship between miR-449a and NLRP3. RESULTS GA mouse model had increased M1 macrophage, intensified inflammation response, along with suppressed miR-449a expression. Following administration of Trip attenuated cell inflammation, promoted macrophage polarize to M2 phenotype, elevated miR-449a expression, repressed the phosphorylation levels of NF-κB signaling-related proteins, and diminished IκBα expression in vivo and in vitro. However, inhibition of miR-449a hindered the favorable effect of Trip on GA and increased NLRP3 inflammasome expression. MiR-449a directly targeted NLRP3. Overexpression of NLRP3 partially eliminated the biological effects of miR-449a agonist. CONCLUSION Trip regulates macrophage polarization through miR-449a/NLRP3 axis and the STAT3/NF-κB pathway to mitigate GA. The elucidation on the molecular mechanism of Trip in GA may provide theoretical guidance for clinical therapy of GA.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatism Immunology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
13
|
A Network Pharmacology-Based Approach for Exploring Key Active Compounds and Pharmacological Mechanisms of Tangshen Formula for Treatment of Diabetic Nephropathy. J Diabetes Res 2021. [DOI: 10.1155/2021/8833688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the common and severe microvascular complications of diabetes mellitus (DM). The occurrence and development of DN are related to multiple factors in the human body, which makes DN a complex disease, and the pathogeneses of DN have not yet been fully illustrated. Furthermore, DN lacks effective drugs for treatment nowadays. Chinese herbal medicine (CHM) often shows the feature of multicomponents, multitargets, multipathways, and synergistic effects and shows a promising source of new therapeutic drugs for DN. As a CHM, Tangshen Formula (TSF) was used to treat DN patients in China. However, its bioactive compounds and holistic pharmacological mechanisms on DN are both unclear. A network pharmacology approach was firstly applied to explore multiple active compounds and multiple key pharmacological mechanisms for TSF treating DN by drug-targeted interaction databases, herb-compound-target network, protein-protein interaction network, compound-target-pathway network, and analysis methods. And the results showed that TSF have the characteristic of multicomponents, multitargets, multipathways, and synergistic effects for treating DN. The quercetin, naringenin, kaempferol, and isorhamnetin as key active compounds and the PI3K-Akt signaling pathway, TNF signaling pathway, nonalcoholic fatty liver disease (NAFLD), focal adhesion, rap1 signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, and insulin resistance as the key molecular mechanisms play important roles in TSF treating DN. Moreover, quercetin, naringenin, kaempferol, and isorhamnetin were successfully detected in TSF by the UHPLC-MS/MS analysis method. And their concentrations were 0.224, 8.295, 0.0564, and 0.0879 mg·kg-1, respectively. The present findings not only provide new insights for a deeper understanding of the constituent basis and pharmacology of TSF but also provide guidance for further pharmacological studies on TSF.
Collapse
|
14
|
Nie Y, Fu C, Zhang H, Zhang M, Xie H, Tong X, Li Y, Hou Z, Fan X, Yan M. Celastrol slows the progression of early diabetic nephropathy in rats via the PI3K/AKT pathway. BMC Complement Med Ther 2020; 20:321. [PMID: 33097050 PMCID: PMC7583204 DOI: 10.1186/s12906-020-03050-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy serves as one of the most regular microvascular complications of diabetes mellitus and is the main factor that causes end-stage renal disease and incident mortality. As the beneficial effect and minute adverse influence of Celastrol on the renal system requires further elucidation, the renoprotective function of Celastrol in early diabetic nephropathy was investigated. Methods In high-fat and high-glucose diet/streptozotocin-induced diabetic rats which is the early diabetic nephropathy model, ALT, AST, 24 h urinary protein, blood urea nitrogen, and serum creatinine content were observed. Periodic acid-Schiff staining, enzyme-linked immunosorbent assay, immunohistochemical analysis, reverse transcription-polymerase chain reaction, and western blot analysis were used to explore the renoprotective effect of Celastrol to diabetic nephropathy rats and the underlying mechanism. Results High dose of Celastrol (1.5 mg/kg/d) not only improved the kidney function of diabetic nephropathy (DN) rats, and decreased the blood glucose and 24 h urinary albumin, but also increased the expression of LC3II and nephrin, and downregulated the expression of PI3K, p-AKT, and the mRNA level of NF-κB and mTOR. Conclusion Celastrol functions as a potential therapeutic substance, acting via the PI3K/AKT pathway to attenuate renal injury, inhibit glomerular basement membrane thickening, and achieve podocyte homeostasis in diabetic nephropathy.
Collapse
Affiliation(s)
- Yusong Nie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.,Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxiao Fu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Huimin Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.,First clinical medical college, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Hui Xie
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaopei Tong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yao Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenyan Hou
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xinrong Fan
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China. .,First clinical medical college, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China. .,Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Li J, Xie F, Zhu X, Hu H, Fang X, Huang Z, Liu Z, Wu S. Polysaccharides from the Fleshy Fruits of Camellia oleifera Attenuate the Kidney Injury in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. J Med Food 2020; 23:1275-1286. [PMID: 33090944 DOI: 10.1089/jmf.2020.4717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The fleshy fruits of Camellia oleifera Abel are the immature fruits of C. oleifera, which are infected by Exobasidium vexans Massee and then turn to be intumescent and hollowed. They contain rich trace elements and vitamin C and are eaten directly as wild fruits in the Chinese countryside. Recent studies report that C. oleifera has anti-inflammatory and antioxidative effects. The current study, for the first time, evaluates the renal protective capacity of polysaccharides from the fleshy fruits of C. oleifera (CFFP) in streptozotocin-induced diabetic mice fed high-fat diets. The diabetic mice were orally administered CFFP for 3 months to evaluate the renoprotective function of CFFP. Our results indicated that 250 mg/kg CFFP significantly alleviated diabetes-induced renal injury by decreasing serum creatine, blood urea nitrogen levels, the kidney/body weight ratio, expression of fibronectin and collagen, as well as the secretion of tumor necrosis factor-α and interleukin-6. Additionally, 250 mg/kg CFFP could significantly ameliorate renal oxidative stress through increasing glutathione levels and lowering malondialdehyde contents. We confirmed that CFFP could exert antioxidative, anti-inflammatory, and antifibrosis activities. CFFP might be a potential therapeutic agent, and the fleshy fruits of C. oleifera might be a diet therapy for diabetic patients in the future.
Collapse
Affiliation(s)
- Jialin Li
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Fuhua Xie
- School of Basic Medicine, and Gannan Medical University, Ganzhou, China
| | - Xiuzhi Zhu
- School of Basic Medicine, and Gannan Medical University, Ganzhou, China
| | - Haibo Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Zhiwei Huang
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Zhiping Liu
- School of Basic Medicine, and Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- School of Basic Medicine, and Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chem 2020; 338:128115. [PMID: 33092006 DOI: 10.1016/j.foodchem.2020.128115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/19/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023]
Abstract
Citrus flavonoids consist of diverse analogs and possess various health-promoting effects dramatically depending on their chemical structures. Since different flavonoids usually co-exist in real samples, it's necessary to develop rapid and efficient methods for simultaneous determination of multiple flavonoids. Thin layer chromatography combined with surface enhanced Raman spectroscopy (TLC-SERS) was established to simultaneously separate and detect 14 citrus flavonoids for the first time. These target compounds could be characterized and discriminated when paired with SERS at 6-500 times greater the sensitivity than TLC alone. TLC-SERS exhibited high recovery rates (91.5-121.7%) with relative standard deviation lower than 20.8%. Moreover, the established TLC-SERS method was successfully used to simultaneously detect multiple flavonoids in real samples, which exhibited comparable accuracy to high performance liquid chromatography with shorter analytical time (10 vs 45 min). All the results demonstrated that this could be a promising method for simultaneous, rapid, sensitive and accurate detection of flavonoids.
Collapse
|
17
|
Wang G, Wu B, Zhang B, Wang K, Wang H. LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis. Biochem Biophys Res Commun 2020; 532:308-314. [PMID: 32868076 DOI: 10.1016/j.bbrc.2020.08.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND This study aimed to investigate the involvement of lncRNA CTBP1-AS2 in the progression of diabetic nephropathy (DN) by affecting high glucose (HG)-induced human glomerular mesangial cells (HGMCs). METHODS HGMCs were selected for the establishment of cell injury induced by HG. The expression of CTBP1-AS2, miR-155-5p and FOXO1 was detected by real-time PCR and western blotting. The target association between miR-155-5p and CTBP1-AS2 or FOXO1 was confirmed by dual-luciferase reporter assays. Cell proliferation and oxidative stress were revealed by CCK-8 colorimetry, and the measurement of reactive oxygen species (ROS) and the activities of antioxidant enzymes. Extracellular matrix (ECM) protein accumulation and the production of inflammatory cytokines were investigated by western blotting and ELISA. RESULTS The expression of CTBP1-AS2 was downregulated, and miR-155-5p was highly expressed in peripheral blood of DN patients and HG-treated HGMCs. Further investigation revealed that CTBP1-AS2 overexpression inhibited proliferation, oxidative stress, ECM accumulation and inflammatory response in HG-induced HGMCs. Mechanical analysis revealed that CTBP1-AS2 regulated FOXO1 expression via sponging miR-155-5p. Rescue experiments demonstrated that miR-155-5p overexpression or FOXO1 inhibition reversed the effects of CTBP1-AS2 in HG-stimulated HGMCs. CONCLUSION Taken together, this study revealed CTBP1-AS2 attenuated HG-induced HGMC proliferation, oxidative stress, ECM accumulation, and inflammation through miR-155-5p/FOXO1 signaling.
Collapse
Affiliation(s)
- Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130020, China
| | - Kun Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of JiLin University, 126Xiantai Street, Changchun, Jilin Province, 130021, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
19
|
Li Y, Li Y, Zheng S. Inhibition of NADPH Oxidase 5 (NOX5) Suppresses High Glucose-Induced Oxidative Stress, Inflammation and Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells. Med Sci Monit 2020; 26:e919399. [PMID: 32012145 PMCID: PMC7020764 DOI: 10.12659/msm.919399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs). Material/Methods Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-κB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting. Results The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-α, IL-6, IL-1β, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-β1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-κB p65 expression were downregulated notably in NOX5 silencing group. Conclusions Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Endocrinology, Second Clinical Medical College, Inner Mongolia University for Nationalities (Inner Mongolia Forestry General Hospital), Tongliao, Inner Mongolia, China (mainland)
| | - Yarong Li
- Department of Endocrinology, The Centre Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Shouhao Zheng
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Jie R, Zhu P, Zhong J, Zhang Y, Wu H. LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy. Diabetol Metab Syndr 2020; 12:77. [PMID: 32905431 PMCID: PMC7469295 DOI: 10.1186/s13098-020-00585-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). Our study aims to research the function of lncRNA KCNQ1OT1 in DN cells and the molecular mechanism. METHODS Human glomerular mesangial cells (HGMCs) and human renal glomerular endothelial cells (HRGECs) were cultured in high glucose (30 mM) condition as models of DN cells. KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and miR-18b-5p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mRNA and protein levels of Sorbin and SH3 domain-containing protein 2 (SORBS2), Type IV collagen (Col-4), fibronectin (FN), transcriptional regulatory factor-beta 1 (TGF-β1), Twist, NF-κB and STAT3 were measured by qRT-PCR and western blot. Cell viability was detected by cell counting kit-8 (CCK-8) assay for selecting the proper concentration of glucose treatment. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assay were employed to determine cell proliferation and apoptosis, respectively. The targets of KCNQ1OT1 was predicted by online software and confirmed by dual-luciferase reporter assay. RESULTS KCNQ1OT1 and SORBS2 were elevated in DN. Both knockdown of KCNQ1OT1 and silencing of SORBS2 restrained proliferation and fibrosis and induced apoptosis in DN cells. Besides, Overexpression of SORBS2 restored the KCNQ1OT1 knockdown-mediate effects on proliferation, apoptosis and fibrosis in DN cells. In addition, miR-18b-5p served as a target of KCNQ1OT1 as well as targeted SORBS2. KCNQ1OT1 knockdown repressed NF-ĸB pathway. CONCLUSION KCNQ1OT1 regulated DN cells proliferation, apoptosis and fibrosis via KCNQ1OT1/miR-18b-5p/SORBS2 axis and NF-ĸB pathway.
Collapse
Affiliation(s)
- Ran Jie
- Department of Endocrinology, First People’s Hospital of Jingzhou, Shashi District, No. 8 Hangkong Road, Jingzhou, 434000 Hubei China
| | - Pengpeng Zhu
- Department of Anesthesiology, First People’s Hospital of Jingzhou, Jingzhou, 434000 Hubei China
| | - Jiao Zhong
- Health Management Center, First People’s Hospital of Jingzhou, Jingzhou, 434000 Hubei China
| | - Yan Zhang
- Department of Gastroenterology, First People’s Hospital of Jingzhou, Jingzhou, 434000 Hubei China
| | - Hongyan Wu
- Department of Endocrinology, First People’s Hospital of Jingzhou, Shashi District, No. 8 Hangkong Road, Jingzhou, 434000 Hubei China
| |
Collapse
|
21
|
Qin L, Zhang R, Yang S, Chen F, Shi J. Knockdown of ANGPTL-4 inhibits inflammatory response and extracellular matrix accumulation in glomerular mesangial cells cultured under high glucose condition. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3368-3373. [PMID: 31387395 DOI: 10.1080/21691401.2019.1649274] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy (DN) is one of the major diabetic complications that lead to end-stage renal failure. Angiopoietin-like protein-4 (ANGPTL-4) has been reported to be dysregulated in diabetes mellitus and diabetic complications. However, the role of ANGPTL-4 in glomerular mesangial cells (MCs) during DN remains unclear. In the present study, we evaluated the role of ANGPTL-4 in MCs in response to high glucose (HG) condition and the potential mechanism. The results proved that ANGPTL-4 expression is significantly increased in HG-stimulated MCs. Knockdown of ANGPTL-4 suppressed HG-induced cell proliferation of MCs. The production of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6 were decreased in ANGPTL-4 knocked down MCs. Inhibition of ANGPTL-4 markedly suppressed the expressions of extracellular matrix (ECM) proteins, collagen IV (Col IV) and fibronectin (FN), in HG-stimulated MCs. Furthermore, ANGPTL-4 knockdown inhibited the HG-induced activation of NF-κB signaling pathway in MCs. Collectively, knockdown of ANGPTL-4 suppressed HG-induced cell proliferation, inflammatory response, and ECM accumulation inhibiting NF-κB signaling pathway in MCs. These findings suggested that ANGPTL-4 might be a therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linfang Qin
- a Department of Nephrology, Huaihe Hospital of Henan University , Kaifeng , P.R. China
| | - Ruimin Zhang
- a Department of Nephrology, Huaihe Hospital of Henan University , Kaifeng , P.R. China
| | - Suxia Yang
- a Department of Nephrology, Huaihe Hospital of Henan University , Kaifeng , P.R. China
| | - Fang Chen
- a Department of Nephrology, Huaihe Hospital of Henan University , Kaifeng , P.R. China
| | - Jun Shi
- a Department of Nephrology, Huaihe Hospital of Henan University , Kaifeng , P.R. China
| |
Collapse
|
22
|
Bai L, Li J, Li H, Song J, Zhou Y, Lu R, Liu B, Pang Y, Zhang P, Chen J, Liu X, Wu J, Liang C, Zhou J. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem Pharmacol 2019; 169:113619. [DOI: 10.1016/j.bcp.2019.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
|
23
|
Yang H, Xie T, Li D, Du X, Wang T, Li C, Song X, Xu L, Yi F, Liang X, Gao L, Yang X, Ma C. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol Metab 2019; 23:24-36. [PMID: 30862474 PMCID: PMC6479760 DOI: 10.1016/j.molmet.2019.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Macrophage-mediated inflammation plays a significant role in the development and progression of diabetic nephropathy (DN). However, the underlying mechanisms remain unclear. Studies suggest that T cell immunoglobulin domain and mucin domain-3 (Tim-3) has complicated roles in regulating macrophage activation, but its roles in the progression of DN are still completely unknown. Methods We downregulated Tim-3 expression in kidney (intrarenal injection of Tim-3 shRNA expressing lentivirus or global Tim-3 knockout mice) and induced DN by streptozotocin (STZ). We analyzed the degree of renal injury, especially the podocyte injury induced by activated macrophages in vitro and in vivo. Then, we transferred different bone marrow derived macrophages (BMs) into STZ-induced Tim-3 knockdown mice to examine the effects of Tim-3 on macrophages in DN. Results First, we found that Tim-3 expression on renal macrophages was increased in patients with DN and in two diabetic mouse models, i.e. STZ-induced diabetic mice and db/db mice, and positively correlated with renal dysfunction of DN patients. Tim-3 deficiency ameliorated renal damage in STZ-induced diabetes with concurrent increase in protein levels of Nephrin and WT-1. Similar effects were observed in mice with Tim-3 knockdown diabetic mice. Second, adoptive transfer of Tim-3-expressing macrophages, but not Tim-3 knockout macrophages, accelerated diabetic renal injury in DN mice, suggesting a key role for Tim-3 on macrophages in the development of DN. Furthermore, we found NF-κB activation and TNF-α excretion were upregulated by Tim-3 in diabetic kidneys, and podocyte injury was associated with the Tim-3-mediated activation of the NF-κB/TNF-α signaling pathway in DN macrophages both in vivo and in vitro. Conclusions These results suggest that Tim-3 functions as a key regulator in renal inflammatory processes and serves as a potential therapeutic target for renal injury in DN. Tim-3 aggravates the progression of diabetic nephropathy (DN) by triggering the NF-κB/TNF-α pathway in renal macrophages. Tim-3 highly expresses on renal macrophages has positive correlation with bad renal function of DN patients. Tim-3 expressed on macrophages accelerates podocyte injury in vitro and in vivo. Tim-3 functions as a key regulator in renal inflammatory processes and serves as a potential therapeutic target in DN.
Collapse
Affiliation(s)
- Huimin Yang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China; Department of Nephropathy, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Tingting Xie
- Department of Nephropathy, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dengren Li
- Department of Nephropathy, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xianhong Du
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Leiqi Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China
| | - Xiangdong Yang
- Department of Nephropathy, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, PR China.
| |
Collapse
|