1
|
Ruiz-Pacheco JA, Reyes-Martínez JE, Gómez-Navarro B, Castillo-Díaz LA, Portilla de Buen E. Leptospirosis: A dual threat - predisposing risk for renal transplant and trigger for renal transplant dysfunction. Hum Immunol 2024; 85:110835. [PMID: 38972268 DOI: 10.1016/j.humimm.2024.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Leptospirosis (LTPS) is a bacterial infection that affects humans, often with mild or no symptoms. It is estimated that approximately 10 % of patients with LTPS may experience multi-organ dysfunction, including renal abnormalities. In regions where LTPS is widespread, a considerable number of instances involving acute kidney injury (AKI) and chronic kidney disease (CKD) of unknown etiology (CKDu) have been reported. Additionally, studies have shown a correlation between kidney graft dysfunction in patients with stable kidney transplants after LTPS. These findings indicate that exposure to LTPS may increase the likelihood of kidney transplantation due to the onset of both acute and chronic kidney injuries. Simultaneously, it poses a potential risk to the stability of kidney grafts. Unfortunately, there is limited scientific literature addressing this issue, making it difficult to determine the negative impact that LTPS may have, such as its role as a risk factor for the need of kidney transplantation or as a threat to individuals who have undergone kidney transplants. This study aims to shed light on the immune mechanisms triggered during LTPS infection and their importance in both kidney damage and allograft dysfunction.
Collapse
Affiliation(s)
- Juan Alberto Ruiz-Pacheco
- Investigador por México-CONAHCYT, División de Investigación Quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico.
| | | | - Benjamín Gómez-Navarro
- Servicio de Nefrología y trasplantes, Hospital Country 2000, Guadalajara, Jalisco, Mexico
| | - Luis Alberto Castillo-Díaz
- Departamento de Medicina y Ciencias de la Salud, Facultad Interdiciplinaria de Ciencias Biólogicas y de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Eliseo Portilla de Buen
- Laboratorio de Investigación quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico
| |
Collapse
|
2
|
Wang H, Gao L, Zhao C, Fang F, Liu J, Wang Z, Zhong Y, Wang X. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int Urol Nephrol 2024; 56:2623-2633. [PMID: 38498274 DOI: 10.1007/s11255-024-03989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
| |
Collapse
|
3
|
Naeem A, Prakash R, Kumari N, Ali Khan M, Quaiyoom Khan A, Uddin S, Verma S, Ab Robertson A, Boltze J, Shadab Raza S. MCC950 reduces autophagy and improves cognitive function by inhibiting NLRP3-dependent neuroinflammation in a rat model of Alzheimer's disease. Brain Behav Immun 2024; 116:70-84. [PMID: 38040385 DOI: 10.1016/j.bbi.2023.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023] Open
Abstract
Alzheimer's disease (AD) is the seventh most common cause of mortality and one of the major causes of disability and vulnerability in the elderly. AD is characterized by gradual cognitive deterioration, the buildup of misfolded amyloid beta (Aβ) peptide, and the generation of neurofibrillary tangles. Despite enormous scientific progress, there is no effective cure for AD. Thus, exploring new treatment options to stop AD or at least slow down its progress is important. In this study, we investigated the potential therapeutic effects of MCC950 on NLRP3-mediated inflammasome-driven inflammation and autophagy in AD. Rats treated with streptozotocin (STZ) exhibited simultaneous activation of the NLRP3 inflammasome and autophagy, as confirmed by Western blot, immunofluorescence, and co-immunoprecipitation analyses. MCC950, a specific NLRP3 inhibitor, was intraperitoneally administered (50 mg/kg body weight) to rats with AD-like symptoms induced by intracerebroventricular STZ injections (3 mg/kg body weight). MCC950 effectively suppressed STZ-induced cognitive impairment and anxiety by inhibiting NLRP3-dependent neuroinflammation. Moreover, our findings indicate that MCC950 exerts neuroprotective effects by attenuating autophagy in neuronal cells. The inhibiting effects of MCC950 on inflammasome activation and autophagy were reproduced in vitro, provding further mechansistic insights into MCC950 therapeutic action. Our findings suggest that MCC950 impedes the progression of AD and may also improve cognitive function through the mitigation of autophagy and NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Abdul Naeem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, UP 208016, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow 226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow 226003, India.
| |
Collapse
|
4
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
5
|
Xiang Y, Fu Y, Wu W, Tang C, Dong Z. Autophagy in acute kidney injury and maladaptive kidney repair. BURNS & TRAUMA 2023; 11:tkac059. [PMID: 36694860 PMCID: PMC9867874 DOI: 10.1093/burnst/tkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/23/2023]
Abstract
Acute kidney injury (AKI) is a major renal disease characterized by a sudden decrease in kidney function. After AKI, the kidney has the ability to repair, but if the initial injury is severe the repair may be incomplete or maladaptive and result in chronic kidney problems. Autophagy is a highly conserved pathway to deliver intracellular contents to lysosomes for degradation. Autophagy plays an important role in maintaining renal function and is involved in the pathogenesis of renal diseases. Autophagy is activated in various forms of AKI and acts as a defense mechanism against kidney cell injury and death. After AKI, autophagy is maintained at a relatively high level in kidney tubule cells during maladaptive kidney repair but the role of autophagy in maladaptive kidney repair has been controversial. Nonetheless, recent studies have demonstrated that autophagy may contribute to maladaptive kidney repair after AKI by inducing tubular degeneration and promoting a profibrotic phenotype in renal tubule cells. In this review, we analyze the role and regulation of autophagy in kidney injury and repair and discuss the therapeutic strategies by targeting autophagy.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | | |
Collapse
|
6
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
7
|
Zhao G, Gao Y, Zhang J, Zhang H, Xie C, Nan F, Feng S, Ha Z, Li C, Zhu X, Li Z, Zhang P, Zhang Y, Lu H, Jin N. Toll-like receptor 2 signaling pathway activation contributes to a highly efficient inflammatory response in Japanese encephalitis virus-infected mouse microglial cells by proteomics. Front Microbiol 2022; 13:989183. [PMID: 36171749 PMCID: PMC9511957 DOI: 10.3389/fmicb.2022.989183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Thousands of people die each year from Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV), probably due to exacerbation of the inflammatory response that impairs the course of the disease. Microglia are mononuclear phagocytic cells located within the parenchyma of the central nervous system; these play a key role in the innate immune response against JEV infections. However, the involvement of toll-like receptor 2 (TLR2) in the inflammatory response during the early stages of JEV infection in BV2 cells remains. Here, we evaluated protein profiles and determined the role of TLR2 in the inflammatory response of JEV-infected BV2 cells. High-depth tandem mass tags labeling for quantitative proteomics was used to assess JEV infected-BV2 cells and compare immune response profiles at 6, 12, and 24 h post-infection (hpi). In total, 212 upregulated proteins were detected at 6 hpi, 754 at 12 h, and 191 at 24 h. According to GO and KEGG enrichment analysis, the upregulated proteins showed enrichment for proteins related to the immune response. Parallel reaction monitoring tests, western blotting, and qPCR results showed that the adaptor protein MyD88 was not activated. The expression levels of key proteins downstream of MyD88, such as IRAK1, IRAK4, and TRAF6 did not increase; however, the expression levels of PI3K-AKT did increase. By inhibiting key proteins (TLR2, PI3K, and AKT) we confirmed that JEV activated TLR2, thus resulting in a robust inflammatory response. Consequently, the TLR2-PI3K-AKT signaling axis was proven to play a critical in the early stages of the JEV infection-induced inflammatory response in microglia.
Collapse
Affiliation(s)
- Guanyu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaqi Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Changzhan Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Chenghui Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuoxin Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ping Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Ying Zhang,
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
- Huijun Lu,
| | - Ningyi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
- Ningyi Jin,
| |
Collapse
|
8
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
9
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
10
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
11
|
Xiao Q. Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155. Ren Fail 2022; 44:601-614. [PMID: 35361048 PMCID: PMC8979530 DOI: 10.1080/0886022x.2022.2056485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background To prove the internal connection, we deciphered the effect of cinnamaldehyde on kidney senescence through establishing animal and cell models. Methods In vivo, a rat senescence model was constructed using D-galactose (D-gal), and the modeled rats were further treated with cinnamaldehyde. In vitro, rat renal tubular epithelial cells (NRK-52E) were transfected with miR-155 mimic or inhibitor and then treated with cinnamaldehyde, D-gal or PI3K inhibitor (LY294002). The serum levels of blood urea nitrogen (BUN) and serum creatinine (Scr) of the rats were measured by an automatic biochemical analyzer. Pathological changes of kidney were determined by hematoxylin-eosin staining. The senescence and viability of NRK-52E cells were assessed by SA-β-gal staining and CCK-8 assay, respectively. The levels of miR-155, p-PI3K/PI3K, p-Akt/Akt, LC3B (LC3-II and LC3-I) and Beclin1 were detected by qRT-PCR, immunohistochemistry, or western blot. Results D-gal elevated the levels of BUN, Scr and miR-155 in the kidney, induced the renal pathological damage, inhibited the cell viability, increased the numbers of SA-β-gal-, LC3B- and Beclin1-positive cells and upregulated the levels of LC3-II/LC3-I and Beclin1 both in the kidney and cells. Cinnamaldehyde reversed D-gal-induced effects on the kidney and cells, and moreover, the cinnamaldehyde-induced anti-D-gal effects on cells could be suppressed by miR-155 mimic but promoted by miR-155 inhibitor. LY294002 potentiated D-gal-induced effects, and reversed cinnamaldehyde- and miR-155 inhibitor-caused impacts on the PI3K/Akt pathway and LC3-II/LC3-I level in D-gal-induced cells. Conclusion Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Pediatrics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, People's Republic of China
| |
Collapse
|
12
|
Baicalein and Αlpha-Tocopherol Inhibit Toll-like Receptor Pathways in Cisplatin-Induced Nephrotoxicity. Molecules 2022; 27:molecules27072179. [PMID: 35408581 PMCID: PMC9000769 DOI: 10.3390/molecules27072179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Cisplatin (CP) is a conventional chemotherapeutic agent with serious adverse effects. Its toxicity was linked to the stimulation of oxidative stress and inflammation. As a result, this study explored the protective effect of baicalein and alpha-tocopherol in nephrotoxicity induced by cisplatin. Until receiving an intraperitoneal injection of CP (3 mg/kg BW), rats were given baicalein orally 100 mg/kg for seven days or/and a single intraperitoneal injection of α-tocopherol 250 mg/kg. Renal function was tested to explore whether baicalein and α-tocopherol have any beneficial effects; blood urea nitrogen (BUN), serum creatinine, malondialdehyde (MDA) content, antioxidant activity biomarkers and histopathology of renal tissue, oxidative stress biomarkers, inflammatory response markers, and histopathological features of kidney architecture were measured. Cisplatin treatment resulted in extreme renal failure, as measured by high serum creatinine and BUN levels and severe renal changes. Cisplatin therapy resulted in increased lipid peroxidation and decreased glutathione and superoxide dismutase levels, reflecting oxidative stress. Upon treatment with α-tocopherol, baicalein, and combined therapy, there was augmentation in the antioxidant status as well as a reduction in IL-6, NF-κB, TNF, TLR2, and TLR4 and a significant increase in Keap-1 and NRF-2. The combined treatment was the most effective and the nearest to the normal status. These findings suggest that baicalein and α-tocopherol may be useful in preventing cisplatin-induced nephrotoxicity.
Collapse
|
13
|
Gong Q, Wang M, Jiang Y, Zha C, Yu D, Lei F, Luo Y, Feng Y, Yang S, Li J, Du L. The abrupt pathological deterioration of cisplatin-induced acute kidney injury: Emerging of a critical time point. Pharmacol Res Perspect 2021; 9:e00895. [PMID: 34817124 PMCID: PMC8611776 DOI: 10.1002/prp2.895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cisplatin (CP), an anticancer drug, often causes kidney damage. However, the mechanism of CP-induced acute kidney injury (AKI) is not completely understood. AKI was induced by intravenous injection (i.v.) of cisplatin at doses of 5, 8, and 10 mg/kg. Anemoside B4 (B4) (20 mg/kg, i.m.) and dexamethasone (DXM) (0.5 mg/kg, i.v.) were used for AKI treatment. Biochemical indicators were assessed using an automatic biochemical analyzer, protein expression was analyzed by western blotting, and morphological changes in the kidney were examined by PAS staining. The serum creatinine (Cre) and blood urea nitrogen (BUN) levels did not change significantly in the first 2 days but abruptly increased on the third day after CP injection. The serum albumin (ALB) and total protein (TP) levels decreased in both a time- and dose-dependent manner. The urine protein level increased, the clearing rate of Cre decreased distinctly, and morphologic changes appeared in a dose-dependent manner. The protein expression of p53/caspase-3, NLRP3, IL-6, and TNF-α was obviously upregulated on day 3; concurrently, nephrin and podocin were downregulated. The expression of LC3II and p62 was upregulated significantly as the CP dose increased. B4 and DXM obviously decreased the BUN and Cre levels after 3 or 5 days of treatment. AKI appeared distinctly in a time-dependent manner at 2 to 5 days after the administration of 5 mg/kg CP and in a dose-dependent manner upon the administration of 5, 8, and 10 mg/kg CP. The third day was a significant time point for renal deterioration, and treatment with B4 and DXM within the first 3 days provided significant protection against AKI.
Collapse
Affiliation(s)
- Qin Gong
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Mulan Wang
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Ya Jiang
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Chengliang Zha
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Dong Yu
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Fan Lei
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Yingying Luo
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Yulin Feng
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Shilin Yang
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Jun Li
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
| | - Lijun Du
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Pharmacology LaboratoryState Key Laboratory of Innovative Drugs and Efficient Energy‐saving Pharmaceutical EquipmentNanchangChina
- School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
14
|
SGLT2 inhibitor empagliflozin monotherapy alleviates renal oxidative stress in albino Wistar diabetic rats after myocardial infarction induction. Biomed Pharmacother 2021; 139:111624. [PMID: 33915503 DOI: 10.1016/j.biopha.2021.111624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a sudden insult of the kidney that happens within a short period of time, which is associated with poor prognosis in diabetic patients with myocardial infarction (MI). Subclinical AKI is a condition in which tubular damage biomarkers [Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1(KIM-1)] are positive even in the absence of elevated serum creatinine. Recent studies reported that SGLT-2 inhibitors could protect against subclinical AKI in diabetic patients by elevating the level of β-Hydroxybutyric acid (βOHB). This study aims to examine the reno-protective potential of empagliflozin (EMPA) against MI associated AKI in diabetic rats. Eighty Albino Wistar rats were divided into: (1) nondiabetic sham group (CS), (2) nondiabetic + myocardial infarction group (CM), (3) diabetic + myocardial infarction group (DM) and (4) diabetic + myocardial infarction + empagliflozin group (DME). At the end of the experiment, blood samples and kidneys were collected for biochemical analysis, histopathological, and immunohistochemical studies. After induction of myocardial infarction, there was a significant decrease in serum creatinine and NGAL levels in DME. After EMPA administration, mesangial matrix index and glomerular area were lowered in DME if compared to DM group. As a marker for tubular injury, we used anti-NGAL and anti-KIM-1 immunohistochemistry. Strong positive reaction was noticed in DM group if compared to DME group which showed weak positive reaction. Levels of renal mRNAs [NGAL; KIM-1; Nox-2,4; TLR-2,4; MyD88; TNF- α and IL-1 β, 18] in DME group were reduced significantly compared to DM group. In conclusion, empagliflozin can protect against subclinical acute kidney injury in diabetic albino Wistar rats after myocardial infarction induction, which could improve the clinical outcome of SGLT-2 inhibitors in diabetic patients.
Collapse
|
15
|
Hassanein EHM, Abdel-Wahab BA, Ali FEM, Abd El-Ghafar OAM, Kozman MR, Sharkawi SMZ. Trans-ferulic acid ameliorates cisplatin-induced testicular damage via suppression of TLR4, P38-MAPK, and ERK1/2 signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41948-41964. [PMID: 33792844 DOI: 10.1007/s11356-021-13544-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 12/31/2022]
Abstract
Testicular damage has been described as a common side effect of cisplatin (CDDP), which limits its clinical uses. Since oxidative injury and inflammatory response are the most pathological impact, estimation of natural antioxidant and anti-inflammatory agents like trans-ferulic acid (TFA) could protect against CDDP-induced testicular damage. In the current investigation, rats were assigned into four groups: normal, TFA (50 mg/kg/day, P.O), CDDP (10 mg/kg) as single intraperitoneal (I.P) injection at the end of the 5th day, and TFA+CDDP where TFA was administered 5 days before CDDP injection and 5 days after. Interestingly, TFA significantly restored testosterone levels and abrogated oxidative stress injury. Additionally, TFA effectively suppressed inflammatory cytokines. It also counteracted the inflammation via downregulation of TLR4 and IRF3, P38-MAPK, NF-κB-p65, JAK1, STAT3, ERK1, and ERK2. Besides, TFA can modulate AKT and p-AKT protein expressions. In parallel, TFA mitigated the histopathological aberration of the testis and prevented spermatogenesis disruption. On the other hand, TFA augmented the in vitro CDDP cytotoxicity on Caco-2 and MCF-7 cells. Interestingly, TFA enhanced the cytotoxic effect of CDDP via apoptosis induction in both the early and late stages of apoptosis. Collectively, TFA exhibited a potential protective effect against CDDP-induced testicular injury by inhibiting oxidative stress as well as TLR4/IRF3/INF-γ, P38-MAPK/NF-κB-p65/TNF-α, and JAK1/STAT-3/ERK1/2 inflammatory signaling pathways with enhancing its in vitro cytotoxic activity.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, School of Pharmacy, Najran University, P.O. 1988, Najran, Saudi Arabia
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Magy R Kozman
- Clinical Pharmacology Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
17
|
Wu S, Fang Z, Zhou S. Saturated hydrogen alleviates CCl 4-induced acute kidney injury via JAK2/STAT3/p65 signaling. J Int Med Res 2020; 48:300060519895353. [PMID: 31937177 PMCID: PMC7114280 DOI: 10.1177/0300060519895353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives This study assessed the protective effects of saturated hydrogen against CCl4-induced acute kidney injury (AKI) in mice, and investigated signaling pathways activated by exposure to saturated hydrogen. Methods A mouse model of CCl4-induced AKI was established; some mice were treated with saturated hydrogen. Levels of cystatin C and kidney injury molecule 1 were determined using enzyme-linked immunosorbent assays. Blood urea nitrogen and serum creatinine were measured on a fully automated biochemical analyzer. Interleukin-8, tumor necrosis factor-α, and interferon-γ in serum and kidney tissues were measured using enzyme-linked immunosorbent assays. Malondialdehyde, glutathione peroxidase, and superoxide dismutase in kidney tissues were measured using biochemical kits. Oxidative stress in kidney tissues was analyzed using nitrotyrosine staining. Expression levels of p-JAK2, p-STAT3, and p-p65 signal protein were assayed by immunohistochemistry and western blotting. Results Compared with untreated mice with CCl4-induced AKI, mice that were treated with saturated hydrogen exhibited improved renal function and reduced oxidative stress. Moreover, expression levels of p-JAK2, p-STAT3, and p-p65 were significantly reduced in mice treated with saturated hydrogen, compared with expression levels in untreated mice. Conclusions Treatment with saturated hydrogen can reduce oxidative stress and inflammatory cytokine activation, potentially through inhibition of JAK2/STAT3/p65 signaling, thereby protecting against AKI.
Collapse
Affiliation(s)
- Song Wu
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zheng Fang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Luan Z, Wei Y, Huo X, Sun X, Zhang C, Ming W, Luo Z, Du C, Li Y, Xu H, Lu H, Zheng F, Guan Y, Zhang X. Pregnane X receptor (PXR) protects against cisplatin-induced acute kidney injury in mice. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165996. [PMID: 33127475 DOI: 10.1016/j.bbadis.2020.165996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin-induced acute kidney injury (CAKI) has been recognized as one of the most serious side effects of cisplatin. Pregnane X receptor (PXR) is a ligand-dependent nuclear receptor and serves as a master regulator of xenobiotic detoxification. Increasing evidence also suggests PXR has many other functions including the regulation of cell proliferation, inflammatory response, and glucose and lipid metabolism. In this study, we aimed to investigate the role of PXR in cisplatin-induced nephrotoxicity in mice. CAKI model was performed in wild-type or PXR knockout mice. Pregnenolone 16α‑carbonitrile (PCN), a mouse PXR specific agonist, was used for PXR activation. The renal function, biochemical, histopathological and molecular alterations were examined in mouse blood, urine or renal tissues. Whole transcriptome analysis was performed by RNA sequencing. We found that PXR activation significantly attenuated CAKI as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative and endoplasmic reticulum stress, and suppressed inflammatory gene expression. RNA sequencing analysis revealed that the renoprotective effect of PXR was associated with multiple crucial signaling pathways, especially the PI3K/AKT pathway. In vitro study further revealed that PXR protected against cisplatin-induced apoptosis of cultured proximal tubule cells in a PI3K-dependent manner. Our results demonstrate that PXR activation can preserve renal function in cisplatin-induced AKI and suggest a possibility of PXR as a novel protective target for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yuanyi Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoxiao Huo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaowan Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wenhua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Zhaokang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Heyuan Lu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
19
|
Toll-Like Receptor 2–Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype. Inflammation 2019; 43:701-711. [DOI: 10.1007/s10753-019-01152-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Volarevic V, Markovic BS, Jankovic MG, Djokovic B, Jovicic N, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N, Lukic ML. Galectin 3 protects from cisplatin-induced acute kidney injury by promoting TLR-2-dependent activation of IDO1/Kynurenine pathway in renal DCs. Theranostics 2019; 9:5976-6001. [PMID: 31534532 PMCID: PMC6735380 DOI: 10.7150/thno.33959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.
Collapse
|