1
|
An Y, Zhao R, Liu W, Wei C, Jin L, Zhang M, Ren X, He H. Quercetin through miR-147-5p/Clip3 axis reducing Th17 cell differentiation to alleviate periodontitis. Regen Ther 2024; 27:496-505. [PMID: 38756701 PMCID: PMC11096707 DOI: 10.1016/j.reth.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Background Quercetin (QU) plays an important role in treating periodontitis; however, the mechanism through which microRNAs regulate Th17 cell differentiation has not been determined. Methods QU was administered intragastrically to periodontitis rats once a day for one month. The morphology of alveolar bone was observed by micro-CT, gingival tissue structure was observed by HE staining, IL-6, TNF-α, IL-17A, RORγt, FOXP3 and IL-10 were detected by immunohistochemical staining, and Th17 and Treg cells in the peripheral blood were detected by flow cytometry. CD4+T cells were induced to differentiate into Th17 cells in vitro. Cell viability was determined by CCK8, and IL-17A and RORγt were detected by qPCR. Th17 cells were detected by flow cytometry, microRNA sequencing and bioinformatics analysis were used to screen key microRNAs, the phenotypic changes of Th17 cells were observed after overexpressed microRNAs via mimics. TargetScan database, in situ hybridization, and dual-luciferase reporter experiment were used to predict and prove target genes of microRNAs. The phenotype of Th17 cells was observed after overexpression of microRNA and target gene. Results Compared with periodontitis group, the distance from cementoenamel junction(CEJ) to alveolar bone(AB) was decreased, the structure of gingival papilla was improved, IL-6, TNF-α, IL-17, and RORγt were downregulated, FOXP3 and IL-10 were upregulated, the proportion of Th17 decreased and Treg increased in peripheral blood after QU treatment. Compared with Th17 cell group, mRNA levels of IL-17A and RORγt were decreased, and proportion of Th17 cells was significantly lower in the coculture group. MiR-147-5p was low in control group, upregulated in Th17 cell group, and downregulated after QU intervention, it's eight bases were inversely related to 3'UTR of Clip3, miR-147-5p with Clip3 were co-located in cells of periodontal tissue. Compared with those in Th17-mimicsNC + QU cells, the mRNA levels of RORγt and IL-17A upregulated, and proportion of Th17 cells increased in Th17-miR-147-5p + QU cells. The miR-147-5p mimics inhibited the luciferase activity of the WT Clip3 3'UTR but had no effect on the Mut Clip3 3'UTR. Clip3 was significantly downregulated after the overexpression of miR-147-5p. Mimics transfected with miR-147-5p reversed the decrease in the proportion of Th17 cells induced by QU, while the overexpression of Clip3 antagonized the effect of miR-147-5p and further reduced the proportion of Th17 cells. Moreover, the overexpression of miR-147-5p reversed the decreases in the mRNA levels of IL-17 and RORγt induced by QU treatment, while pcDNA3.1 Clip3 treatment further decreased the mRNA levels of IL-17 and RORγt. Conclusion QU reducing inflammatory response and promoting alveolar bone injury and repair, which closely relative to inhibit the differentiation of CD4+T cells into Th17 cells by downregulating miR-147-5p to promote the activation of Clip3.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, Yunnan Province, China
| | - Ruoyu Zhao
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, Yunnan Province, China
| | - Wang Liu
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, Yunnan Province, China
| | - Chenxi Wei
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, Yunnan Province, China
| | - Luxin Jin
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, Yunnan Province, China
| | - Mingzhu Zhang
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, Yunnan Province, China
| |
Collapse
|
2
|
Zheng C, Nie H, Pan M, Fan W, Pi D, Liang Z, Liu D, Wang F, Yang Q, Zhang Y. Chaihu Shugan powder influences nonalcoholic fatty liver disease in rats in remodeling microRNAome and decreasing fatty acid synthesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116967. [PMID: 37506783 DOI: 10.1016/j.jep.2023.116967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Shugan powder (CSP) plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms. However, whether the mechanism involves microRNA (miRNA) regulation remains unknown. AIM OF THE STUDY To investigate the effects of CSP on the miRNA expression profile of rats with NAFLD induced by high-fat diet (HFD), and to explore the mechanism of CSP in the treatment of NAFLD. METHODS NAFLD rat models were established by an 8-week HFD. The therapeutic effects of CSP on NAFLD were evaluated by physiological, biochemical and pathological analysis and hepatic surface microcirculation perfusion test. MicroRNA sequencing was used to study the effect of CSP on the miRNA expression profile of NAFLD rats, and the target genes of differentially expressed (DE) miRNAs were predicted for further function enrichment analysis. Next, targets of CSP and NAFLD were collected by a network pharmacological approach, and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed for the common target genes of CSP, NAFLD and DE miRNAs, and the expression levels of key genes and proteins were verified by quantitative Real-time PCR and Western blot. Finally, a network among formula-herb-compound-miRNA-target-biological processes-disease was established to explained the complex regulation mechanism of CSP on NAFLD. RESULTS The results showed that CSP significantly improved liver lipid accumulation, serum lipid and transaminase levels and liver surface microcirculation disturbance in HFD-induced NAFLD rats. The intervention of CSP reversed the high expression of 15 miRNAs in liver tissues induced by HFD, including miR-34a-5p, miR-146a-5p, miR-20b-5p and miR-142-3p. The results of pathway and functional enrichment analysis showed that, CSP might play an anti-NAFLD role via regulating DE miRNAs related to fatty acid metabolic process. Combined with the network pharmacological analysis, it was found that the DE miRNAs might affected the fatty acid biosynthesis pathway in the treatment of NAFLD by CSP. Molecular biology experiments have conformed the decreased the gene and protein levels of acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN) and other fatty acid biosynthesis related enzymes on NAFLD rats after intervention of CSP. CONCLUSIONS CSP can significantly reduce hepatic lipid accumulation of NAFLD rat model induced by HFD, and its mechanism may be through the action of 15 miRNAs such as miR-34a-5p, miR-146a-5p, miR-20b-5p and miR-142-3p. Reduce the gene and protein expression levels of ACACA, FASN and other fatty acid biosynthesis related enzymes, thus reducing fatty acid biosynthesis. Based on an epigenetic perspective, this study explains the key anti-NAFLD mechanism of CSP via combination of microRNA sequencing and network pharmacological analysis, providing a new reference for the modernization of traditional Chinese medicine.
Collapse
Affiliation(s)
- Chuiyang Zheng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Huan Nie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Wen Fan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dajin Pi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Zheng Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dongdong Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Fengzhen Wang
- Accreditation Center of TCM Physician State Administration of Traditional Chinese Medicine, Beijing, China.
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Pereira IDS, Cruz ABD, Maia MM, Carneiro FM, Gava R, Spegiorin LCJF, Brandão CC, Truzzi IGDC, Junior GMDF, de Mattos LC, Pereira-Chioccola VL, Meira-Strejevitch CS. Identification and validation of reference genes of circulating microRNAs for use as control in gestational toxoplasmosis. Mol Biochem Parasitol 2023; 256:111592. [PMID: 37666471 DOI: 10.1016/j.molbiopara.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Toxoplasmosis causes serious harm to the fetus, as tachyzoite dissemination, during pregnancy in women developing the primo-infection. The microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. Circulating miRNA are promising biomarkers for diagnosis and prognosis of numerous diseases. The miRNAs levels are estimated by quantitative real-time PCR (qPCR), however, the relative quantification of each miRNA expression requires proper normalization methods using endogenous miRNAs as control. This study analyzed the expression of three endogenous miRNAs (miR-484, miR -423-3p and miR-26b-5p) for use as normalizers in future studies of target miRNAs for gestational toxoplasmosis (GT). A total of 32 plasma samples were used in all assays divided in 21 from women with GT and 11 from healthy women. The stability of each endogenous miRNA was evaluated by the algorithm methods RefFinder that included GeNorm, Normfinder, BestKeeper and comparative delta-CT programs. The miR-484 was the most stably gene, and equivalently expressed in GT and NC groups. These results contribute to future studies of target miRNAs in clinical samples of women with gestational toxoplasmosis.
Collapse
Affiliation(s)
- Ingrid de Siqueira Pereira
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Allecineia Bispo da Cruz
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Francieli Marinho Carneiro
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | | | | | - Vera Lucia Pereira-Chioccola
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Cristina Silva Meira-Strejevitch
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil.
| |
Collapse
|
4
|
Benassi B, Bacchetta L, Maccioni O, Pacchierotti F. Epigenetic-based antioxidant effect of an ethanolic extract of Corylus avellana L. on THLE-2 human primary hepatocytes. Nat Prod Res 2023; 37:4162-4168. [PMID: 36735396 DOI: 10.1080/14786419.2023.2174537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
The ethanolic extract of Corylus avellana L hazelnut, prepared in our laboratories, has been previously characterized by liquid chromatography coupled to high resolution mass spectrometry. We here aimed at testing the antioxidant effect of such extract in H2O2-challenged THLE-2 human primary hepatocytes and verified whether it might be based on microRNA-34b/c expression changes. We here demonstrate that miR-34b/miR-34c undergo significant stimulation (≥2-fold change, p < 0.05) in THLE-2 when treated for 72h with not-toxic hazelnut concentrations (0.04-0.4 mg/ml), when compared with 0.06% ethanol control. When administered with H2O2 (1000-2000 µM, 24h), THLE-2 are significantly protected from oxidative stress if pre-treated with hazelnut, the H2O2-driven cytotoxicity and reactive oxygen species generation being recovered by hazelnut extract, through miR-34b/c stimulation. Although preliminary, our findings pave the way for further preclinical studies aimed at validating the possible health-related application of hazelnut matrix, and/or its metabolites, as powerful epigenetic-based drugs, food supplements or nutraceuticals.
Collapse
Affiliation(s)
- Barbara Benassi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Loretta Bacchetta
- Division of Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Oliviero Maccioni
- Division of Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
5
|
Zhang L, Kang Q, Kang M, Jiang S, Yang F, Gong J, Ou G, Wang S. Regulation of main ncRNAs by polyphenols: A novel anticancer therapeutic approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155072. [PMID: 37714063 DOI: 10.1016/j.phymed.2023.155072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518061, China
| | | | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jun Gong
- Central Laboratory, Yunfu People's Hospital, Yunfu 527399, China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
6
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
8
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Taylor CL, Hummert JG, Kang J. Enthalpy-entropy compensation in the binding of quercetin to calf thymus DNA. J Mol Recognit 2023; 36:e2994. [PMID: 36116116 DOI: 10.1002/jmr.2994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Caden L Taylor
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Juliana G Hummert
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| |
Collapse
|
10
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
11
|
Khazeei Tabari MA, Mirjalili R, Khoshhal H, Shokouh E, Khandan M, Hasheminasabgorji E, Hafezi-Moghadam A, Bagheri A. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4708527. [PMID: 35310030 PMCID: PMC8926515 DOI: 10.1155/2022/4708527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Diabetes mellitus (DM), hyperglycemia, and hypertension can result in diabetic retinopathy (DR), which is a major cause of blindness on a global scale. Development of DR is associated with decreased endothelial cells, increased basal membrane thickness, permeation of the retinal blood barrier, and neovascularization in patients. The purpose of the present review is to provide an overview of the findings regarding applications of phytochemicals for DR treatment and could be a beneficial resource for further clinical studies and also a basis for pharmaceutical purposes for drug design. Materials and Methods. A narrative literature review was performed from electronic databases including Web of Science, PubMed, and Scopus to analyze the effects of different phytochemicals to prevent or treat oxidation, angiogenesis, and inflammation in diabetic retinopathy. The inclusion criteria were original studies, which included the effects of different phytochemicals on diabetic retinopathy. The exclusion criteria included studies other than original articles, studies which assessed the effects of phytochemicals on nondiabetic retinopathy, and studies which used phytochemical-rich extracts. Results and Conclusions. Studies have shown that increased levels of inflammatory cytokines, angiogenic, and oxidative stress factors are involved in the progression and pathogenesis of DR. Therefore, phytochemicals with their anti-inflammatory, antiangiogenic, and antioxidant properties can prevent DR progression and retinal damage through various cellular mechanisms. It is also shown that some phytochemicals can simultaneously affect the inflammation, oxidation, and angiogenesis in DR.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razie Mirjalili
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Shokouh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6830560. [PMID: 34926688 PMCID: PMC8677408 DOI: 10.1155/2021/6830560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.
Collapse
|
13
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Mishan MA, Khazeei Tabari MA, Mahrooz A, Bagheri A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. Eur J Cancer Prev 2021; 30:413-421. [PMID: 33720053 DOI: 10.1097/cej.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flavonoids, a broad class of polyphenolic compounds, can potentially have several therapeutic properties in human diseases, including protective effects against oxidative stress, inflammation, cardiovascular disease, diabetes, neurodegenerative disorders, and cancers. Luteolin as a member of flavonoids has been found to exhibit several anticancer properties mainly through cell apoptosis induction, inhibition of invasion, cell proliferation, network formation, and migration. Recent studies have revealed that phytochemicals such as luteolin may exert therapeutic properties through microRNAs (miRNAs or miRs), which have been emerged as important molecules in cancer biology in recent years. miRNAs, as a class of noncoding RNAs, have several important roles in cancer progression or regression. In this review, we aimed to summarize and discuss the role of miRNAs in the luteolin effects on different cancers. This review can be in line with the studies, which have shown that miRNAs may be potential therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
16
|
Liu SJ, Hu SQ, Chen YC, Guo J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1961878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Si-Jia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Rajabi S, Najafipour H, Jafarinejad-Farsangi S, Joukar S, Beik A, Askaripour M, Jafari E, Safi Z. Quercetin, Perillyl Alcohol, and Berberine Ameliorate Right Ventricular Disorders in Experimental Pulmonary Arterial Hypertension: Effects on miR-204, miR-27a, Fibrotic, Apoptotic, and Inflammatory Factors. J Cardiovasc Pharmacol 2021; 77:777-786. [PMID: 34016844 DOI: 10.1097/fjc.0000000000001015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease causing right ventricular (RV) hypertrophy, failure, and death. Some miRNAs are involved in the pathophysiology of PAH. As the current treatments cannot prevent the progression of the disease, we investigated whether 3 plant derivatives, namely perillyl alcohol (PA), quercetin (QS), and berberine (BBR), can improve RV function and affect the expression of miR-204, miR-27a, and biochemical factors in monocrotaline-induced PAH (MCT-PAH). Thirty-six rats were divided into control (CTL), MCT, MCT+Veh (vehicle), MCT+PA, MCT+QS, and MCT + BBR groups (n = 6 each). After inducing PAH using MCT (60 mg/kg), PA (50 mg/kg), QS (30 mg/kg), and BBR (30 mg/kg) were administrated daily for 3 weeks. miR-204 expression, total antioxidant capacity, and antiapoptotic protein Bcl-2 significantly declined in the RV of PAH rats, and PA, QS, and BBR treatment significantly compensated for these decreases. Proapoptotic protein Bax and p21 cell cycle inhibitor increased in the RV. All 3 herbal derivatives compensated for Bax increase, and BBR caused a decrease in p21. TNFα, IL-6, and malondialdehyde increased in the RV, and PA, QS, and BBR significantly counterbalanced these increases. miR-27a expression was not affected by MCT and plant derivatives. Overall, PA, QS, and BBR improved ventricular disorders in rats with PAH by decreasing inflammation, apoptosis, and fibrosis and increasing the antioxidant-to-oxidant ratio. Therefore, these herbal derivatives may be considered as target therapeutic goals for this disease either alone or in combination with current medications.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Department of Physiology and Pharmacology, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman Iran
| | | | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman Iran
| | - Ahmad Beik
- Department of Physiology and Pharmacology, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Gastroenterology and Hepathology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology and Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran ; and
| | - Zohreh Safi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
19
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
20
|
Oladnabi M, Mishan MA, Rezaeikanavi M, Zargari M, Sadeghi RN, Bagheri A. Correlation between ELF-PEMF exposure and Human RPE Cell Proliferation, Apoptosis and Gene Expression. J Ophthalmic Vis Res 2021; 16:202-211. [PMID: 34055258 PMCID: PMC8126745 DOI: 10.18502/jovr.v16i2.9084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Emerging evidence implies that electromagnetic fields (EMFs) can negatively affect angiogenesis. In this regard, the effects of extremely low frequency pulsed electromagnetic field (ELF-PEMF) exposure on the relative expression level of angiogenic factors involved in the pathogenesis of ocular disorders were evaluated in human retinal pigment epithelial (hRPE) cells in order to investigate a noninvasive therapeutic method for patients with several ocular diseases associated with neovascularization. Methods After separating hRPE cells from globes, hRPE cells were exposed to 15 mT of ELF-PEMF (120 Hz) at 5, 10, and 15 min for seven days. Cell proliferation and apoptosis of treated cells were evaluated via ELISA assay. Moreover, relative expression changes of HIF-1α, CTGF, VEGFA, MMP-2, cathepsin D, and E2F3 were performed using real-time RT-PCR. Results ELF-PEMF exposure had no significant effects on the apoptosis and proliferation rate of hRPE cells. Expression level of HIF-1α, CTGF, VEGFA, MMP-2, cathepsin D, and E2F3 was downregulated following 5 min of ELF-PEMF exposure. Conclusion As ELF-PEMF showed inhibitory effects on the expression of angiogenic genes in hRPE cells with no cytotoxic or proliferative side effects, it can be introduced as a useful procedure for managing angiogenesis induced by retinal pathogenesis, although more studies with adequate follow-up in animal models are needed.
Collapse
Affiliation(s)
- Morteza Oladnabi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Both authors contributed equally to the manuscript
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Both authors contributed equally to the manuscript
| | - Mozhgan Rezaeikanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rouhallah Najjar Sadeghi
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Shokri-Mashhadi N, Kazemi M, Saadat S, Moradi S. Effects of select dietary supplements on the prevention and treatment of viral respiratory tract infections: a systematic review of randomized controlled trials. Expert Rev Respir Med 2021; 15:805-821. [PMID: 33858268 DOI: 10.1080/17476348.2021.1918546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Viral respiratory tract infections (RTIs) have been recognized as a global public health burden. Despite current theories about their effectiveness, the true benefits of dietary supplements on the prevention and treatment of viral RTIs remain elusive, due to contradictory reports. Hence, we aimed to evaluate the effectiveness of dietary supplements on the prevention and treatment of viral RTIs.Areas covered: We systematically searched databases of PubMed, Web of Science, Scopus, and Google Scholar through 4 March 2020, to identify randomized controlled trials that evaluated the effects of consuming selected dietary supplements on the prevention or treatment of viral RTIs.Expert opinion: Thirty-nine randomized controlled trials (n = 16,797 participants) were eligible and included. Namely, vitamin D supplementation appeared to improve viral RTIs across cohorts particulate in those with vitamin D deficiency. Among the evaluated dietary supplements, specific lactobacillus strains were used most commonly with selected prebiotics that showed potentially positive effects on the prevention and treatment of viral RTIs. Further, ginseng extract supplementation may effectively prevent viral RTIs as adjuvant therapy. However, longitudinal research is required to confirm these observations and address the optimal dose, duration, and safety of dietary supplements being publicly recommended.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NewYork, USA
| | - Saeed Saadat
- Department of Computer Sciences, Faculty of Mathematics and Natural Sciences, Heinrich Heine Universität, Düsseldorf, Germany
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
23
|
Shakeri A, Ghanbari M, Tasbandi A, Sahebkar A. Regulation of microRNA-21 expression by natural products in cancer. Phytother Res 2021; 35:3732-3746. [PMID: 33724576 DOI: 10.1002/ptr.7069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Wang J, Wang CY. Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol 2021; 150:112096. [PMID: 33647349 DOI: 10.1016/j.fct.2021.112096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
To unravel the potential of Licochalcone B as an anti-tumour phytochemical agent and evaluate its underlying mechanisms, we analyzed the mRNAs and miRNAs expression profiles of HepG2 cells in response to Licochalcone B (120 μM). mRNA and miRNA expression libraries were conducted and functional analysis for differential expression mRNAs was carried out utilizing Clue GO. We found 763 Licochalcone B -responsive differently expressed genes, among them, 572 mRNAs were up-regulated and 191 mRNAs were down-regulated, many of which were related to the MAPK signaling pathway. A protein-protein interaction network was constructed to discover the hub genes, and IL6, FOS, JUN, NOTCH1, UBC, UBB, CXCL8, CDKN1A, IL1B, ATF3, and GATA3 genes were screened out. Additionally, miRNAs engaged in Licochalcone B -mediated regulation on HepG2 cells were also studied. 85 differential expression miRNAs were identified, including 39 up-regulated miRNAs and 46 down-regulated miRNAs. Co-expression of miRNA-mRNA network was created and two key miRNAs (hsa-miR-29b-3p and hsa-miR-96-5p) were identified. These recognized key genes, miRNA, and the miRNA-mRNA regulatory network may provide clues to understand the molecular mechanism of Licochalcone B as an apoptotic inducer which may offer hint for its application as a functional food component.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chu-Yan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| |
Collapse
|
25
|
Network Pharmacology Interpretation of Fuzheng-Jiedu Decoction against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4652492. [PMID: 33688358 PMCID: PMC7914091 DOI: 10.1155/2021/4652492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
Introduction Traditional Chinese medicine (TCM) believes that the pathogenic factors of colorectal cancer (CRC) are “deficiency, dampness, stasis, and toxin,” and Fuzheng–Jiedu Decoction (FJD) can resist these factors. In this study, we want to find out the potential targets and pathways of FJD in the treatment of CRC and also explain from a scientific point of view that FJD multidrug combination can resist “deficiency, dampness, stasis, and toxin.” Methods We get the composition of FJD from the TCMSP database and get its potential target. We also get the potential target of colorectal cancer according to the OMIM Database, TTD Database, GeneCards Database, CTD Database, DrugBank Database, and DisGeNET Database. Subsequently, PPI analysis, KEGG pathways analysis, and GO biological processes analysis were carried out for the target of FJD in the therapy of colorectal cancer. In addition, we have also built a relevant network diagram. Results In this study, we identified four core compounds of FJD in the therapy of colorectal cancer, including quercetin, kaempferol, beta-sitosterol, and stigmasterol. At the same time, we also obtained 30 core targets, including STAT3, INS, TP53, VEGFA, AKT1, TNF, IL6, JUN, EGF, CASP3, MAPK3, MAPK1, MAPK8, SRC, IGF1, CCND1, ESR1, EGFR, PTEN, MTOR, FOS, PTGS2, CXCL8, HRAS, CDH1, BCL2L1, FN1, MMP9, ERBB2, and JAK2. FJD treatment of colorectal cancer mainly involves 112 KEGG pathways, including FoxO (hsa04068) signaling pathway, PI3K-Akt (hsa04151) signaling pathway, HIF-1 (hsa04066) signaling pathway, T cell receptor (hsa04660) signaling pathway, and ErbB (hsa04012) signaling pathway. At the same time, 330 GO biological processes were summarized, including cell proliferation, cell apoptosis, angiogenesis, inflammation, and immune. Conclusions In this study, we found that FJD can regulate cell proliferation, apoptosis, inflammation and immunity, and angiogenesis through PI3K-Akt signaling pathway to play an anti-CRC effect.
Collapse
|
26
|
Ramos YAL, Souza OF, Novo MCT, Guimarães CFC, Popi AF. Quercetin shortened survival of radio-resistant B-1 cells in vitro and in vivo by restoring miR15a/16 expression. Oncotarget 2021; 12:355-365. [PMID: 33659046 PMCID: PMC7899548 DOI: 10.18632/oncotarget.27883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy disease characterized by the expansion of CD5+ B-1 cells. The NZB mouse model of CLL shows similarities to human CLL, has age-associated increase in malignant B-1 clones and decreased expression of miR-15a/16. It was demonstrated that systemic lentiviral delivery of miR-15a/16 ameliorates disease manifestations in this mouse model. Nowadays, new therapeutic approaches have been focus on miRNA in cancer cells. Natural compounds like quercetin can modulate these miRNAs, consequently, suppress oncogenes or stimulate tumor suppressor genes by altering miRNA expressions. Here we investigate the effects of quercetin on miRNA15a/16 expression by radio-resistant B-1 cells. It has been described that a small percentage of B-1 cell survives to irradiation in vitro, and these cells show similarities to B-CLL cells. In these cells, the level of miR15a/16 is diminished and Bcl-2 is overexpressed. Quercetin treatment restore both, miR15a/16 and Bcl-2, to normal levels. Furthermore, transference of radioresistant B-1 cells to NOD/SCID mice causes an expansion of this population and also a migration to the liver. However, after quercetin treatment, even radioresistant B-1 cells are not able to expand or disseminate in vivo, and the levels of miR15a/16 and Bcl-2 are also normalized. Our data support the hypothesis that quercetin is an important adjuvant molecule that acts on miRNA15a/16 level and leads cells more permissive to apoptosis. This work could help to design new approaches to therapy in CLL patients.
Collapse
Affiliation(s)
- Yasmim Alefe Leuzzi Ramos
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Olivia Fonseca Souza
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Marilia Campos Tavares Novo
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Caroline Ferreira Cunha Guimarães
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana Flavia Popi
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
27
|
Zhang W, Chao X, Wu JQ, Ma XB, Yang YL, Wu Y, Lin JC. Exploring the Potential Mechanism of Guchang Zhixie Wan for Treating Ulcerative Colitis by Comprehensive Network Pharmacological Approaches and Molecular Docking Validation as Well as Cell Experiments. Chem Biodivers 2020; 18:e2000810. [PMID: 33251769 DOI: 10.1002/cbdv.202000810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Guchang Zhixie Wan (GZW) is a commonly used Chinese medicine for the treatment of ulcerative colitis (UC). This research explored the potential pharmacological mechanism of GZW in UC. The active ingredients, potential targets, and UC-related genes of GZW were retrieved from public databases. The pharmacological mechanisms including key components, potential targets and signal pathways were determined through bioinformatics analysis. The results of this study were verified through virtual molecular docking and cell experiments. Network analysis revealed that 26 active GZW compounds and 148 potential GZW target proteins were associated with UC. Quercetin, kaempferol and β-sitosterol were identified as the core active ingredients of GZW. IFNG, IL-1A, IL-1B, JUN, RELA, and STAT1 were indicated as key targets of GZW. These key targets have a strong affinity for quercetin, kaempferol, and β-sitosterol. GO and KEGG enrichment analysis showed that GZW target proteins are highly enriched in inflammatory, immune, and oxidative stress-related pathways. This study confirmed the therapeutic effect and revealed potential molecular mechanism of GZW on UC. And the protective effects of GZW on inflammatory bowel disease pathway were also revealed through STAT3/NF-κB/IL-6 pathway. The findings of this study enhanced our understanding of GZW in the treatment of UC and provided a feasible method for discovering potential drugs from traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Xu Chao
- Department of Translational Medicine Center, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Jie-Qiong Wu
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Xiao-Bing Ma
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Yin-Li Yang
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Yang Wu
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Jun-Chao Lin
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
- Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710000, P. R. China
| |
Collapse
|
28
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Perillyle alcohol and Quercetin ameliorate monocrotaline-induced pulmonary artery hypertension in rats through PARP1-mediated miR-204 down-regulation and its downstream pathway. BMC Complement Med Ther 2020; 20:218. [PMID: 32660602 PMCID: PMC7359282 DOI: 10.1186/s12906-020-03015-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 01/26/2023] Open
Abstract
Background Pulmonary artery hypertension (PAH) is a vascular disease in the lung characterized by elevated pulmonary arterial pressure (PAP). Many miRNAs play a role in the pathophysiology of PAH. Perillyle alcohol (PA) and Quercetin (QS) are plant derivatives with antioxidant and anti-proliferative properties. We investigated the effect of PA and QS on PAP, expression of PARP1, miR-204, and their targets, HIF1α and NFATc2, in experimental PAH. Methods Thirty rats were divided into control, MCT, MCT + Veh, MCT + PA and MCT + QS groups. MCT (60 mg/kg) was injected subcutaneously to induce PAH. PA (50 mg/kg daily) and QS (30 mg/kg daily) were administered for 3 weeks after inducing PAH. PAP, lung pathology, expression of miRNA and mRNA, and target proteins were evaluated through right ventricle cannulation, H&E staining, real-time qPCR, and western blotting, respectively. Results Inflammation and lung arteriole thickness in the MCT group increased compared to control group. PA and QS ameliorated inflammation and reduced arteriole thickness significantly. miR-204 expression decreased in PAH rats (p < 0.001). PA (p < 0.001) and QS (p < 0.01) significantly increased miR-204 expression. Expression of PARP1, HIF1α, NFATc2, and α-SMA mRNA increased significantly in MCT + veh rats (all p < 0.001), and these were reduced after treatment with PA and QS (both p < 0.01). PA and QS also decreased the expression of PARP1, HIF1α, and NFATc2 proteins that had increased in MCT + Veh group. Conclusion PA and QS improved PAH possibly by affecting the expression of PARP1 and miR-204 and their downstream targets, HIF1a and NFATc2. PA and QS may be therapeutic goals in the treatment of PAH.
Collapse
|
30
|
Mishan MA, Khazeei Tabari MA, Zargari M, Bagheri A. MicroRNAs in the anticancer effects of celecoxib: A systematic review. Eur J Pharmacol 2020; 882:173325. [PMID: 32615181 DOI: 10.1016/j.ejphar.2020.173325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase-2 (COX-2) is known as an important enzyme in the inflammation process that has tumorigenesis function in various cancers through the induction of epithelial-to-mesenchymal transition (EMT), cell proliferation, migration, and invasion that lead to metastasis. Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) that can selectively target COX-2, suppress downstream pathways, and finally lead to anticancer potentiality. microRNAs (miRNAs), as a class of small noncoding RNAs, play pivotal roles in cancers through the tumor-suppressive or oncogenic effects, by post-transcriptional regulation of their target genes. In this regard, shreds of evidence have shown that, COX-2 reveals its action through miRNA regulation. So, in this systematic review, we aimed to highlight the tumorigenic role of COX-2 in cancer development and the therapeutic effects of celecoxib, as a selective COX-2 drug, through the regulation of miRNAs.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
31
|
Lorente-Cebrián S, Herrera K, I. Milagro F, Sánchez J, de la Garza AL, Castro H. miRNAs and Novel Food Compounds Related to the Browning Process. Int J Mol Sci 2019; 20:E5998. [PMID: 31795191 PMCID: PMC6928892 DOI: 10.3390/ijms20235998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity prevalence is rapidly increasing worldwide. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation has emerged as a potential strategy for increasing energy expenditure. Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized to be present in certain kinds of white adipose tissue (WAT) depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenesis: a metabolic feature typically associated with BAT. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in a variety of tissues, including WAT and BAT. Likewise, it was shown that several food compounds could influence miRNAs associated with browning, thus, potentially contributing to the management of excessive adipose tissue accumulation (obesity) through specific nutritional and dietetic approaches. Therefore, this has created significant excitement towards the development of a promising dietary strategy to promote browning/beiging in WAT to potentially contribute to combat the growing epidemic of obesity. For this reason, we summarize the current knowledge about miRNAs and food compounds that could be applied in promoting adipose browning, as well as the cellular mechanisms involved.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Katya Herrera
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07020 Palma, Spain
| | - Ana Laura de la Garza
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Heriberto Castro
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| |
Collapse
|
32
|
Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 2019; 39:395-402. [PMID: 31617024 DOI: 10.1007/s10096-019-03715-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a non-coding subclass of endogenous small regulatory RNAs, with about 18-25 nucleotides length which play a critical role in the regulation of gene expression at the post-transcriptional level in eukaryotes. Aberrant expression of miRNAs has the potential to become powerful non-invasive biomarkers in pathological diagnosis and prognosis of different disorders including infectious diseases. Parasite's life cycle may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expressions. Over the last years, thousands of miRNAs have been identified in the helminthic and protozoan parasites and many pieces of evidence have demonstrated the functional role of miRNAs in the parasites' life cycle. Detection of these miRNAs in biofluids of infected hosts as prognostic and diagnostic biomarkers in infectious diseases is growing rapidly. In this review, we have highlighted altered expressions of host miRNAs, detected parasitic miRNAs in the infected hosts, and suggested some perspectives for future studies.
Collapse
Affiliation(s)
- Hossein Ghalehnoei
- Department of Medical Biotechnology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Huang G, Zhu H, Wu S, Cui M, Xu T. Long Noncoding RNA Can Be a Probable Mechanism and a Novel Target for Diagnosis and Therapy in Fragile X Syndrome. Front Genet 2019; 10:446. [PMID: 31191598 PMCID: PMC6541098 DOI: 10.3389/fgene.2019.00446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 01/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common congenital hereditary disease of low intelligence after Down syndrome. Its main pathogenic gene is fragile X mental retardation 1 (FMR1) gene associated with intellectual disability, autism, and fragile X-related primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS). FMR1 gene transcription leads to the absence of fragile X mental retardation protein (FMRP). How to relieve or cure disorders associated with FXS has also become a clinically disturbing problem. Previous studies have recently shown that long noncoding RNAs (lncRNAs) contribute to the pathogenesis. And it has been identified that several lncRNAs including FMR4, FMR5, and FMR6 contribute to developing FXPOI/FXTAS, originating from the FMR1 gene locus. FMR4 is a product of RNA polymerase II and can regulate the expression of relevant genes during differentiation of human neural precursor cells. FMR5 is a sense-oriented transcript while FMR6 is an antisense lncRNA produced by the 3' UTR of FMR1. FMR6 is likely to contribute to developing FXPOI, and it overlaps exons 15-17 of FMR1 as well as two microRNA binding sites. Additionally, BC1 can bind FMRP to form an inhibitory complex and lncRNA TUG1 also can control axonal development by directly interacting with FMRP through modulating SnoN-Ccd1 pathway. Therefore, these lncRNAs provide pharmaceutical targets and novel biomarkers. This review will: (1) describe the clinical manifestations and traditional pathogenesis of FXS and FXTAS/FXPOI; (2) summarize what is known about the role of lncRNAs in the pathogenesis of FXS and FXTAS/FXPOI; and (3) provide an outlook of potential effects and future directions of lncRNAs in FXS and FXTAS/FXPOI researches.
Collapse
Affiliation(s)
- Ge Huang
- The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- The Second Hospital of Jilin University, Changchun, China
| | - Shuying Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|