1
|
Xu Y, Duan S, Ye W, Zheng Z, Zhang J, Gao Y, Ye S. SLC34A2 promotes cell proliferation by activating STX17-mediated autophagy in esophageal squamous cell carcinoma. Thorac Cancer 2024; 15:1369-1384. [PMID: 38720472 PMCID: PMC11168907 DOI: 10.1111/1759-7714.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shiyu Duan
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wen Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Gao
- Department of Radiation Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Sheng Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Sahu S, Rao AR, Sahu TK, Pandey J, Varshney S, Kumar A, Gaikwad K. Predictive Role of Cluster Bean ( Cyamopsis tetragonoloba) Derived miRNAs in Human and Cattle Health. Genes (Basel) 2024; 15:448. [PMID: 38674383 PMCID: PMC11049822 DOI: 10.3390/genes15040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 04/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate the gene expression in host organisms. The miRNAs present in the cluster bean, a drought tolerant legume crop having high commercial value, might have also played a regulatory role for the genes involved in nutrients synthesis or disease pathways in animals including humans due to dietary intake of plant parts of cluster beans. However, the predictive role of miRNAs of cluster beans for gene-disease association across kingdoms such as cattle and humans are not yet fully explored. Thus, the aim of the present study is to (i) find out the cluster bean miRNAs (cb-miRs) functionally similar to miRNAs of cattle and humans and predict their target genes' involvement in the occurrence of complex diseases, and (ii) identify the role of cb-miRs that are functionally non-similar to the miRNAs of cattle and humans and predict their targeted genes' association with complex diseases in host systems. Here, we predicted a total of 33 and 15 functionally similar cb-miRs (fs-cb-miRs) to human and cattle miRNAs, respectively. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the participation of targeted genes of fs-cb-miRs in 24 and 12 different pathways in humans and cattle, respectively. Few targeted genes in humans like LCP2, GABRA6, and MYH14 were predicted to be associated with disease pathways of Yesinia infection (hsa05135), neuroactive ligand-receptor interaction (hsa04080), and pathogenic Escherichia coli infection (hsa05130), respectively. However, targeted genes of fs-cb-miRs in humans like KLHL20, TNS1, and PAPD4 are associated with Alzheimer's, malignant tumor of the breast, and hepatitis C virus infection disease, respectively. Similarly, in cattle, targeted genes like ATG2B and DHRS11 of fs-cb-miRs participate in the pathways of Huntington disease and steroid biosynthesis, respectively. Additionally, the targeted genes like SURF4 and EDME2 of fs-cb-miRs are associated with mastitis and bovine osteoporosis, respectively. We also found a few cb-miRs that do not have functional similarity with human and cattle miRNAs but are found to target the genes in the host organisms and as well being associated with human and cattle diseases. Interestingly, a few genes such as NRM, PTPRE and SUZ12 were observed to be associated with Rheumatoid Arthritis, Asthma and Endometrial Stromal Sarcoma diseases, respectively, in humans and genes like SCNN1B associated with renal disease in cattle.
Collapse
Affiliation(s)
- Sarika Sahu
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Atmakuri Ramakrishna Rao
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Indian Council of Agricultural Research, New Delhi 110001, India
| | - Tanmaya Kumar Sahu
- Indian Grassland and Fodder Research Institute, ICAR, Jhansi 284003, India;
| | - Jaya Pandey
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Shivangi Varshney
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Archna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi 110012, India;
| |
Collapse
|
3
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Du Z, Liu H, Bai L, Yan D, Li H, Peng S, Cao J, Liu SB, Tang Z. A Radiosensitivity Prediction Model Developed Based on Weighted Correlation Network Analysis of Hypoxia Genes for Lower-Grade Glioma. Front Oncol 2022; 12:757686. [PMID: 35280808 PMCID: PMC8916576 DOI: 10.3389/fonc.2022.757686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeHypoxia is one of the basic characteristics of the physical microenvironment of solid tumors. The relationship between radiotherapy and hypoxia is complex. However, there is no radiosensitivity prediction model based on hypoxia genes. We attempted to construct a radiosensitivity prediction model developed based on hypoxia genes for lower-grade glioma (LGG) by using weighted correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (Lasso).MethodsIn this research, radiotherapy-related module genes were selected after WGCNA. Then, Lasso was performed to select genes in patients who received radiotherapy. Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3, SIGMAR1, SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and UROS) were included in the model. A radiosensitivity-related risk score model was established based on the overall rate of The Cancer Genome Atlas (TCGA) dataset in patients who received radiotherapy. The model was validated in TCGA dataset and two Chinese Glioma Genome Atlas (CGGA) datasets. A novel nomogram was developed to predict the overall survival of LGG patients.ResultsWe developed and verified a radiosensitivity-related risk score model based on hypoxia genes. The radiosensitivity-related risk score served as an independent prognostic indicator. This radiosensitivity-related risk score model has prognostic prediction ability. Moreover, a nomogram integrating risk score with age and tumor grade was established to perform better for predicting 1-, 3-, and 5-year survival rates.ConclusionsWe developed and validated a radiosensitivity prediction model that can be used by clinicians and researchers to predict patient survival rates and achieve personalized treatment of LGG.
Collapse
Affiliation(s)
- Zixuan Du
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Hanshan Liu
- Department of Medical Oncology, Jiangsu Provincial Corps Hospital, Chinese People’s Armed Police Forces, Yangzhou City, China
| | - Lu Bai
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Derui Yan
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Sun Peng
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - JianPing Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| | - Zaixiang Tang
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| |
Collapse
|
5
|
Vlasenkova R, Nurgalieva A, Akberova N, Bogdanov M, Kiyamova R. Characterization of SLC34A2 as a Potential Prognostic Marker of Oncological Diseases. Biomolecules 2021; 11:1878. [PMID: 34944522 PMCID: PMC8699446 DOI: 10.3390/biom11121878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
The main goal of this study is to consider SLC34A2 as a potential prognostic marker of oncological diseases using the mutational, expression, and survival data of cancer studies which are publicly available online. We collected data from four databases (cBioPortal, The Cancer Genome Atlas; cBioPortal, Genie; International Cancer Genome Consortium; ArrayExpress). In total, 111,283 samples were categorized according to 27 tumor locations. Ninety-nine functionally significant missense mutations and twelve functionally significant indel mutations in SLC34A2 were found. The most frequent mutations were SLC34A2-ROS1, p.T154A, p.P506S/R/L, p.G257A/E/R, p.S318W, p.A396T, p.P410L/S/H, p.S461C, p.A473T/V, and p.Y503H/C/F. The upregulation of SLC34A2 was found in samples of myeloid, bowel, ovarian, and uterine tumors; downregulation was found in tumor samples of breast, liver, lung, and skin cancer tumors. It was found that the life expectancy of breast and thymus cancer patients with an SLC34A2 mutation is lower, and it was revealed that SLC34A2 overexpression reduced the life span of patients with brain, ovarian, and pancreatic tumors. Thereby, for these types of oncological diseases, the mutational profile of SLC34A2 can be a potential prognostic marker for breast and thymus cancers, and the upregulation of SLC34A2 can be a potential prognostic marker for brain, ovarian, and pancreatic cancers.
Collapse
Affiliation(s)
- Ramilia Vlasenkova
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (R.V.); (A.N.); (N.A.); (M.B.)
| | - Alsina Nurgalieva
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (R.V.); (A.N.); (N.A.); (M.B.)
| | - Natalia Akberova
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (R.V.); (A.N.); (N.A.); (M.B.)
| | - Mikhail Bogdanov
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (R.V.); (A.N.); (N.A.); (M.B.)
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ramziya Kiyamova
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (R.V.); (A.N.); (N.A.); (M.B.)
| |
Collapse
|
6
|
Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharmacol 2021; 912:174580. [PMID: 34678239 DOI: 10.1016/j.ejphar.2021.174580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Recent developments in pharmacogenomics have created opportunities for predicting temozolomide response in gliomas. Temozolomide is the main first-line alkylating chemotherapeutic drug together with radiotherapy as standard treatments of high-risk gliomas after surgery. However, there are great individual differences in temozolomide response. Besides the heterogeneity of gliomas, pharmacogenomics relevant genetic polymorphisms can not only affect pharmacokinetics of temozolomide but also change anti-tumor effects of temozolomide. This review will summarize pharmacogenomic studies of temozolomide in gliomas which can lay the foundation to personalized chemotherapy.
Collapse
|
7
|
Yang X, Liu J. Targeting PD-L1 (Programmed death-ligand 1) and inhibiting the expression of IGF2BP2 (Insulin-like growth factor 2 mRNA-binding protein 2) affect the proliferation and apoptosis of hypopharyngeal carcinoma cells. Bioengineered 2021; 12:7755-7764. [PMID: 34608837 PMCID: PMC8806995 DOI: 10.1080/21655979.2021.1983278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death-ligand 1 (PD-L1) have been attracting increasing attention in cancer diagnosis and treatment. The insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is involved in the progression of multiple types of cancer. So, the role of IGF2BP2 and PD-L1 in hypopharyngeal carcinoma was assessed. Western blotting and immunochemistry were used to evaluate the expression of IGF2BP2 and PD-1/PD-L1. IGF2BP2 expression was knocked down in FaDu cells, and the effects on cell viability, apoptosis and proliferation were measured. A tumor-bearing nude model of hypopharyngeal carcinoma was constructed to evaluate the effect of a PD-L1 inhibitor and IGF2BP2 knockdown on hypopharyngeal carcinoma in vivo. RNA pull-down assays were used to assess the interaction between IGF2BP2 and PD-L1. The results showed that knockdown of IGF2BP2 inhibited FaDu cell proliferation and promoted apoptosis, as evidenced by the lower cell viability, a higher ratio of TUNEL-positive cells, decreased expression of Bcl-2 and cyclins, and increased expression of cleaved-caspase 3. In vivo, the tumor volume and weight were reduced by both the PD-L1 inhibitor and IGF2BP2 knockdown. Additionally, the interaction between PD-L1 and IGF2BP2 was confirmed. In conclusion, the results in the present study revealed that inhibition of IGF2BP2 might be a potentially relevant method for treating hypopharyngeal carcinoma, and the effects might be mediated via inhibition of the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, Soochow, Jiangsu, P.R. China.,Department of Otolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jisheng Liu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, Soochow, Jiangsu, P.R. China
| |
Collapse
|
8
|
Kuang W, Jiang W, Chen Y, Tian Y, Liu Z. The function and mechanism of the JARID2/CCND1 axis in modulating glioma cell growth and sensitivity to temozolomide (TMZ). Cancer Biol Ther 2021; 22:392-403. [PMID: 34251962 DOI: 10.1080/15384047.2021.1942711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A maximal surgical resection followed by radiotherapy and chemotherapy with temozolomide (TMZ) as the representative agent is the standard therapy for gliomas. However, tumor cell resistance to radiotherapy and chemotherapy leads to poor prognosis and high mortality in patients with glioma. In the present study, we demonstrated that JARID2 was downregulated and CCND1 was upregulated within glioma tissues of different grades and glioma cells. In tissue samples, JARID2 was negatively correlated with CCND1. JARID2 overexpression significantly inhibited glioma cell viability, promoted glioma cell apoptosis upon TMZ treatment, and increased p21, cleaved-PARP, and cleaved-caspase3 in TMZ-treated glioma cells. JASPAR tool predicted the possible binding sites between JARID2 and CCND1 promoter regions; through direct binding to CCND1 promoter region, JARID2 negatively regulated CCND1 expression. Under TMZ treatment, JARID2 overexpression inhibited CCND1 expression, promoted glioma cell apoptosis, and increased p21, cleaved-PARP, and cleaved-caspase3 in glioma cells treated with TMZ; meanwhile, CCND1 overexpression exerted opposite effects on glioma cells treated with TMZ and partially reversed the effects of JARID2 overexpression. In conclusion, JARID2 targets and inhibits CCND1. The JARID2/CCND1 axis modulates glioma cell growth and glioma cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Weilu Kuang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yinyun Chen
- The Third Department of Gastroenterology, Hunan Provincial People's Hospital, Changsha, P.R. China
| | - Yifu Tian
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
9
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
10
|
Wang J, Yuan X, Ding N. IGF2BP2 knockdown inhibits LPS-induced pyroptosis in BEAS-2B cells by targeting caspase 4, a crucial molecule of the non-canonical pyroptosis pathway. Exp Ther Med 2021; 21:593. [PMID: 33884031 PMCID: PMC8056110 DOI: 10.3892/etm.2021.10025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is a secreted protein that can bind to IGF2 and has been reported to promote inflammation. The data from the ENCORI database have predicted that IGF2BP2 can bind caspase 4, which mediates pyroptosis and promotes airway inflammation and lipopolysaccharide (LPS)-induced lung injury. The present study investigated whether IGF2BP2 can regulate LPS-induced lung cell inflammation by targeting caspase 4. Therefore, the non-tumorigenic lung epithelial cell line Beas-2B was transfected with short hairpin RNA (shRNA)-IGF2BP2 and stimulated with LPS. A number of parameters, including cell viability, production of interleukin (IL)-1β and IL-18, activation of gasdermin D (GSDMD) and the expression levels of IGF2BP2, caspase 4 and cleaved-caspase 1, were subsequently assessed using CCK-8, ELISA kits, western blotting and immunofluorescence staining, respectively. RNA pull-down assay was used to probe the possible interaction between IGF2BP2 and caspase 4 RNA. LPS treatment was found to inhibit cell viability, trigger IL-1β and IL-18 production and increase IGF2BP2 expression in a concentration-dependent manner. Compared with cells transfected with shRNA-negative control, cells that were transfected with shRNA-IGF2BP2 exhibited enhanced cell viability, reduced IL-1β and IL-18 concentrations, decreased GSDMD activation in addition to reduced expression levels of caspase 4 and cleaved-caspase 1 following stimulation with 1 µg/ml LPS. Concomitantly, the effects of IGF2BP2 silencing on caspase 4 expression were higher compared with those noted on caspase 1. In addition, binding of IGF2BP2 to caspase 4 RNA was also observed. To conclude, data from the present study suggest that IGF2BP2 knockdown inhibited LPS-induced Beas-2B cell inflammation by targeting caspase 4, thereby inhibiting the non-canonical pyroptosis pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaoli Yuan
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ning Ding
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
11
|
Genetic Profiles Playing Opposite Roles of Pathogenesis in Schizophrenia and Glioma. JOURNAL OF ONCOLOGY 2020; 2020:3656841. [PMID: 32565801 PMCID: PMC7275202 DOI: 10.1155/2020/3656841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022]
Abstract
Background Patients diagnosed with schizophrenia were found having lower risks to develop cancers, including glioma. Based on this epidemiology, we hypothesized that there were gene profiles playing opposite roles in pathogenesis of schizophrenia and glioma. Methods Based on GEO datasets and TCGA, key genes of schizophrenia genes on the opposite development of glioma were screened by different expressed genes (DEGs) screening, weighted gene coexpression network analysis (WGCNA), disease-specific survival (DSS), and glioma grading and verified by gene set enrichment analysis (GSEA). Results First, 612 DEGs were screened from schizophrenia and control brain samples. Second, 134 key genes more specific to schizophrenia were left by WGCNA, with 93 key genes having annotations in TCGA. Third, DSS of glioma helped to find 42 key gene expressions of schizophrenia oppositely associated with survival of glioma. Finally, 24 key genes showed opposite expression trends in schizophrenia and different glioma grading, i.e., the upregulated key genes in schizophrenia expressed increasingly in higher grade glioma, and vice versa. CAMK2D and MPC2 were taken as the examples and evaluated by GSEA, which indeed showed opposite trends in the same pathways of schizophrenia and glioma. Conclusion This workflow of selecting novel targeted genes which may have opposite roles in pathogenesis of two diseases was firstly and innovatively generated by our team. Some filtered key genes were indeed found by their potential effects in several mechanism studies, indicating our process could be effective to generate novel targeted genes. These 24 key genes may provide potential directions for future biochemical and pharmacotherapeutic research studies.
Collapse
|
12
|
Ge L, Wang H, Xu X, Zhou Z, He J, Peng W, Du F, Zhang Y, Gong A, Xu M. PRMT5 promotes epithelial-mesenchymal transition via EGFR-β-catenin axis in pancreatic cancer cells. J Cell Mol Med 2020; 24:1969-1979. [PMID: 31851779 PMCID: PMC6991680 DOI: 10.1111/jcmm.14894] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up-regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E-cadherin expression and down-regulates expression of mesenchymal markers including Vimentin, collagen I and β-catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re-expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p-AKT and p-GSK3β, and then results in down-regulation of β-catenin. Expectedly, ectopic PRMT5 re-expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/β-catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lu Ge
- Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
- Department of GastroenterologyDanyang People's HospitalZhenjiangChina
| | - Huizhi Wang
- Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Xiao Xu
- Department of Cell BiologySchool of MedicineJiangsu UniversityZhenjiangChina
| | - Zhengrong Zhou
- Department of Cell BiologySchool of MedicineJiangsu UniversityZhenjiangChina
| | - Junbo He
- Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Wanxin Peng
- Department of Cell BiologySchool of MedicineJiangsu UniversityZhenjiangChina
| | - Fengyi Du
- Department of Cell BiologySchool of MedicineJiangsu UniversityZhenjiangChina
| | - Youli Zhang
- Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Aihua Gong
- Department of Cell BiologySchool of MedicineJiangsu UniversityZhenjiangChina
| | - Min Xu
- Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|