1
|
Khalil RG, Mohammed DA, Hamdalla HM, Ahmed OM. The possible anti-tumor effects of regulatory T cells plasticity / IL-35 in the tumor microenvironment of the major three cancer types. Cytokine 2025; 186:156834. [PMID: 39693872 DOI: 10.1016/j.cyto.2024.156834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
T lymphocytes are among the immunological cells that make up the tumor microenvironment (TME), and they are essential in the growth of tumors and anti-tumor reactions. Regulatory T cells (Treg cells) are a subset of CD4+ T cells in the immune system that suppress the immune system. They are distinguished by their expression of the master transcription factor forkhead box protein P3 (FOXP3). Furthermore, Treg cells are essential for maintaining immunological homeostasis, inhibiting inflammation, and maintaining self-tolerance. In a variety of malignancies within the TME, Treg cells demonstrate notable flexibility and functional diversity. Highly plastic Treg cells can change into Th-like Treg cells in specific circumstances, which allow them to secrete particular pro-inflammatory cytokines. Interleukin 35 (IL-35) is a part of the immunosuppressive cytokines that belong to the IL-12 family. Treg cells release IL-35, which was elevated in the peripheral blood and TME of numerous cancer patients, implying that IL-35 in the TME may be an intriguing target for cancer therapy. In cancer, IL-35 is a two-edged sword; it promotes tumorigenicity in cancer cells while shielding them from apoptosis. Nonetheless, other investigations have mentioned its conflicting effects on cancer prevention. Herein, we provide an updated understanding of the critical mechanisms behind the anticancer immunity mediated by Treg cells plasticity, the role of IL-35, and tactics to strengthen the immune response against malignancies, outlining major clinical trials that used Treg cells/IL-35 therapies in the three main cancer types (lung, breast, and colorectal cancers).
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Dina A Mohammed
- Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hadeer M Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Zidlik V, Hurnik P, Vantuchova Y, Michalcova S, Skarda J, Hulinova T, Purova D, Ehrmann J. FOXP3, IL-35, and PD-L1 in intra- and peritumoral lymphocytic infiltrate of cutaneous melanomas as an important part of antitumor immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 39865911 DOI: 10.5507/bp.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The tumor microenvironment is a significant mediator enabling tumor growth and progression. Tumor-infiltrating lymphocytes (TILs) are an important component of this but tumor cells develop mechanisms by which they can escape the action of the immune system. Immunosuppressive mechanisms cooperate with each other and involve cells of the immune system, the tumor microenvironment itself, chemokines and cytokines. In this study, we examined the FOXP3+, IL-35+, and PD-L1+ lymphocytes in tumor tissues as they are contributing to immunosuppression in some tumors, including melanoma. Such cells are also associated with tumor progression, early metastasis, and prognosis. METHODS AND RESULTS In this study, 95 cutaneous melanomas and 25 melanocytic nevi as a control group were examined by immunohistochemistry for FOXP3+, IL-35+, and PD-L1+ lymphocytes. Melanomas were divided into four groups according to the TNM classification: pT1 (35), pT2 (21), pT3 (21), and pT4 (18). PD-L1+ lymphocytes were enriched in pT3- and pT4-stage melanomas, especially in the periphery of the lesions (P<0.001). The number of FOXP3+ lymphocytes was positively correlated with the stage of the disease, especially in the center of the tumors (P<0.001). Likewise, IL-35+ lymphocytes (P<0.001) were enriched with the stage of the tumor. CONCLUSION This article demonstrates that the immunosuppressive environment develops in proportion to the stage of the melanoma. The most significant changes are found at the tumor periphery, confirming the heterogeneity of the tumor stroma which is more pronounced in more advanced tumors and which may contribute to the greater aggressiveness in these peripheral zones.
Collapse
Affiliation(s)
- Vladimir Zidlik
- Institute of Pathology and Molecular Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
- Institute of Clinical and Molecular Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Hurnik
- Institute of Pathology and Molecular Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
- Institute of Clinical and Molecular Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Yvetta Vantuchova
- Department of Dermatology, Faculty Hospital Ostrava, Ostrava, Czech Republic
| | - Simona Michalcova
- Department of Dermatology, Faculty Hospital Ostrava, Ostrava, Czech Republic
| | - Jozef Skarda
- Institute of Pathology and Molecular Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
- Institute of Clinical and Molecular Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tereza Hulinova
- Institute of Pathology and Molecular Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
- Institute of Clinical and Molecular Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Dana Purova
- Social Health Institute, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Institute of Pathology and Molecular Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
4
|
Chakraborty R, Mukherjee AK, Bala A. Breakthroughs in road mapping IL-35 mediated immunotherapy for type-1 and autoimmune diabetes mellitus. Cytokine 2024; 181:156692. [PMID: 38986251 DOI: 10.1016/j.cyto.2024.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
IL-35 is a recently discovered protein made up of IL-12α and IL-27β chains. It is encoded by IL12A and EBI3 genes. Interest in researching IL-35 has significantly increased in recent years, as evidenced by numerous scientific publications. Diabetes is on the rise globally, causing more illness and death in developing countries. The International Diabetes Federation (IDF) reports that diabetes is increasingly affecting children and teenagers, with varying rates across different regions. Therefore, scientists seek new diabetes treatments despite the growth of drug research. Recent research aims to emphasize IL-35 as a critical regulator of diabetes, especially type 1 and autoimmune diabetes. This review provides an overview of recent research on IL-35 and its link to diabetes and its associated complications. Studies suggest that IL-35 can offer protection against type-1 diabetes and autoimmune diabetes by regulating macrophage polarization, T-cell-related cytokines, and regulatory B cells (Bregs). This review will hopefully assist biomedical scientists in exploring the potential role of IL-35-mediated immunotherapy in treating diabetes. However, further research is necessary to determine the exact mechanism and plan clinical trials.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
5
|
Elmasry MF, Obaid YA, El-Samanoudy SI, Nour ZA, Doss SS. Estimation of the tissue and serum levels of IL-35 in Mycosis fungoides: a case-control study. Arch Dermatol Res 2024; 316:349. [PMID: 38850434 PMCID: PMC11162372 DOI: 10.1007/s00403-024-03115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma (CTCL) with its etiology not yet fully understood. Interleukin (IL)-35 is an inhibitory cytokine that belongs to the IL-12 family. Elevated IL-35 in the plasma and the tumor microenvironment increases tumorigenesis and indicates poor prognosis in different types of malignancies. The objective of this study is to estimate the expression levels of IL-35 in tissue and serum of MF patients versus healthy controls. This case-control study included 35 patients with patch, plaque, and tumor MF as well as 30 healthy controls. Patients were fully assessed, and serum samples and lesional skin biopsies were taken prior to starting treatment. The IL-35 levels were measured in both serum and tissue biopsies by ELISA technique. Both tissue and serum IL-35 levels were significantly higher in MF patients than in controls (P < 0.001) and tissue IL-35 was significantly higher than serum IL-35 in MF patients (P < 0.001). Tissue IL-35 was significantly higher in female patients and patients with recurrent MF compared to male patients and those without recurrent disease (P < 0.001). Since both tissue and serum IL-35 levels are increased in MF, IL-35 is suggested to have a possible role in MF pathogenesis. IL-35 can be a useful diagnostic marker for MF. Tissue IL-35 can also be an indicator of disease recurrence.
Collapse
Affiliation(s)
- Maha Fathy Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Zeinab Ahmed Nour
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sally Sameh Doss
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Bahadorian D, Faraj TA, Kheder RK, Najmaldin SK, Haghmorad D, Mollazadeh S, Esmaeili SA. A glance on the role of IL-35 in systemic lupus erythematosus (SLE). Cytokine 2024; 176:156501. [PMID: 38290255 DOI: 10.1016/j.cyto.2024.156501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
It is well known that systemic lupus erythematosus (SLE) is an auto-inflammatory disease that is characterized by chronic and widespread inflammation. The exact pathogenesis of SLE is still a matter of debate. However, it has been suggested that the binding of autoantibodies to autoantigens forms immune complexes (ICs), activators of the immune response, in SLE patients. Ultimately, all of these responses lead to an imbalance between anti-inflammatory and pro-inflammatory cytokines, resulting in cumulative inflammation. IL-35, the newest member of the IL-12 family, is an immunosuppressive and anti-inflammatory cytokine secreted mainly by regulatory cells. Structurally, IL-35 is a heterodimeric cytokine, composed of Epstein-Barr virus-induced gene 3 (EBI3) and p35. IL-35 appears to hold therapeutic and diagnostic potential in cancer and autoimmune diseases. In this review, we summarized the most recent associations between IL and 35 and SLE. Unfortunately, the comparative review of IL-35 in SLE indicates many differences and contradictions, which make it difficult to generalize the use of IL-35 in the treatment of SLE. With the available information, it is not possible to talk about targeting this cytokine for the lupus treatment. So, further studies would be needed to establish the clear and exact levels of this cytokine and its related receptors in people with lupus to provide IL-35 as a preferential therapeutic or diagnostic candidate in SLE management.
Collapse
Affiliation(s)
- Davood Bahadorian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Liu BN, Chen J, Piao Y. Global research and emerging trends in autophagy in lung cancer: a bibliometric and visualized study from 2013 to 2022. Front Pharmacol 2024; 15:1352422. [PMID: 38476332 PMCID: PMC10927969 DOI: 10.3389/fphar.2024.1352422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose: To highlight the knowledge structure and evolutionary trends in research on autophagy in lung cancer. Methods: Research publications on autophagy in lung cancer were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace data analysis software were used for the bibliometric and visualization analysis of countries, institutions, authors, journals, and keywords related to this field. Results: From 2013 to 2022, research on autophagy in lung cancer developed rapidly, showing rising trends in annual publications and citations. China (1,986 papers; 48,913 citations), Shandong University (77 publications; 1,460 citations), and Wei Zhang (20 publications; 342 citations) were the most productive and influential country, institution, and author, respectively. The journal with the most publications and citations on autophagy in lung cancer was the International Journal of Molecular Sciences (93 publications; 3,948 citations). An analysis of keyword co-occurrence showed that related research topics were divided into five clusters: 1) Mechanisms influencing autophagy in lung cancer and the role of autophagy in lung cancer; 2) Effect of autophagy on the biological behavior of lung cancer; 3) Regulatory mechanisms of 2 cell death processes: autophagy and apoptosis in lung cancer cells; 4) Role of autophagy in lung cancer treatment and drug resistance; and 5) Role of autophagy-related genes in the occurrence and development of lung cancer. Cell proliferation, migration, epithelial-mesenchymal transition, and tumor microenvironment were the latest high-frequency keywords that represented promising future research directions. Conclusion: This is the first comprehensive study describing the knowledge structure and emerging frontiers of research on autophagy in lung cancer from 2013 to 2022 by means of a bibliometric analysis. The study points to promising future research directions focusing on in-depth autophagy mechanisms, clinical applications, and potential therapeutic strategies, providing a valuable reference for researchers in the field. Systematic Review Registration: [https://systematicreview.gov/], identifier [registration number].
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Yi P, Yu W, Xiong Y, Dong Y, Huang Q, Lin Y, Du Y, Hua F. IL-35: New Target for Immunotherapy Targeting the Tumor Microenvironment. Mol Cancer Ther 2024; 23:148-158. [PMID: 37988561 DOI: 10.1158/1535-7163.mct-23-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.
Collapse
Affiliation(s)
- Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wenjun Yu
- Fuzhou First People's Hospital of Jiangxi Province, Fuzhou City, Jiangxi Province, P.R. China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Qiang Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yunfei Du
- Department of Anesthesiology, Nanchang Central Hospital, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
9
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The sequestosome 1 protein: therapeutic vulnerabilities in ovarian cancer. Clin Transl Oncol 2023; 25:2783-2792. [PMID: 36964889 DOI: 10.1007/s12094-023-03148-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/04/2023] [Indexed: 03/26/2023]
Abstract
Ovarian cancer (OC) is the most deadly tumor that may develop in a woman's reproductive system. It is also one of the most common causes of death among those who have been diagnosed with cancer in women. An adapter protein known as sequestosome 1(SQSTM1) or p62 is primarily responsible for the transportation, degradation, and destruction of a wide variety of proteins. This adapter protein works in conjunction with the autophagy process as well as the ubiquitin proteasome degradation pathway. In addition, the ability of SQSTM1 to interact with multiple binding partners link SQSTM1 to various pathways in the context of antioxidant defense system and inflammation. In this review, we outline the processes underlying the control that SQSTM1 has on these pathways and how their dysregulation contributes to the development of OC. At the final, the therapeutic approaches based on SQSTM1 targeting have been discussed.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zhao L, Li J, Mo G, Cao D, Li C, Huang G, Jiang L, Chen G, Yao H, Peng X. Recombinant protein EBI3 attenuates Clonorchis sinensis-induced liver fibrosis by inhibiting hepatic stellate cell activation in mice. Parasit Vectors 2023; 16:246. [PMID: 37480105 PMCID: PMC10360228 DOI: 10.1186/s13071-023-05863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Chronic infection with Clonorchis sinensis can cause hepatobiliary fibrosis and even lead to hepatobiliary carcinoma. Epstein-Barr virus-induced gene 3 protein (EBI3) is a subunit of interleukin 35, which can regulate inflammatory response and the occurrence of fibrotic diseases. Previous studies have reported that the expression of EBI3 in the serum of patients with liver cirrhosis is reduced. The present study aims to investigate the biological effects of EBI3 on liver fibrosis caused by C. sinensis and the underlying molecular mechanisms. METHODS We first established a mouse model of liver fibrosis induced by C. sinensis infection and then measured the serum expression of EBI3 during the inflammatory and fibrotic phase. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses were performed to investigate the potential role of EBI3 in liver fibrosis by regulating the extracellular matrix structural constituent and collagen catabolic process. Recombinant protein EBI3 (rEBI3) was added to hepatic stellate cells (HSCs) in vitro with C. sinensis antigen to explore its function. Finally, the therapeutic effect of rEBI3 was verified by intravenous injection into C. sinensis-infected mice. RESULTS The results showed that the serum expression of EBI3 increased in the inflammatory response phase but decreased in the fibrotic phase. The excretory-secretory products of C. sinensis (Cs.ESP) were able to stimulate HSC activation, while rEBI3 reduced the activation of HSCs induced by Cs.ESP. Also, the protein expression of gp130 and downstream protein expressions of JAK1, p-JAK1, STAT3 and p-STAT3 in HSCs were increased after rEBI3 incubation. Finally, intravenously injected rEBI3 inhibited hepatic epithelial-mesenchymal transition in C. sinensis-infected mice by inhibiting HSC activation and reducing liver injury. CONCLUSION This study confirms that rEBI3 can attenuate C. sinensis-induced liver fibrosis by inhibiting HSC activation and may be one of the potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Lei Zhao
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jia Li
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Gang Mo
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Deping Cao
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Chun Li
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guoyang Huang
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Liping Jiang
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Gen Chen
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Hongbing Yao
- Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xiaohong Peng
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
13
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
14
|
Li R, Huang B, Tian H, Sun Z. Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment. Front Oncol 2023; 12:1096717. [PMID: 36698392 PMCID: PMC9868934 DOI: 10.3389/fonc.2022.1096717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer (EC) is one of the most life-threatening malignancies worldwide. Esophageal squamous cell carcinoma (ESCC) is the dominant subtype, accounting for approximately 90% of new incident EC each year. Although multidisciplinary treatment strategies have advanced rapidly, patients with ESCC are often diagnosed at advanced stage and the long-term prognosis remains unsatisfactory. In recent decades, immunotherapy, such as immune checkpoint inhibitors (ICIs), tumor vaccines, and chimeric antigen receptor T-cell (CAR-T) therapy, has been successfully used in clinical practice as a novel therapy for treating tumors, bringing new hope to ESCC patients. However, only a small fraction of patients achieved clinical benefits due to primary or acquired resistance. Immune evasion plays a pivotal role in the initiation and progression of ESCC. Therefore, a thorough understanding of the mechanisms by which ESCC cells escape from anti-tumor immunity is necessary for a more effective multidisciplinary treatment strategy. It has been widely recognized that immune evasion is closely associated with the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic complex and comprehensive system including not only cellular components but also non-cellular components, which influence hallmarks and fates of tumor cells from the outside. Novel immunotherapy targeting tumor-favorable TME represents a promising strategy to achieve better therapeutic responses for patients with ESCC. In this review, we provide an overview of immune evasion in ESCC, mainly focusing on the molecular mechanisms that underlie the role of TME in immune evasion of ESCC. In addition, we also discuss the challenges and opportunities of precision therapy for ESCC by targeting TME.
Collapse
|
15
|
Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol Ther 2022; 239:108189. [DOI: 10.1016/j.pharmthera.2022.108189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
|
16
|
Vafaei Mastanabad M, Nooraei A, Hassan Zadeh Tabatabaei MS, Akbari Fakhrabadi A, Jafarzadeh F. Granulocyte-colony stimulating factor (G-CSF): an emerging therapeutic approach for amyotrophic lateral sclerosis (ALS). Acta Neurol Belg 2022:10.1007/s13760-022-01996-z. [PMID: 35737276 DOI: 10.1007/s13760-022-01996-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. G-CSF is a 19.6-kDa hematopoietic growth factor which is essential for the proliferation and differentiation of granulocyte hematopoietic progenitors. G-CSF exerts neuroprotective activities by induction of neuronal regeneration, inhibition of neuronal apoptosis, mobilization of Hematopoietic stem cells (HSCs), regulation of pro and anti-inflammatory cytokines, and activation of angiogenesis. Pre-clinical studies have shown significant efficacy of G-CSF therapy in mSOD1G93A mice models. G-CSF treatments were able to increase the survival of mice. However, clinical studies on ALS patients failed to clone pre-clinical results. Considering the potential role of G-CSF in nervous system regeneration, this study aimed to comprehensively review the clinical and pre-clinical studies addressing G-CSF in ALS treatment.
Collapse
Affiliation(s)
| | - Aref Nooraei
- Comparative Anatomy and Embryology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | - Faria Jafarzadeh
- Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
17
|
Yang L, Liu S, Zhang Q, Jia S, Qiu C, Jin Z. Overexpression of ascitic interleukin-35 induces CD8 + T cell exhaustion in liver cirrhotic patients with spontaneous bacterial peritonitis. Int Immunopharmacol 2022; 108:108729. [PMID: 35349961 DOI: 10.1016/j.intimp.2022.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Interleukin (IL) -35 induces immunotolerance by suppression of CD8+ T cells during chronic infections and cancers. In the present study, we amined to investigate the role of IL-35-mediated regulation of CD8+ T cells in patients with liver cirrhosis. Seventy-one patients with liver cirrhosis (46 patients with untainted ascites and 25 patients with spontaneous bacterial peritonitis [SBP]) and 22 controls were enrolled. Plasma and ascitic IL-35 levels were measured using ELISA. Peripheral and ascitic CD4+ and CD8+ T cells were purified to investigate their functional phenotypes. IL-35-stimulated CD8+ T cells were cultured with HepG2 cells in direct and indirect contact systems. Lactate dehydrogenase expression and cytokine secretion were measured to determine the cytotoxicity of CD8+ T cells. Plasma IL-35 was elevated in patients with liver cirrhosis, and ascitic IL-35 levels were higher in the SBP group than in the untainted ascites group. No significant differences in transcription factor expression or cytokine production in peripheral and ascitic CD4+ T cells were observed among groups. In the SBP group, ascitic CD8+ T cells expressed decreased cytotoxic molecules, along with the reduced secretion of interferon-γ and tumor necrosis factor-α when compared with the untainted ascites group. IL-35 stimulation suppressed ascitic CD8+ T cell cytotoxicity and cytokine production in both direct and indirect contact culture systems. This process was accompanied by decreased cytotoxic molecule expression and increased immune-checkpoint molecules in ascitic CD8+ T cells. The present findings revealed that overexpression of ascitic IL-35 dampened the cytotoxicity of CD8+ T cells in liver cirrhotic patients with SBP.
Collapse
Affiliation(s)
- Lanlan Yang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Siqi Liu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Qian Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Shengnan Jia
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Chen Qiu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Zhenjing Jin
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China.
| |
Collapse
|
18
|
Li Z, Zhu L, Zheng H, Jiang W, Wang Y, Jiang Z, Xu J. Serum IL-35 levels is a new candidate biomarker of cancer-related cachexia in stage IV non-small cell lung cancer. Thorac Cancer 2022; 13:716-723. [PMID: 35142058 PMCID: PMC8888146 DOI: 10.1111/1759-7714.14307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer‐related cachexia is a major cause of treatment resistance and poor prognosis, which is characterized by anorexia and skeletal muscle depletion. To date, there have been no reports on the relationship between IL‐35 and cancer‐related cachexia in patients with stage IV non‐small cell lung cancer. Methods Serum IL‐35 levels in 86 patients with stage IV NSCLC were measured and statistically analyzed based on patients' clinicopathological parameters. Serum albumin levels, C‐reactive protein, and skeletal muscle index (SMI) of the patients were also determined. In vivo studies using a mouse model were also conducted by subcutaneously injecting immunodeficiency (SCID) mice with overexpressing IL‐35 cell lines and determining their daily food intake, bodyweight and muscle atrophy. Cachexia indicators were measured again after administering the mice with an anti‐IL35 neutralizing antibody. Results Patients with stage IV NSCLC had significantly higher serum IL‐35 levels than the healthy controls. Similarly, circulating IL‐35 levels were significantly higher in patients with cachexia than those without. The SMI values of patients with high serum IL‐35 levels were significantly lower than those with low serum IL‐35 levels. Mice subcutaneously injected with LLC PLV‐IL‐35 cell lines exhibited anorexia, weight loss, and muscle atrophy. Moreover, these symptoms were significantly reduced after administering the mice with an anti‐IL35 neutralizing antibody. Conclusions This study reveals that high serum IL‐35 expression is associated with non‐small cell lung cancer cachexia and skeletal muscle atrophy. These findings highlight its potential as a biomarker and therapeutic target for controlling cachexia of advanced lung cancer.
Collapse
Affiliation(s)
- Zengxun Li
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Han Zheng
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Xu
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
19
|
Wang J, Gong M, Fan X, Huang D, Zhang J, Huang C. Autophagy-related signaling pathways in non-small cell lung cancer. Mol Cell Biochem 2022; 477:385-393. [PMID: 34757567 DOI: 10.1007/s11010-021-04280-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is one of the most prevalent causes of morbidity and mortality in both men and women across the globe. The disease has a quiet phenotype at first, which leads to chronic tumor development. Non-small cell lung cancer (NSCLC) is the most common kind of lung cancer, accounting for 85 percent of all lung malignancies. Autophagy has been described as an intracellular "recycle bin" where damaged proteins and molecules are degraded. Autophagy regulation is mainly dependent on signaling pathways such as phosphoinositide 3-kinases (PI3K), AKT, and the mammalian target of rapamycin (mTOR). In the context of NSCLC, studies on these signaling pathways are inconsistent, but our literature review suggests that the inhibition of mTOR, PI3K/AKT, and epidermal growth factor receptor signaling pathways by different medications can active autophagy and inhibit NSCLC progression. In conclusion, signaling pathways related to autophagy are effective therapeutic approaches for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Mei Gong
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Xirong Fan
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Dalu Huang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Jinshu Zhang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Cheng Huang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China.
| |
Collapse
|
20
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Wu J, Jiang C, Hua Y, Liu X, You C. Association between polymorphisms of cytokine genes and diabetic nephropathy: A comprehensive systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14634. [PMID: 34309136 DOI: 10.1111/ijcp.14634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
AIM Diabetic nephropathy (DN) is one of the microvascular complications of diabetes, leading to renal failure. In this study, we sought to systematically investigate the cytokine gene polymorphisms association with DN. METHODS A structured bibliographic search on PubMed, Scopus, and EMBASE databases has been performed to identify related papers. The odds ratio and corresponding 95% confidence intervals (CIs) were calculated to estimate the association. RESULTS Overall, the pooled results showed that the dominant models of TNF-α rs1800629, IL-1β rs16944, IL-8 rs4073, and IL-10 rs1800896 were associated with increased susceptibility to DN. Also, the pooled analyses of the mutant allele vs wild allele of TNF-α rs1800629, rs1799964, IL-1β rs16944, and IL-8 rs4073 were associated with increased susceptibility to DN. Rs1800629, rs16944, rs4073, and rs1800896 polymorphisms were significantly associated with DN susceptibility, suggesting its potential use as a genetic risk marker in the population.
Collapse
Affiliation(s)
- Jinwen Wu
- Endocrinology Department, the Second People's Hospital of Yibin, Yibin, China
| | - Chengxia Jiang
- Endocrinology Department, the Second People's Hospital of Yibin, Yibin, China
| | - Yan Hua
- Endocrinology Department, the Second People's Hospital of Yibin, Yibin, China
| | - Xin Liu
- Endocrinology Department, the Second People's Hospital of Yibin, Yibin, China
| | - Chengshan You
- Endocrinology Department, the Second People's Hospital of Yibin, Yibin, China
| |
Collapse
|
22
|
Serum levels and genetic variation of IL-35 are associated with multiple sclerosis: a population-based case-control study. Immunol Res 2021; 70:75-85. [PMID: 34708312 DOI: 10.1007/s12026-021-09246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to investigate the association between serum levels and polymorphic variants of IL-35 with susceptibility, clinical features, and disease severity in multiple sclerosis (MS) patients.This case-control study recruited 186 MS patients and 195 sex- and age-matched healthy controls. Serum levels and polymorphic variants of IL-35 were determined by ELISA and restriction fragment length polymorphism (RFLP)-PCR or high resolution melting (HRM) analysis methods, respectively. In addition, by in silico analysis, we evaluated the location and function of the polymorphism.Serum levels of IL-35 were significantly lower in the patients than those of healthy controls (49.3 ± 3.7 vs. 69.5 ± 7.8, p = 0.009). EBI3 rs4740 polymorphism of IL-35 was associated with 2.2-fold increased risk of MS susceptibility (95% CI, 1.3-3.9, p = 0.005). However, there were no differences in the genotype distribution and allele frequencies of IL-35 rs568408 between the patients and controls (p > 0.05). In silico results showed that variation in IL-12A and EBI3 may affect on protein pathways of the cells and different components of the immune system such as NF-κB and INF-γ.The results show that IL-35 polymorphisms might be a genetic risk factor for the development of MS.
Collapse
|
23
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Wang X, Ding S. The biological and pharmacological connections between diabetes and various types of cancer. Pathol Res Pract 2021; 227:153641. [PMID: 34619575 DOI: 10.1016/j.prp.2021.153641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Diabetes and cancer incidence have risen tremendously over the years. Additionally, both cancer and diabetes share numerous risks, such as overweight, inactive lifestyles, older age, and smoking. Numerous methods have been suggested to connect obesity and diabetes to cancer advancements, such as increasing insulin/ Insulin-like growth factor I (IGF-1) signaling, lipid and glucose uptake and metabolism, shifts in the cytokine, chemokine, and adipokine profile also variations in the adipose tissue immediately adjacent to cancer spots. Diabetes has been found to have a complicated cancer-causing mechanism involving excessive reactive oxygen species (ROS) production, loss of critical macromolecules, chronic inflammation, and delayed repair, all of which contribute to carcinogenesis. Diabetes-associated epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition lead to the formation of cancer-associated fibroblasts in tumors by enabling tumor cells to extravasate via the endothelium and epithelium. This study aims to describe the correlation between diabetes and cancer, as well as summarize the molecular connections and shared pathways such as sex hormones, hyperglycemia, inflammation, insulin axis, metabolic symbiosis, and endoplasmic reticulum (ER) stress that exist between them.
Collapse
Affiliation(s)
- Xuechang Wang
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| | - Suming Ding
- Department of Ophthalmology, Jiujiang Maternal and Child Health Hospital, Jiujiang 332000, China
| |
Collapse
|
25
|
Salemizadeh Parizi M, Salemizadeh Parizi F, Abdolhosseini S, Vanaei S, Manzouri A, Ebrahimzadeh F. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacology 2021; 29:1613-1624. [PMID: 34613567 DOI: 10.1007/s10787-021-00878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
The most fatal malignancy of the central nervous system (CNS) is glioblastoma. Brain cancer is a 'cold' tumor because of fewer immunoregulatory cells and more immunosuppressive cells. Due to the cold nature of brain cancers, conventional treatments which are used to manage glioma patients show little effectiveness. Glioma patients even showed resistance to immune checkpoint blockade (ICB) and no significant efficacy. It has been shown that myeloid-derived suppressor cells (MDSCs) account for approximately 30-50% of the tumor mass in glioma. This study aimed to review MDSC function in brain cancer, as well as possible treatments and related challenges. In brain cancer and glioma, several differences in the context of MDSCs have been reported, including disagreements about the MDSC subtype that has the most inhibitory function in the brain, or inhibitory function of regulatory B cells (Bregs). There are also serious challenges in treating glioma patients. In addition to the cold nature of glioma, there are reports of an increase in MDSCs following conventional chemotherapy treatments. As a result, targeting MDSCs in combination with other therapies, such as ICB, is essential, and recent studies with the combination therapy approach have shown promising therapeutic effects in brain cancer.
Collapse
Affiliation(s)
| | | | | | - Shohreh Vanaei
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA
| | - Ali Manzouri
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Wang Z, Zhou C, Yang S. The roles, controversies, and combination therapies of autophagy in lung cancer. Cell Biol Int 2021; 46:3-11. [PMID: 34546599 DOI: 10.1002/cbin.11704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is one of the leading causes of death among men and women worldwide. The disease initially has a silent phenotype, which leads to the progression of the disease and ultimately the lack of proper response to routine treatments. Autophagy, known as an intracellular "recycle bin" for the degradation of defective proteins and molecules, is one of the mechanisms that has been considered in the context of cancer in recent years. This study aims to provide a comprehensive review of published articles on autophagy in the context of lung cancer to have a complete view of the role of autophagy in lung cancer and its possible treatments. PubMed, Scopus, and Google Scholar were searched until June 15 to find related articles. No specific search filters or restrictions were applied. The results were entered into reference management software for aggregation and management. The full text of all articles was screened and studied. In conclusion, studies on the exact function of autophagy in lung cancer are contradictory, but what can be concluded from a review of literature on lung cancer is that targeting autophagy combined with traditional routine therapies such as chemotherapy, especially in advanced stages of lung cancer, can be an effective anticancer approach.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Chunyang Zhou
- Department of Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.,Department of Clinical Medicine, Shandong University, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengjie Yang
- Department of Phase I Clinical Trial Center, Capital Medical University, Beijing Shijitan Hospital, Beijing, China
| |
Collapse
|
27
|
Jiang H, Cui B, Zhang J. Mycobacterium tuberculosis (MTB) antigen-induced upregulation of interleukin-35 expression in patients with MTB infection: In vitro blockade of the effects of interleukin-35 on T lymphocyte subsets. Pathog Dis 2021; 79:6318859. [PMID: 34245560 DOI: 10.1093/femspd/ftab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022] Open
Abstract
Immunosuppressive interleukin-35 (IL-35) serum concentrations were analyzed in patients with active pulmonary Mycobacterium tuberculosis (MTB) infections (PTB), PTB patients after two months treatment (stable PTB) and healthy controls. IL-35 concentrations were highest in active PTB followed by stable PTB cases and lowest in healthy control participants (all P < 0.01). The same trents were found for supernatants of isolated blood mononuclear cells (PBMCs), with additional enhancements after MTB antigen stimulation only for PBMCs of active and stable PTB patients (P < 0.001), for EBI3 and IL-12a transcriptions in PBMCs (P < 0.001) and percentages of EBI3 expressing (CD4 + CD25 + Foxp3+) regulatory T cells (Treg) (P < 0.001). IL-35 antibody applications significantly reversed MTB antigen stimulated IL-35 and IL-10 expression in PBMCs of active and stable PTB patients, and reduced Foxp3 expression in CD4 + CD25 + cells and EBI3 expression in Treg cells, but had no effects on healthy control cells. The percentages of Th1 and Th17 cells in CD4 + cells were enhanced after MTB antigen stimulation of cells taken from active and stable PTB patients, which were partly increased only for Th1 cells after IL-35 antibody exposure. MTB antigen-driven upregulation of IL-35 may lead to reduced immune surveillance in PTB patients.
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Beinian Cui
- Department of Laboratory Medicine, Shanghai DeltaHealth Hospital. No. 109 Xule Road, Xujing Town, Qingpu District, Shanghai 201702, China
| | - Jun Zhang
- Department of Laboratory Medicine, Shanghai DeltaHealth Hospital. No. 109 Xule Road, Xujing Town, Qingpu District, Shanghai 201702, China
| |
Collapse
|
28
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y, Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front Immunol 2021; 12:683332. [PMID: 34093586 PMCID: PMC8176033 DOI: 10.3389/fimmu.2021.683332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Moonesi M, Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Solali S, Mohammadi MH, Farshdousti Hagh M, Mehdizadeh H. IGF family effects on development, stability, and treatment of hematological malignancies. J Cell Physiol 2020; 236:4097-4105. [PMID: 33184857 DOI: 10.1002/jcp.30156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Multiple factors, including growth factors, are shown to be culprits of cancer outset and persistence. Among growth factors, insulin-like growth factors (IGFs) family are of more importance in the prognosis of blood malignancies. After binding to their corresponding receptor, IGFs initiate PI3K/AKT signaling pathway and increase the translation of intracellular proteins, such as cell division-related proteins. They also stimulate the transcription of cell division-related genes using the Ras-GTP pathway. In addition to organs such as the liver, IGFs are secreted by tumor cells and can cause growth and proliferation of self or tumor cells via autocrine and paracrine methods. Current studies indicate that decreasing the effects of IGF by blocking them, their receptors, or PI3K/AKT pathway using various drugs could help to suppress the division of tumor cells. Here, we delineate the role of the IGF family in hematologic malignancies and their potential mechanisms.
Collapse
Affiliation(s)
- Mohammadreza Moonesi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Zaka Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Solali
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Mehdizadeh
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ito T, Tanaka T, Nakamaru K, Tomiyama T, Yamaguchi T, Ando Y, Ikeura T, Fukui T, Uchida K, Nishio A, Okazaki K. Interleukin-35 promotes the differentiation of regulatory T cells and suppresses Th2 response in IgG4-related type 1 autoimmune pancreatitis. J Gastroenterol 2020; 55:789-799. [PMID: 32377945 DOI: 10.1007/s00535-020-01689-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a systemic inflammatory disease, which includes type 1 autoimmune pancreatitis (AIP). Interleukin-35 (IL-35) exhibits immunosuppressive effects in several autoimmune diseases. However, the expression of IL-35 had not been reported so far in type 1 AIP. We evaluated the association between IL-35 and several cytokines, which mediate the function of Tregs in type 1 AIP. METHODS Plasma was collected from patients with type 1 AIP, alcoholic chronic pancreatitis (ACP), and healthy controls (HC) and assayed for cytokine expression. Total mRNA separated from peripheral blood was isolated from naïve Tregs (nTregs) and effector Tregs (eTregs). EBI3 and IL-12p35 gene expressions were tested in these cells by quantitative PCR. In addition, expression of IL-35 subunits in the pancreatic tissues of patients with type 1 AIP and ACP was analyzed by immunohistochemistry. RESULTS IL-35 was significantly elevated in type 1 AIP (n = 32) plasma compared with ACP (n = 16) and HC (n = 22), but IL-27 was not. We also detected many cells expressing both EBI3 and IL-12p35 in type 1 AIP tissues. Moreover, in peripheral blood lymphocyte, the percentage of nTregs and eTregs of CD4+ T cells in patients with type 1 AIP (n = 14) compared with HC (n = 15) was significantly decreased and increased, respectively. There were no significant differences of gene expression in patients with type 1 AIP and HC. CONCLUSIONS This study identified elevated expression of plasma IL-35 and tissue IL-35 subunits in patients with type 1 AIP. This might lead to inflammation suppression via activated eTregs. IL-35 might be associated with this anti-inflammatory role, especially against the Th2 response through several cytokines and the differentiation of Tregs in type 1 AIP.
Collapse
Affiliation(s)
- Takashi Ito
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshihiro Tanaka
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Koh Nakamaru
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Yamaguchi
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yugo Ando
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tsukasa Ikeura
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, 185-1 Kohasu Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Akiyoshi Nishio
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazuichi Okazaki
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|