1
|
Wang X, Ye L, Zhang K, Gao L, Xiao J, Zhang Y. Small Extracellular Vesicles Released from miR-211-5p-Overexpressed Bone Marrow Mesenchymal Stem Cells Ameliorate Spinal Cord Injuries in Rats. eNeuro 2024; 11:ENEURO.0361-23.2023. [PMID: 38351058 PMCID: PMC10866331 DOI: 10.1523/eneuro.0361-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Spinal cord injury (SCI) has become one of the common and serious diseases affecting patients' motor functions. The small extracellular vesicles secreted by bone marrow mesenchymal stem cells (BMSCs) have shown a promising prospect for the treatment of neurological diseases. BMSCs were collected from rat bones. Osteogenic and adipogenic differentiation of BMSCs was further determined. Small extracellular vesicles were obtained by high-speed centrifugation. Dual-luciferase reporter assay was performed to demonstrate the targeting of miR-211-5p to the cyclooxygenase 2 (COX2) mRNA. qRT-PCR and Western blot assay were used for the detection of the mRNA and protein expression. ELISA was performed to estimate the levels of proinflammatory factors in spinal cord tissues. Our results showed that miR-211-5p targeted COX2 mRNA and regulated the protein expression of COX2 in BMSCs. Extracellular vesicles released from miR-211-5p-overexpressed BMSCs ameliorated SCI-induced motor dysfunction and motor evoked potential impairments. Extracellular vesicles released from miR-211-5p-overexpressed BMSCs ameliorated SCI-induced COX2 expression and related inflammatory responses. In conclusion, small extracellular vesicles released from miR-211-5p-overexpressed BMSCs ameliorate spinal cord injuries in rats.
Collapse
Affiliation(s)
- Xianxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ke Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Lu Gao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jin Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yiquan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
2
|
Iitani Y, Miki R, Imai K, Fuma K, Ushida T, Tano S, Yoshida K, Yokoi A, Kajiyama H, Kotani T. Interleukin-17A stimulation induces alterations in Microglial microRNA expression profiles. Pediatr Res 2024; 95:167-173. [PMID: 37758861 DOI: 10.1038/s41390-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Increased maternal interleukin (IL)-17A and activated microglia are pivotal factors contributing to the pathological phenotypes of maternal immune activation (MIA), developing neurodevelopmental disorders in offspring. This study aimed to determine whether IL-17A affects the microglial microRNA (miRNA) profiles. METHODS The miRNA expression profiles of primary cultured microglia stimulated with recombinant IL-17A were examined comprehensively using miRNA sequencing and validated through qRT-PCR. The expressions of miRNAs target genes identified using bioinformatics, were investigated in microglia transfected with mimic miRNA. The target gene's expression was also examined in the fetal brains of the MIA mouse model induced by maternal lipopolysaccharide (LPS) administration. RESULTS Primary cultured microglia expressed the IL-17A receptor and increased proinflammatory cytokines and nitric oxide synthase 2 upon treatment with IL-17A. Among the three miRNAs with |log2FC | >1, only mmu-miR-206-3p expression was significantly up-regulated by IL-17A. Transfection with the mmu-miR-206-3p mimic resulted in a significant decrease in the expression of Hdac4 and Igf1, target genes of mmu-miR-206-3p. Hdac4 expression also significantly decreased in the LPS-induced MIA model. CONCLUSIONS IL-17A affected microglial miRNA profiles with upregulated mmu-miR-206-3p. These findings suggest that targeting the IL-17A/mmu-miR-206-3p pathway may be a new strategy for predicting MIA-related neurodevelopmental deficits and providing preventive interventions. IMPACT Despite the growing evidence of interleukin (IL)-17A and microglia in the pathology of maternal immune activation (MIA), the downstream of IL-17A in microglia is not fully known. IL-17A altered microRNA profiles and upregulated the mmu-miR-206-3p expression in microglia. The mmu-miR-206-3p reduced autism spectrum disorder (ASD) related gene expressions, Hdac4 and Igf1. The Hdac4 expression was also reduced in the brain of MIA offspring. The hsa-miR-206 sequence is consistent with that of mmu-miR-206-3p. This study may provide clues to pathological mechanisms leading to predictions and interventions for ASD children born to mothers with IL-17A-related disorders.
Collapse
Affiliation(s)
- Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Rika Miki
- Laboratory of Bell Research Center‑Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kazuya Fuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466‑8560, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan.
- Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466‑8560, Japan.
| |
Collapse
|
3
|
Shi J, Liu D, Jin Q, Chen X, Zhang R, Shi T, Zhu S, Zhang Y, Zong X, Wang C, Li L. Whole-Transcriptome Analysis of Repeated Low-Level Sarin-Exposed Rat Hippocampus and Identification of Cerna Networks to Investigate the Mechanism of Sarin-Induced Cognitive Impairment. BIOLOGY 2023; 12:biology12040627. [PMID: 37106826 PMCID: PMC10136365 DOI: 10.3390/biology12040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Sarin is a potent organophosphorus nerve agent that causes cognitive dysfunction, but its underlying molecular mechanisms are poorly understood. In this study, a rat model of repeated low-level sarin exposure was established using the subcutaneous injection of 0.4 × LD50 for 21 consecutive days. Sarin-exposed rats showed persistent learning and memory impairment and reduced hippocampal dendritic spine density. A whole-transcriptome analysis was applied to study the mechanism of sarin-induced cognitive impairment, and a total of 1035 differentially expressed mRNA (DEmRNA), including 44 DEmiRNA, 305 DElncRNA, and 412 DEcircRNA, were found in the hippocampus of sarin-treated rats. According to Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-Protein Interaction (PPI) analysis, these DERNAs were mainly involved in neuronal synaptic plasticity and were related to the pathogenesis of neurodegenerative diseases. The circRNA/lncRNA-miRNA-mRNA ceRNA network was constructed, in which Circ_Fmn1, miR-741-3p, miR-764-3p, miR-871-3p, KIF1A, PTPN11, SYN1, and MT-CO3 formed one circuit, and Circ_Cacna1c, miR-10b-5p, miR-18a-5p, CACNA1C, PRKCD, and RASGRP1 constituted another circuit. The balance between the two circuits was crucial for maintaining synaptic plasticity and may be the regulatory mechanism by which sarin causes cognitive impairment. Our study reveals the ceRNA regulation mechanism of sarin exposure for the first time and provides new insights into the molecular mechanisms of other organophosphorus toxicants.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| |
Collapse
|
4
|
Long-term potentiation and depression regulatory microRNAs were highlighted in Bisphenol A induced learning and memory impairment by microRNA sequencing and bioinformatics analysis. PLoS One 2023; 18:e0279029. [PMID: 36656826 PMCID: PMC9851566 DOI: 10.1371/journal.pone.0279029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCβ4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.
Collapse
|
5
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
6
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
7
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
8
|
Wang LJ, Kuo HC, Lee SY, Huang LH, Lin Y, Lin PH, Li SC. MicroRNAs serve as prediction and treatment-response biomarkers of attention-deficit/hyperactivity disorder and promote the differentiation of neuronal cells by repressing the apoptosis pathway. Transl Psychiatry 2022; 12:67. [PMID: 35184133 PMCID: PMC8858317 DOI: 10.1038/s41398-022-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.
Collapse
Affiliation(s)
- Liang-Jen Wang
- grid.145695.a0000 0004 1798 0922Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- grid.145695.a0000 0004 1798 0922Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Zhu P, Pan J, Cai QQ, Zhang F, Peng M, Fan XL, Ji H, Dong YW, Wu XZ, Wu LH. MicroRNA profile as potential molecular signature for attention deficit hyperactivity disorder in children. Biomarkers 2022; 27:230-239. [PMID: 34989306 DOI: 10.1080/1354750x.2021.2024600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIMS Attention deficit/hyperactivity disorder (ADHD) is a prevalent disorder of neurodevelopment in children. The diagnosis of ADHD mainly relies on the symptoms and some may be misdiagnosed due to age-based variation in behaviours. This study aimed to explore biomarkers that are greatly needed for the accurate diagnosis of ADHD. METHODS 742 samples were retrospectively investigated in 3 independent cohorts, screening, training, and validation, for circulation microRNA measurement using microarray, Taqman polymerase chain reaction and regression analysis. RESULTS A panel of five miRNAs (miR-4516, miR-6090, miR-4763-3p, miR-4281 and miR-4466) were identified as ADHD independent risk factors that provided a high diagnostic accuracy and specificity of ADHD (AUC =0.940 and 0.927 in the training and validation datasets, respectively). This panel of miRNAs differentiated ADHD well from control groups. After clinical improvement by treatment, the panel of miRNAs in patients and AUC changed significantly, and were close to those in healthy controls. Importantly, the targets of the miRNAs identified were commonly enriched in receptor signalling pathways, ion channels and synapse structures. CONCLUSION Our study identified a useful panel of miRNAs that have considerable clinical value in evaluating ADHD and provide important evidence for aberrant epigenetic regulation in ADHD.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Jing Pan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Qian Qian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Fan Zhang
- BengBu Medical College, Benbu, 233000, Anhui, P.R. China
| | - Min Peng
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200126, P.R. China
| | - Xing Li Fan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Hua Ji
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Li Hui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| |
Collapse
|
10
|
Miyata Y, Nishida E. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119081. [PMID: 34147560 DOI: 10.1016/j.bbamcr.2021.119081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The DYRK (Dual-specificity tYrosine-phosphorylation Regulated protein Kinase) family consists of five related protein kinases (DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4). DYRKs show homology to Drosophila Minibrain, and DYRK1A in human chromosome 21 is responsible for various neuronal disorders including human Down syndrome. Here we report identification of cellular proteins that associate with specific members of DYRKs. Cellular proteins with molecular masses of 90, 70, and 50-kDa associated with DYRK1B and DYRK4. These proteins were identified as molecular chaperones Hsp90, Hsp70, and Cdc37, respectively. Microscopic analysis of GFP-DYRKs showed that DYRK1A and DYRK1B were nuclear, while DYRK2, DYRK3, and DYRK4 were mostly cytoplasmic in COS7 cells. Overexpression of DYRK1B induced nuclear re-localization of these chaperones with DYRK1B. Treatment of cells with specific Hsp90 inhibitors, geldanamycin and 17-AAG, abolished the association of Hsp90 and Cdc37 with DYRK1B and DYRK4, but not of Hsp70. Inhibition of Hsp90 chaperone activity affected intracellular dynamics of DYRK1B and DYRK4. DYRK1B and DYRK4 underwent rapid formation of cytoplasmic punctate dots after the geldanamycin treatment, suggesting that the chaperone function of Hsp90 is required for prevention of protein aggregation of the target kinases. Prolonged inhibition of Hsp90 by geldanamycin, 17-AAG, or ganetespib, decreased cellular levels of DYRK1B and DYRK4. Finally, DYRK1B and DYRK4 were ubiquitinated in cells, and ubiquitinated DYRK1B and DYRK4 further increased by Hsp90 inhibition with geldanamycin. Taken together, these results indicate that Hsp90 and Cdc37 discriminate specific members of the DYRK kinase family and play an important role in quality control of these client kinases in cells.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|