1
|
Wei X, Liu J, Xu Z, Wang D, Zhu Q, Chen Q, Xu W. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin. Biomed Pharmacother 2024; 173:116295. [PMID: 38401517 DOI: 10.1016/j.biopha.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, PR China.
| |
Collapse
|
2
|
Negi S, Shukla S, Patel SK, Vikram A, Gaur P, Kamar MD, Pathania D, Kotian SY, Bala M, Rana P, Bala L, Yadav AK, Ray RS, Dwivedi A. Benzo(ghi)perylene (BgP) a black tattoo ingredient induced skin toxicity via direct and indirect mode of DNA damage under UVA irradiation. Chem Biol Interact 2023; 379:110508. [PMID: 37150498 DOI: 10.1016/j.cbi.2023.110508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Tattooing is a very common fashion trend across all the ages and gender of the society worldwide. Although skin inflammatory diseases are very frequent among tattoo users because of the active chemical ingredients used in tattoo ink, yet no ingredient-specific toxicity study has been performed. Benzo(ghi)perylene (BgP) is one of the PAHs and an important ingredient of black tattoo ink that shows strong absorption in UVA and UVB radiation of sunlight. Therefore, understanding the hazardous potential of BgP especially under UVA exposure is important for the safety of skin of tattoo users by considering the fact that penetration of UVA is in the dermis region where tattoo ingredients reside. To evaluate the hazardous potential of BgP on human skin under UVA exposure, different experimental tools i.e., in-chemico, in-silico and in-vitro were utilized. Our results illustrated that BgP photosensitized under UVA (1.5 mW/cm2) irradiation shows a degradation pattern till 4 h exposure. Photosensitized BgP reduced significant cell viability (%) at 1 μg/ml concentration. However, the pretreatment of singlet and hydroxyl radical quenchers, restoration of cell viability observed, confirmed the role of type-I and type-II photodynamic reactions in phototoxicity of BgP. Further, intracellular uptake of BgP in HaCaT cells was estimated and confirmed by UHPLC analysis. Molecular docking of BgP with DNA and formation of γ-H2AX foci demonstrated the DNA intercalation and double-stranded DNA damaging potential of BgP. Furthermore, acridine orange and ethidium bromide (AO/EB) dual staining showed apoptotic cell death via photosensitized BgP under UVA irradiation. The above findings suggest that BgP reached the human skin cell and induced dermal toxicity via direct and indirect mode of DNA damage under UVA exposure finally promoting the skin cell death. Thus, BgP-containing tattoo ink may be hazardous and may induce skin damage and diseases, especially in presence of UVA radiation of sunlight. To minimize the risk of skin diseases from synthetic ingredients in tattoo ink, the study highlights the importance of developing eco-friendly and skin-friendly tattoo ingredients by companies.
Collapse
Affiliation(s)
- Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Prakriti Gaur
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Danish Kamar
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sumana Y Kotian
- Analyical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Madhu Bala
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Priyanka Rana
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Akhilesh K Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Analyical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Shi X, Wang P, Zhu Y, Li L, Yang T, Sun J, He L, Zhou N, Zhang P. Regulation of survivin and caspase/Bcl-2/Cyto-C signaling by TDB-6 induces apoptosis of colorectal carcinoma LoVo cells. J Gastrointest Oncol 2022; 13:2322-2332. [PMID: 36388656 PMCID: PMC9660084 DOI: 10.21037/jgo-22-780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Colorectal carcinoma (CRC) treatment remains severe. Survivin is aberrantly overexpressed in CRC tissues and might be a potential target for CRC treatment. TDB-6 is a new taspine derivative. The purpose of this study is to investigate the inhibitory effect of TDB-6 on CRC and its underlying mechanism. METHODS The MTT assay and xenograft model were utilized to investigate the inhibitory effect of TDB-6 on LoVo cells in vitro and in vivo. Hoechst staining and Annexin-V FITC/PI analysis were conducted to study the effect of TDB-6 on LoVo cell apoptosis. Mitochondrial membrane potential (Δψm) assay was conducted to demonstrated whether TDB-6 could induce mitochondrial-mediated apoptosis of LoVo cells. Western blotting was conducted to investigate the effect of TDB-6 on survivin protein and caspase/Bcl-2/Cyto-C signaling. RESULTS The results indicated that TDB-6 induced mitochondria-mediated apoptosis and inhibited the proliferation and growth of LoVo cells in vitro and in vivo. Mechanistic investigation utilizing western blotting indicated that TDB-6 inhibited survivin protein expression, and the inhibitory effect was augmented by TDB-6 and YM-155 co-administration, which revealed that TDB-6 might induce apoptosis of LoVo cells by targeted regulation of survivin. TDB-6 also regulated survivin downstream signaling. It significantly increased the protein level of cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, cleaved-PARP, and Cyto-C, and decreased the protein level of Bcl-2. CONCLUSIONS TDB-6 might be a promising survivin inhibitor with great potential for CRC treatment.
Collapse
Affiliation(s)
- Xianpeng Shi
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yaning Zhu
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Li
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tongfei Yang
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jingying Sun
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Langchong He
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Nan Zhou
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
4
|
Chandra S, Qureshi S, Chopra D, Dwivedi A, Ray RS. Involvement of Type-I & Type-II Photodynamic Reactions in Photosensitization of Fragrance Ingredient 2-acetonaphthone. Photochem Photobiol 2022; 98:1050-1058. [PMID: 35038766 DOI: 10.1111/php.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
2-acetonaphthone (2-ACN) is a synthetic fragrance material used in various cosmetics, as an adulterant. Due to its frequent use, we have conducted an in-depth study to understand the photosensitizing potential of 2-ACN. Results of this study illustrate that 2-ACN showed photodegradation in 4 hrs under ambient UVR (UV radiations) and sunlight exposure. It generated (1-25µg/ml) superoxide anion radical (O2 ·- ) and singlet oxygen (1 O2 ) in the presence of UVR/sunlight through in-chemico and in-vitro test systems. 2-ACN (10 µg/ml) showed 43.9 % and 57.4 % reduction in cell viability under UVA and sunlight, respectively. Photosensitized 2-ACN generated intracellular ROS (6 folds in UVA; 8 folds in sunlight), which compromises the endoplasmic reticulum and mitochondrial membrane potential leading to cell death. Acridine orange/ethidium bromide dual staining and annexin-V/PI uptake showed cell death caused via 2-ACN under UVR exposure. The above findings signify the role of ROS via Type-I & Type-II photodynamic pathways in photosensitization of 2-ACN that ultimately promotes photodamage of important cellular organelles leading to cell death. The study advocates that solar radiation should be avoided by the users after the application of cosmetic products contain 2-ACN.
Collapse
Affiliation(s)
- Sonam Chandra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saba Qureshi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Chopra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratan Singh Ray
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Chandra S, Qureshi S, Chopra D, Shukla S, Patel SK, Singh J, Ray RS. UVR-induced phototoxicity mechanism of methyl N-methylanthranilate in human keratinocyte cell line. Toxicol In Vitro 2022; 80:105322. [DOI: 10.1016/j.tiv.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
6
|
Homolak J. The effect of a color tattoo on the local skin redox regulatory network: an N-of-1 study. Free Radic Res 2021; 55:221-229. [PMID: 33855906 DOI: 10.1080/10715762.2021.1912340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biomedical aspects of tattooing have been extensively discussed in literature, however pathophysiological effects of tattoo inks in the human body are still unexplored. Oxidative stress is considered responsible for the adverse effects of tattooing, however no experimental evidence for tattoo ink-related oxidative stress in the human body currently exists. The aim was to examine the effect of a blue tattoo on skin redox regulatory network (RRN) parameters in a single human subject. Skin surface oxidation-reduction potential (ORP) was analyzed with a PH60F flat probe. Interstitial and intracellular fluid enriched capillary blood from the tattoo and the control area was extracted and analyzed with I2/KI-stabilized microORP, nitrocellulose redox permanganometry (NRP), carbonato-cobaltate (III) formation-derived H2O2 dissociation rate assay, 1,2,3-trihydroxybenzene autoxidation assay, thiobarbituric reactive substances (TBARS) assay and 5,5,'-dithio-bis-(2-nitrobenzoic acid) (DTNB)-based determination of free thiol content in low molecular weight and protein precipitate fractions. Surface ORP analysis revealed a greater antioxidant capacity of tattooed skin in comparison with the control (CTR). Capillary blood analysis confirmed greater reductive capacity in the tattoo sample both by microORP (-4.33 mV vs CTR) and NRP (+10.8%). Hydrogen peroxide dissociation rate (+11.8%), and protein sulfhydryl content (+8.5%) were increased, and lipid peroxidation (-15%) was reduced in the tattoo sample in comparison with the CTR. In this N-of-1 study, RRN of tattooed skin was shifted toward a more reductive state with all parameters indicating reduced levels of oxidative stress in comparison with nontattooed skin. The local antioxidant effect of copper(II) phthalocyanine provides one possible explanation of the observed effects.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Qureshi S, Chandra S, Chopra D, Dubey D, Jain V, Roy SK, Ray RS. Nabumetone induced photogenotoxicity mechanism mediated by ROS generation under environmental UV radiation in human keratinocytes (HaCaT) cell line. Toxicol Appl Pharmacol 2021; 420:115516. [PMID: 33798594 DOI: 10.1016/j.taap.2021.115516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/13/2023]
Abstract
Nabumetone (NB) is a non-steroidal anti-inflammatory drug (NSAID), prescribed for managing pain associated with acute/chronic rheumatoid arthritis, osteoarthritis and other musculoskeletal disorders. Though some incidences of photosensitivity have been reported, there is limited information available on its phototoxicity potential. In this study, NB photodegraded in a time-dependant manner (0-4 h) under UVA (1.5 mW/cm2), UVB (0.6 mW/cm2) and natural sunlight as observed through UV-vis spectrophotometer and the results were further confirmed with Ultra High-Performance Liquid Chromatography (UHPLC). Photosensitized NB generated reactive oxygen species (ROS) as observed by lipid peroxidation, suggesting oxidative degradation of lipids in cell membrane, thereby resulting in cell damage. MTT and NRU (neutral red uptake) assays revealed that NB induced phototoxicity in concentration-dependent manner (0.5, 1, 5, 10 μg/ml) under UVA, UVB and sunlight exposure (30 min) in human keratinocytes cell line (HaCaT), with significant phototoxicity at the concentration of 5 μg/ml. Photosensitized NB generated intracellular ROS, disrupted mitochondrial and lysosomal membrane integrity, resulting in cell death. UV-induced genotoxicity by NB was confirmed through micronuclei generation, γ-H2AX induction and cyclobutane pyrimidine dimer formation. This is the first study which showed the phototoxicity and photogenotoxicity potential of NB in HaCaT cell line. We also observed that photosensitized NB upregulated inflammatory markers, such as COX-2 and TNFα. This study proposes that sunlight exposure should be avoided by patients using nabumetone and proper guidance should be provided by clinicians regarding photosensitivity of drugs for better safety and efficacy.
Collapse
Affiliation(s)
- Saba Qureshi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-, 201 002, India
| | - Sonam Chandra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-, 201 002, India
| | - Deepti Chopra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Divya Dubey
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-, 201 002, India
| | - Somendu Kumar Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-, 201 002, India
| | - Ratan Singh Ray
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-, 201 002, India.
| |
Collapse
|
8
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
9
|
Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, Hawsawi Y, Almatrafi A, Alsagaby SA, Kamal MA, Warsi MK, Choudhry H, Jamal MS. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep 2020; 10:12377. [PMID: 32704157 PMCID: PMC7378827 DOI: 10.1038/s41598-020-69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia.
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia.
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Mahfuz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Yousef Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital, and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ahmed Almatrafi
- Department of Biology, Faculty of Science, University of Taibah, Medinah, Saudi Arabia
| | - Suliman Abdallah Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Cao LJ, Xie HT, Chu ZX, Ma Y, Wang MM, Shi Z. Tubeimoside‑1 induces apoptosis in human glioma U251 cells by suppressing PI3K/Akt‑mediated signaling pathways. Mol Med Rep 2020; 22:1527-1535. [PMID: 32627020 PMCID: PMC7339596 DOI: 10.3892/mmr.2020.11224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tubeimoside-1 (TBMS1), a traditional Chinese herb extracted from Bolbostemma paniculatum (Maxim.), induces apoptosis in a number of human cancer cell lines. TBMS1 has been reported to induce apoptosis in human glioma cells, however the mechanism remains to be elucidated. The present study explored TBMS1-induced PI3K/Akt-related pathways in human glioma cells. The human glioma U251 and the human astrocyte (HA) cell lines were treated with various concentrations of TBMS1. MTT assays were conducted to analyze cell viability. Cell cycle distribution and the rate of apoptosis were assessed using flow cytometry. BrdU incorporation and Hoechst 33342 staining were performed to analyze the cell cycle and apoptosis, respectively. Western blotting was performed to investigate protein expression levels. The results demonstrated that TBMS1 reduced cell viability in human glioma cells U251 by suppressing Akt phosphorylation. Subsequently, TBMS1 inhibited DNA synthesis and induced G2/M phase arrest by targeting the PI3K/Akt/p21 and the cyclin-dependent kinase 1/cyclin B1 signaling cascades. In addition, TBMS1 triggered apoptosis via the PI3K/Akt-mediated Bcl-2 signaling pathway. These results demonstrated that TBMS1 prevented the progression of gliomas via the PI3K/Akt-dependent pathway, which provided a theoretical basis for in vivo studies to use TBMS1 as potential therapy for the prevention of cancer.
Collapse
Affiliation(s)
- Li-Juan Cao
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Hai-Tang Xie
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhong-Xia Chu
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Yue Ma
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Ming-Ming Wang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhuang Shi
- Department of Mongolian Medicine Hand Foot Surgery, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| |
Collapse
|
11
|
Evaluation of phototoxicity of tattoo pigments using the 3 T3 neutral red uptake phototoxicity test and a 3D human reconstructed skin model. Toxicol In Vitro 2020; 65:104813. [DOI: 10.1016/j.tiv.2020.104813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/03/2023]
|
12
|
Altobelli GG, Van Noorden S, Balato A, Cimini V. Copper/Zinc Superoxide Dismutase in Human Skin: Current Knowledge. Front Med (Lausanne) 2020; 7:183. [PMID: 32478084 PMCID: PMC7235401 DOI: 10.3389/fmed.2020.00183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Superoxide dismutase is widespread in the human body, including skin and its appendages. Here, we focus on human skin copper/zinc superoxide dismutase, the enzyme that protects skin and its appendages against reactive oxygen species. Human skin copper/zinc superoxide dismutase resides in the cytoplasm of keratinocytes, where up to 90% of cellular reactive oxygen species is produced. Factors other than cell type, such as gender, age and diseased state influence its location in skin tissues. We review current knowledge of skin copper/zinc superoxide dismutase including recent studies in an attempt to contribute to solving the question of its remaining unexplained functions. The research described here may be applicable to pathologies associated with oxidative stress. However, recent studies on copper/zinc superoxide dismutase in yeast reveal that its predominant function may be in signaling pathways rather than in scavenging superoxide ions. If confirmed in the skin, novel approaches might be developed to unravel the enzyme's remaining mysteries.
Collapse
Affiliation(s)
- Giovanna G Altobelli
- Department of Advanced Biomedical Sciences, Medical School, "Federico II" University of Naples, Naples, Italy
| | - Susan Van Noorden
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Anna Balato
- Department of Advanced Biomedical Sciences, Medical School, "Federico II" University of Naples, Naples, Italy
| | - Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Medical School, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|