1
|
Ren J, Su T, Ding J, Chen F, Mo J, Li J, Wang Z, Han L, Wu Z, Wu S. Chlorophyllin exerts synergistic anti-tumor effect with gemcitabine in pancreatic cancer by inducing cuproptosis. Mol Med 2025; 31:126. [PMID: 40186145 PMCID: PMC11969790 DOI: 10.1186/s10020-025-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Pancreatic cancer (PC) has high lethality due to multiple reasons, and its limited response to conventional chemotherapy like gemcitabine (GEM) is a non-negligible one. Therefore, our study introduces Chlorophyllin (CHL) as an effective therapeutic candidate to enhance the therapeutic efficacy of GEM. Our results demonstrate that the combination of CHL and GEM exhibits a significant synergistic anti-tumor effect by targeting multiple oncogenic processes in PC, including inhibiting cell proliferation, invasion, and migration, as well as inducing cell apoptosis. Further investigations of mechanism have revealed that CHL induces cuproptosis in PC cells through a multifaceted process, involving depleting cellular intracellular glutathione (GSH), increasing reactive oxygen species (ROS) levels, and subsequently upregulating the HSP70 protein in response to heightened oxidative stress. Additionally, CHL releases free Cu2+, binds to the Ferredoxin 1 (FDX1) protein, and ultimately leads to the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT) proteins to amplify the copper toxicity within PC cells. Moreover, in vivo experiments have demonstrated that the combination of CHL and GEM effectively inhibits the growth of subcutaneously transplanted tumors while maintaining a favorable biosafety profile. In conclusion, our study identifies CHL as a potent enhancer of GEM's anti-tumor effects in PC through the induction of cuproptosis, thus providing a novel therapeutic avenue for patients with PC.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tong Su
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Burus A, Ozcan M, Canpinar H, Bozdemir O, Zeybek ND, Bayazit Y. The effect of the combination therapy with chlorophyllin, a glutathione transferase P1-1 inhibitor, and docetaxel on triple-negative breast cancer invasion and metastasis in vivo/in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03929-y. [PMID: 40014124 DOI: 10.1007/s00210-025-03929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The expression of glutathione S-transferase P1 (GSTP1) enzyme increases in cancer cells, leading to anticancer drug resistance. The antioxidant chlorophyllin has an inhibitory effect on GSTP1. In this study, we investigated the effect of chlorophyllin and its combined administration with the chemotherapeutic agent docetaxel on metastatic processes. For this purpose, both the 4T1 triple-negative breast cancer cell line and metastatic animal model were used. The MTT, flow cytometry, and wound healing assays were used to investigate cell viability, cell cycle, and cell migration, respectively. Total gelatinase activity, GST activity, and glutathione levels in cell and liver tissue lysates measured by colorimetric methods. Micrometastases were evaluated histochemically in liver tissue sections. As a result, the coadministration of chlorophyllin and docetaxel significantly inhibited cell migration in vitro. There was a significant decrease in the total gelatinase activity in vivo. We found that only combined treatment reduced the micrometastatic lesions in the liver tissues, though this reduction was not statistically significant. In conclusion, the coadministration of chlorophyllin and docetaxel may have a potential role in controlling metastatic processes by suppressing cell migration, gelatinase activity, and micrometastasis formation in triple-negative breast cancers.
Collapse
Affiliation(s)
- Ayse Burus
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ozlem Bozdemir
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Ozcan M, Burus A, Mender I, Dikmen ZG, Gryaznov SM, Bastug T, Bayazit Y. Investigation of the inhibitory effects of the telomere-targeted compounds on glutathione S-transferase P1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03882-w. [PMID: 39954068 DOI: 10.1007/s00210-025-03882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Glutathione S-transferase P1 (GSTP1) plays a significant role in cancer progression and chemotherapy resistance, with its overexpression diminishing chemotherapeutic efficacy across various tumor types. This study evaluates the inhibitory effects of 6-thio-2'-deoxyguanosine (6-thio-dG) and its dimeric form (6-thio-2'-dG-Dimer) on GSTP1. Enzyme inhibition assays with recombinant human GSTP1, kinetic analysis, molecular docking, and molecular dynamic simulations were employed. Enzymatic assays were performed in 0.1 M phosphate buffer (pH 6.5) at 30 °C, containing 1 mM EDTA, 1 mM GSH, and 1 mM CDNB. The compounds 6-thio-dG and its dimer were dissolved in 2.5% DMSO for the experiments. The IC₅₀ values indicated that the dimer exhibited a higher potency (IC₅₀: 0.339 μM) than the monomer (IC₅₀: 15.14 μM). Kinetic analysis revealed noncompetitive inhibition with glutathione (Ki: 12.26 μM) and mixed inhibition with CDNB (Ki: 11.41 μM) for the monomer, whereas the dimer showed mixed inhibition with glutathione (Ki: 0.972 μM) and competitive inhibition with CDNB (Ki: 0.723 μM). Molecular docking confirmed the higher binding affinity of the dimer (binding energy: - 7.9 kcal/mol, Ki: 1.595 μM) compared to the monomer (binding energy: - 6.2 kcal/mol, Ki: 28.21 μM). The dimer form of 6-thio-dG shows strong potential to enhance chemotherapeutic efficacy by effectively inhibiting GSTP1 and overcoming drug resistance. Its superior inhibitory properties make it a valuable candidate for targeted cancer therapies.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ayse Burus
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ilgen Mender
- MAIA Biotechnology, Inc., Chicago, IL, 60606, USA
| | - Z Gunnur Dikmen
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Turgut Bastug
- Department of Biophysics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Ozcan M, Burus A, Boynuyogun E, Calis M, Ozgur F, Bayazit Y. Effects of Photobiomodulation Application on Glutathione-Related Antioxidant Defense System in Rabbit Eye Tissues. JOURNAL OF BIOPHOTONICS 2024; 17:e202400261. [PMID: 39209319 DOI: 10.1002/jbio.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) has emerged as a potentially effective therapeutic approach to modulate cellular functions. This study aimed to examine the impact of PBM on reactive oxygen species (ROS), lipid peroxidation, and glutathione-related antioxidant defense systems in rabbit eye tissues. A polychromatic light source with an intensity of 2.6 J/cm2/min was used for PBM treatment in New Zealand White rabbits for 12 min. The PBM group (n = 8) received treatments every 2 days for a total of 12 sessions, whereas the control group (n = 8) did not undergo any PBM light exposure during the same period. The application of PBM significantly elevated ROS-mediated glutathione levels, along with increased activities of glutathione peroxidase and reductase, particularly in corneal tissue (p ≤ 0.05). In conclusion, PBM treatment effectively enhances antioxidant defense mechanisms in the eye, particularly in corneal tissue, suggesting its potential as a therapeutic strategy for managing oxidative stress-related ocular conditions.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Ayse Burus
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Etkin Boynuyogun
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mert Calis
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Figen Ozgur
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Sezer F, Elmazoğlu Z, Esendağlı G, İlhan SÖ, Karasu Ç. Protection against α-Amanitin-induced liver toxicity: Efficacy of pomegranate seed oil and black cumin oil. Toxicon 2024; 247:107854. [PMID: 38977085 DOI: 10.1016/j.toxicon.2024.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The consumption of mushrooms containing α-Amanitin (α-A) can lead to severe liver damage. In this study, toxicological experiments were conducted to confirm the protective effects of pomegranate seed oil (PSO) and black cumin oil (BCO) against α-A-induced hepatotoxicity. Rats exposed once to α-A (3 mg/kg bw, i.p.) or saline alone (0.1 ml, i.p.) were either left untreated or treated with PSO or BCO at a dose of 2 ml/kg bw/day by oral gavage on the same day, and the treatment was continued for 7 days. Serum aminotransferases (ALT and AST), alkaline phosphatase (ALP) and total protein levels were measured and the active caspase 3 (cl-caspase 3) was evaluated by western blotting in the liver. Serum ALT, AST and ALP levels tended to decrease in the α-A exposed group, but no statistically significant difference was found compared to the saline group (p > 0.05). PSO and BCO did not affect serum liver function tests in rats exposed to saline or α-A. α-A toxicity was demonstrated by a significant decrease in serum total protein level (p < 0.05), a significant increase in liver cl-caspase 3 expression (p < 0.05), and structural liver damage mainly characterized by mononuclear inflammation and steatosis. When α-A exposed rats were treated with BCO, the increase in cl-caspase 3 was not inhibited, on the contrary BCO increased cl-caspase 3 in healthy rats (p < 0.05). PSO significantly ameliorated α-A-induced cl-caspase 3 increase and inflammatory histopathology in the liver. Both PSO and BCO completely prevented α-A-induced protein degradation. The findings indicate that PSO and BCO may protect liver functions against α-A-induced hepatotoxicity, encouraging future comprehensive studies to test them at different doses and frequency.
Collapse
Affiliation(s)
- Fatih Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | - Güldal Esendağlı
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Sevil Özger İlhan
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Çimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
6
|
Dogan Buzoglu H, Ozcan M, Bozdemir O, Aydin Akkurt KS, Zeybek ND, Bayazit Y. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation. Clin Oral Investig 2023; 27:5913-5923. [PMID: 37642737 DOI: 10.1007/s00784-023-05203-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the oxidative stress cycle consisting of reactive oxygen molecules (ROS), glutathione (GSH) and glutathione S-transferase (GST) in caries-related pulp inflammation. METHODOLOGY Fifty-four pulp tissue samples were collected from healthy donors with the diagnosis of reversible pulpitis, symptomatic irreversible pulpitis, and healthy pulp. Twelve pulp samples from each group were homogenized and total protein, ROS, GSH, and GST were measured by spectrophotometer. The remaining 6 samples from each group were prepared for paraffin block and used for the histopathologic and immunohistochemical evaluation of oxidative stress parameters and TUNEL labeling. Data were analyzed statistically. RESULTS The results revealed that total protein levels significantly decreased; however, ROS levels increased in both reversible and irreversible pulpitis compared to the healthy pulp (p < 0.01). Also, as inflammation increases, GST enzyme levels decrease while GSH levels increase significantly (p < 0.05). It was found that the number of TUNEL (+) cells was increased in irreversible pulpitis samples compared to healthy and reversible pulpitis groups (p < 0.05). GSTP1 and GSH immunoreactivity were also observed in irreversible pulpitis samples. CONCLUSIONS It has been revealed that caries-related inflammation alters the oxidative stress cycle in dental pulp tissue. The increase in GSH levels in the inflamed dental pulp due to the increase in ROS levels may improve the defensive ability of the dental pulp. CLINICAL RELEVANCE There is a relationship between oxidative stress and inflammation. Control of excessive oxidative stress in pulpitis can stimulate reparative and regenerative processes. The present findings may provide an overview of the management of oxidative stress in cases with pulpitis during regenerative treatments.
Collapse
Affiliation(s)
- H Dogan Buzoglu
- Department of Endodontics, Faculty of Dentistry, Hacettepe University, Sihhiye, 06230, Ankara, Turkey.
| | - M Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - O Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - K S Aydin Akkurt
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - N D Zeybek
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Y Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Cruces MP, González E, Pimentel E, Jiménez E, Sánchez P. Relationship between lifespan and somatic mutation in D. melanogaster after treatment with chlorophyllin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103891. [PMID: 35654371 DOI: 10.1016/j.etap.2022.103891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Sodium copper chlorophyllin (SCC) has a genetic damage inhibitory capacity due to its antioxidant action. For this reason, it was considered to investigate its role in the life span of Drosophila melanogaster and its relationship with the frequency of somatic mutation induced by gamma rays. Results indicated that SCC alone prolonged the lifespan only in females, but in combination with 20 Gy of gamma rays, the aging delay in both sexes was significant. In addition to confirming that the porphyrin reduces the frequency of mutation, the individuals with the highest mutation load are the individuals who die more quickly, and once they are eliminated, the survivor individuals treated with 20 Gy or with SCC + 20 Gy, died at the same rate. The results together indicate that SCC not only inhibits induced genetic damage, but it also has beneficial effects that probably cause an aging delay of the treated population that need to be investigated.
Collapse
Affiliation(s)
- Martha Patricia Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Elena González
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México.
| | - Elizabeth Jiménez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Petra Sánchez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Edo Mex., México
| |
Collapse
|
8
|
Ozcan M, Aydemir D, Bacanlı M, Anlar HG, Ulusu NN, Aksoy Y. Protective Effects of Antioxidant Chlorophyllin in Chemically Induced Breast Cancer Model In vivo. Biol Trace Elem Res 2021; 199:4475-4488. [PMID: 33624221 DOI: 10.1007/s12011-021-02585-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Glutathione-related enzymes belong to the protection mechanism of the cells against harmful oxidative damage and chemicals. Glutathione S-transferase (GST) is frequently over-expressed in various cancer cells and is involved in drug resistance. Chlorophyllin is an antioxidant molecule interfering with the GST P1-1 activity. The purpose of this study is to evaluate the short- and long-term protective effects of chlorophyllin as an antioxidant molecule on DNA damage, antioxidant enzyme activities, trace elements, and minerals in chemically induced breast cancer model in vivo. In our study, N-methyl-N-nitrosourea (MNU) was used for inducing breast carcinogenesis in female Sprague-Dawley rats. A total of 36 rats were divided into groups as short term and long term. Each group was divided into four sub-groups as control group received physiological saline solution (n = 3), Chl group (n = 5) received chlorophyllin, MNU group (n = 5) was administered MNU, and Chl + MNU group (n = 5) was treated with both chlorophyllin and MNU. Results illustrated that chlorophyllin had a significant anti-genotoxic effect in the short term, and glutathione-related enzyme activities were protected by chlorophyllin treatment in MNU-induced breast cancer model. Additionally, MNU administration impaired mineral and trace element levels including Na, Mg, K, Fe, Zn, and Co in the liver, kidney, spleen, heart, and tumor tissues; however, adverse effects of MNU were recovered upon chlorophyllin treatment in the indicated tissues of the rats. In conclusion, chlorophyllin can be used as an antioxidant molecule to ameliorate adverse effects of MNU by enhancing antioxidant enzyme activities and regulating trace element and mineral balance in several organs and tumor tissue in the breast cancer model.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Sıhhiye, 06100, Ankara, Turkey
- Department of Medical Biochemistry, Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Duygu Aydemir
- Department of Medical Biochemistry, Koc University, School of Medicine, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, University of Health Sciences Gulhane Faculty of Pharmacy, Ankara, Turkey
| | - Hatice Gul Anlar
- Department of Pharmaceutical Toxicology, Bulent Ecevit University Faculty of Pharmacy, Zonguldak, Turkey
| | - N Nuray Ulusu
- Department of Medical Biochemistry, Koc University, School of Medicine, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Yasemin Aksoy
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Sıhhiye, 06100, Ankara, Turkey.
| |
Collapse
|
9
|
Pérez-Gálvez A, Viera I, Roca M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants (Basel) 2020; 9:E505. [PMID: 32526968 PMCID: PMC7346216 DOI: 10.3390/antiox9060505] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/06/2023] Open
Abstract
Chlorophylls and carotenoids are natural pigments that are present in our daily diet, especially with the increasing tendency towards more natural and healthy behaviors among consumers. As disturbed antioxidant homeostasis capacities seem to be implicated in the progress of different pathologies, the antioxidant properties of both groups of lipophilic compounds have been studied. The objective of this review was to analyze the state-of-the-art advances in this field. We conducted a systematic bibliographic search (Web of Science™ and Scopus®), followed by a comprehensive and critical description of the results, with special emphasis on highly cited and more recently published research. In addition to an evaluative description of the methodologies, this review discussed different approaches used to obtain a physiological perspective, from in vitro studies to in vivo assays using oxidative biomarkers. From a chemical viewpoint, many studies have demonstrated how a pigment's structure influences its antioxidant response and the underlying mechanisms. The major outcome is that this knowledge is essential for interpreting new data in a metabolic networks context in the search for more direct applications to health. A promising era is coming where the term "antioxidant" is understood in terms of its broadest significance.
Collapse
Affiliation(s)
| | | | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain; (A.P.-G.); (I.V.)
| |
Collapse
|
10
|
Ozcan M, Altay O, Lam S, Turkez H, Aksoy Y, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. ACTA ACUST UNITED AC 2020; 4:e2000030. [PMID: 32529800 DOI: 10.1002/adbi.202000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death primarily due to the lack of effective targeted therapies. Despite the distinct morphological and phenotypic patterns of HCC, treatment strategies are restricted to relatively homogeneous therapies, including multitargeted tyrosine kinase inhibitors and immune checkpoint inhibitors. Therefore, more effective therapy options are needed to target dysregulated metabolic and molecular pathways in HCC. Integrative genomic profiling of HCC patients provides insight into the most frequently mutated genes and molecular targets, including telomerase reverse transcriptase, the TP53 gene, and the Wnt/β-catenin signaling pathway oncogene (CTNNB1). Moreover, emerging techniques, such as genome-scale metabolic models may elucidate the underlying cancer-specific metabolism, which allows for the discovery of potential drug targets and identification of biomarkers. De novo lipogenesis has been revealed as consistently upregulated since it is required for cell proliferation in all HCC patients. The metabolic network-driven stratification of HCC patients in terms of redox responses, utilization of metabolites, and subtype-specific pathways may have clinical implications to drive the development of personalized medicine. In this review, the current and emerging therapeutic targets in light of molecular approaches and metabolic network-based strategies are summarized, prompting effective treatment of HCC patients.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Yasemin Aksoy
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Jens Nielsen
- Prof. J. Nielsen, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|