1
|
Azizidoost S, Sheykhi-Sabzehpoush M, Dari MAG, Józkowiak M, Niebora J, Domagała D, Data K, Dzięgiel P, Mozdziak P, Farzaneh M, Kempisty B. LncRNA-mediated regulation of cisplatin response in breast cancer. Pathol Res Pract 2024; 264:155716. [PMID: 39536542 DOI: 10.1016/j.prp.2024.155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a prevalent and aggressive disease characterized by high metastasis, recurrence, and mortality rates. While cisplatin is an effective chemotherapy drug, its use is limited by its toxic effects on the body. Despite advancements in therapeutic strategies, the therapeutic response is often unsatisfactory due to drug resistance, leading to poor prognosis. Recent studies have shown that cisplatin interacts with long non-coding RNAs (lncRNAs) and accelerates the development of resistance in tumor cells to therapy. This interaction highlights the complex mechanisms involved in the response of cancer cells to chemotherapy. Several lncRNAs have been identified as key players in mediating cisplatin resistance in breast cancer. These lncRNAs include SNHG15, HULC, HCP5, MT1JP, LncMat2B, DLX6-ASL, Linc00665, CARMN, and Lnc-EinRP44-3:6. These lncRNAs have been shown to target microRNAs and mRNAs and modulate the expression of genes involved in cisplatin resistance, which is important in treating breast cancer.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Małgorzata Józkowiak
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Julia Niebora
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland; Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA; Department of Veterinary Surgery, Institute of Veterinary Medicine Nicolaus Copernicus University, Torun, Poland; Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
3
|
Yuan M, Gu Y, Chen J, Jiang Y, Qian J, Cao S. LINC00665: A Promising Biomarker in Gastrointestinal Tumors. Curr Mol Med 2024; 24:51-59. [PMID: 36464865 DOI: 10.2174/1566524023666221201141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
An increasing volume of studies has reported that long non-codingRNAs (lncRNAs) are involved in the carcinogenesis of many different cancers. Especially in gastrointestinal tumors, lncRNAs are found to participate in various physiological and pathological processes. LncRNAs can regulate gene expression at multiple levels, including transcriptional, post-transcription, translational, and post-translational levels. Long intergenic non-protein coding RNA 665(LINC00665), a novel cancer-related lncRNA, is frequently dysregulated in multiple gastrointestinal tumors, including gastric and colorectal cancers, hepatocellular carcinoma, and so on. In this review, we analyzed the expression and prognostic value of LINC00665 in human gastrointestinal tumors, systematically summarized the current literature about the clinical significance of this lncRNA, and explored the regulatory mechanisms of LINC00665 as a competing endogenous RNA (ceRNA) in tumor progression. Consequently, we concluded that LINC00665 might act as a prognostic biomarker and a potential target for gastrointestinal tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuyang Gu
- Department of Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiawen Chen
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Yibin Jiang
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Jing Qian
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China
| | - Shuguang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
4
|
Wang J, Shen D, Li S, Li Q, Zuo Q, Lu J, Tang D, Feng Y, Yin P, Chen C, Chen T. LINC00665 activating Wnt3a/β-catenin signaling by bond with YBX1 promotes gastric cancer proliferation and metastasis. Cancer Gene Ther 2023; 30:1530-1542. [PMID: 37563362 DOI: 10.1038/s41417-023-00657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a key role in human cancer development; nevertheless, the effect of lncRNA LINC00665 on the progression of gastric cancer (GC) still unclear. In this study, we found that LINC00665 expression is upregulated in GC than normal gastric mucosa tissues and higher LINC00665 expression is associated with a poor prognosis in GC patients. Downregulated LINC00665 inhibited GC cells proliferation, invasion, and migration in vitro. Pulmonary metastasis animal models showed that downregulated LINC00665 could reduce the lung metastasis of GC in vivo. Tumor organoids were generated from human malignant GC tissues, downregulated LINC00665 could inhibit the growth of the organoids of GC tissues. Mechanistically, downregulated LINC00665 could inhibit GC cells EMT. RNA pulldown, RIP, and RIP-seq studies found that LINC00665 can bind to the transcription factor YBX1 and form a positive feed-forward loop. The luciferase reporter and CHIP results showed that YBX1 could regulate the transcriptional activity of Wnt3a, and downregulation of LINC00665 could block the activation of Wnt/β-catenin signaling. In conclusion, our results identified a feedback loop between LINC00665 and YBX1 that activates Wnt/β-catenin signaling, and it may be a potential therapeutic approach to suppress GC progression.
Collapse
Affiliation(s)
- Jie Wang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Dongxiao Shen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Qiuying Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Qingsong Zuo
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Peihao Yin
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Chao Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| | - Teng Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| |
Collapse
|
5
|
A Concise Review on Dysregulation of LINC00665 in Cancers. Cells 2022; 11:cells11223575. [PMID: 36429005 PMCID: PMC9688310 DOI: 10.3390/cells11223575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/β-Catenin, TGF-β, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.
Collapse
|
6
|
Liu Y, Ma S, Ma Q, Zhu H. Silencing LINC00665 inhibits cutaneous melanoma in vitro progression and induces apoptosis via the miR-339-3p/TUBB. J Clin Lab Anal 2022; 36:e24630. [PMID: 35929185 PMCID: PMC9459347 DOI: 10.1002/jcla.24630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background LncRNAs are closely related to cutaneous melanoma (CM) tumorigenesis and metastasis, and it can affect the progression of CM by regulating cell proliferation, migration, invasion, apoptosis, and other cellular mechanisms. This study investigated the role of LINC00665 in CM. Methods Expressions of LINC00665, miR‐339‐3p, and tubulin beta chain (TUBB) in CM cells were analyzed by qRT‐PCR and/or Western blot. The LINC00665/miR‐339‐3p/TUBB targeting network was predicted by bioinformatics tools, screened out by Venn diagrams and analyzed by Pearson's correlation coefficients, followed by validation via dual‐luciferase reporter assay and/or pull‐down assay. Transfection of siLINC00665 or miR‐339‐3p inhibitor/mimic was conducted with CM cells whose viability, proliferation, migration, invasion, cell cycle progression, and apoptosis were measured by CCK‐8 assay, colony formation assay, wound healing assay, Transwell assay, and flow cytometry. The associations of TUBB with tumor biological characteristics and other proteins were analyzed by CanserSEA and String, respectively. Results High‐expressed LINC00665 was detected in CM cells. Silencing LINC00665 decreased CM cell viability; inhibited colony formation, cell cycle progression, migration and invasion; enhanced apoptosis; and upregulated miR‐339‐3p. LINC00665 targeted miR‐339‐3p which targeted TUBB. MiR‐339‐3p upregulation induced effects similar to the LINC00665‐silencing‐induced effects and could downregulate TUBB, which was associated with malignant behaviors and related to other five proteins. MiR‐339‐3p downregulation induced the opposite effects of what miR‐339‐3p upregulation induced, and the miR‐339‐3p downregulation‐induced effects could be reversed by LINC00665 silencing. Conclusion Silencing LINC00665 inhibits in vitro CM progression and induces apoptosis via the miR‐339‐3p/TUBB axis.
Collapse
Affiliation(s)
- Yi Liu
- Dermatological Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City, China
| | - Shanshan Ma
- Department of Dermatology & STD, QingDao No.8 People's Hospital, Qingdao, China
| | - Qichao Ma
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| | - Haigang Zhu
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| |
Collapse
|
7
|
Zhang C, Xu SN, Li K, Chen JH, Li Q, Liu Y. The Biological and Molecular Function of LINC00665 in Human Cancers. Front Oncol 2022; 12:886034. [PMID: 35664776 PMCID: PMC9161781 DOI: 10.3389/fonc.2022.886034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and are implicated in the development of human cancers, without protein-coding function. Mounting evidence indicates that cancer initiation and progression are triggered by lncRNA dysregulation. Recently, a growing number of studies have found that LINC00665, a long intergenic non-protein coding RNA, may be associated with various cancers, including gastrointestinal tumors, gynecological tumors, and respiratory neoplasms. LINC00665 was reported to be significantly dysregulated in cancers and has an important clinical association. It participates in cell proliferation, migration, invasion, and apoptosis through different biological pathways. In this review, we summarize the current findings on LINC00665, including its biological roles and molecular mechanisms in various cancers. LINC00665 may be a potential prognostic biomarker and novel therapeutic target for cancers.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shu-Ning Xu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ke Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing-Hong Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qun Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Yang B, Su K, Sha G, Bai Q, Sun G, Chen H, Xie H, Jiang X. LINC00665 interacts with BACH1 to activate Wnt1 and mediates the M2 polarization of tumor-associated macrophages in GC. Mol Immunol 2022; 146:1-8. [PMID: 35395473 DOI: 10.1016/j.molimm.2022.03.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) remains one of the prevalent causes of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) have been associated with different cancers. The polarization of macrophages towards the M2 (alternatively activated) phenotype promotes immunologic tolerance and can induce gastric tumorigenesis. Thus far, lncRNAs have been shown to modulate the differentiation of immune cells. Here, we investigated the biological effects of LINC00665 on the progression of GC and explored the mechanisms underlying its ability to mediate the polarization of macrophages towards the M2 phenotype. We report that the levels of LINC00665 were increased in GC tissues. Furthermore, this increase in LINC00665 expression could be associated with decreased overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS). Using cell-based macrophage polarization models, we demonstrated that LINC00665 upregulation in GC cells facilitated the polarization of macrophages towards the M2 but not M1 (classically activated) phenotype. Furthermore, the loss of LINC00665 prevented the M2 polarization of macrophages. Mechanically, we identified that Wnt1 was the downstream target of LINC00665. Additionally, LINC00665 could directly interact with the transcription factor BTB domain and CNC homology 1 (BACH1). The interaction between LINC00665 and BACH1 resulted in the activation and binding of BACH1 to the Wnt1 promoters. Furthermore, BACH1 silencing could inhibit GC progression, which highlighted a crucial role for BACH1 in LINC00665-mediated Wnt1 activation. In addition, genetic Wnt1 overexpression effectively abolished the repression of Wnt signaling after BACH1 depletion and mediated GC development by supporting M2 macrophage polarization. In conclusion, we report that LINC00665 modulates M2 macrophage polarization and suggest that it may facilitate macrophage-dependent GC progression.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Kun Su
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Guanyu Sha
- Radiation Treatment Center, Suqian Hospital Affiliated to Xuzhou Medical University, Su qian, Jiang su, China
| | - Qingqing Bai
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Gengxin Sun
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Huidong Chen
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Hongmei Xie
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Huai an, Jiang su, China.
| |
Collapse
|
9
|
LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells 2022; 11:cells11091540. [PMID: 35563845 PMCID: PMC9102468 DOI: 10.3390/cells11091540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Long intergenic noncoding RNA 00665 (LINC00665) is located on human chromosome 19q13.12. LINC00665 was upregulated in eighteen cancers and downregulated in two cancers. LINC00665 not only inhibits 25 miRNAs but also directly affects the stability of ten protein-coding genes. Notably, LINC00665 also encodes a micro-peptide CIP2A-BP that promotes triple-negative breast cancer progression. LINC00665 can participate in five signaling pathways to regulate cancer progression, including the Wnt/β-catenin signaling pathway, TGF-β signaling pathway, NF-κB signaling pathway, PI3K/AKT signaling pathway, and MAPK signaling pathway. Aberrant expression of LINC00665 in breast cancer, gastric cancer, and hepatocellular carcinoma can be used for disease diagnosis. In addition, aberrant expression of LINC00665 is closely associated with clinicopathological features and poor prognosis of various cancers. LINC00665 is closely associated with the effects of anticancer drugs, including gefitinib and cisplatin in non-small cell lung cancer, gemcitabine in cholangiocarcinoma, and cisplatin-paclitaxel in breast cancer. This work systematically summarizes the diagnostic and prognostic values of LINC00665 in various tumors, and comprehensively analyzes the molecular regulatory mechanism related to LINC00665, which is expected to provide clear guidance for future research.
Collapse
|
10
|
Zhu J, Zhang Y, Chen X, Bian Y, Li J, Wang K. The Emerging Roles of LINC00665 in Human Cancers. Front Cell Dev Biol 2022; 10:839177. [PMID: 35356290 PMCID: PMC8959703 DOI: 10.3389/fcell.2022.839177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that have more than 200 nucleotides and can participate in the regulation of gene expression in various ways. An increasing number of studies have shown that the dysregulated expression of lncRNAs is related to the occurrence and progression of human cancers. LINC00665 is a novel lncRNA, which is abnormally expressed in various human cancers, such as lung cancer, breast cancer, prostate cancer, and glioma. LINC00665 functions in many biological processes of tumor cells, such as cell proliferation, migration, invasion, angiogenesis, and metabolism, and is related to the clinicopathological characteristics of cancer patients. LINC00665 can play biological functions as a ceRNA, directly binding and interacting with proteins, and as an upstream molecule regulating multiple signaling pathways. In this review, we comprehensively summarize the expression level, function, and molecular mechanisms of LINC00665 in different human cancers and emphasize that LINC00665 is a promising new diagnostic, prognostic biomarker, and therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- *Correspondence: Keming Wang, ; Juan Li,
| | | |
Collapse
|
11
|
Cao W, Liu X, Su W, Liang H, Tang H, Zhang W, Huang S, Dang N, Qiao A. LINC00665 sponges miR-641 to promote the progression of breast cancer by targeting the SNF2-related CREBBP activator protein (SRCAP). Bioengineered 2022; 13:4573-4586. [PMID: 35152838 PMCID: PMC8974044 DOI: 10.1080/21655979.2022.2031402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The regulatory network of competing endogenous RNAs (ceRNA) exists widely in tumors and affects the expression of cancer-related genes, thus playing an important role in the development and prognosis of human tumors. In this research, we explored the role and mechanism of LINC00665 as a ceRNA in breast cancer. We analyzed the expression and targets of LINC00665 in breast cancer using bioinformatics, and detected their effects on breast cancer cells by CCK8, transwell, colony formation and flow cytometry assays. From our results, LINC00665 knockdown suppressed the proliferation, migration and invasion and induced the apoptosis through inactivating the AKT/mTOR signaling pathway in MCF7 and MDA-MB-231 cells. LINC00665 had five potential downstream target miRNAs (miR-542-3p, miR-624-5p, miR-641, miR-425-5p, and miR-30-3p). In dual-luciferase report gene assay, the fluorescence activity of cells transfected with miR-641 mimics decreased, and the expression of miR-641 decreased significantly after knocking down LINC00665. miR-641 mimics significantly inhibited cell proliferation and invasion in MCF7 and MDA-MB-231 cells. We detected five potential direct targets of miR-641 using qPCR (SRCAP, SIKE1, NADK, KHDC4, and HSPG2). SRCAP expression decreased significantly in miR-641 overexpression cells and the binding of SRCAP’s 3ʹUTR and miR-641 was further confirmed by dual-luciferase report gene assay. SRCAP blocked the proliferation and invasion inhibition induced by miR-641 or si-LINC00665 in MCF7 and MDA-MB-231 cells. In conclusion, LINC00665 could promote the survival and metastasis of breast cancer cells through sponging miR-641 and targeting SRCAP. This research provided new potential targets for targeted therapy in human breast cancer.
Collapse
Affiliation(s)
- Wen Cao
- Health College, Yantai Nanshan University, Yantai, Shandong, China
| | - Xiaojing Liu
- Department of Clinical Laboratory Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Weijia Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Liang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiru Tang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiliang Zhang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiguo Qiao
- Health College, Yantai Nanshan University, Yantai, Shandong, China
| |
Collapse
|
12
|
Li C, Pan J, Jiang Y, Yu Y, Jin Z, Chen X. Characteristics of the Immune Cell Infiltration Landscape in Gastric Cancer to Assistant Immunotherapy. Front Genet 2022; 12:793628. [PMID: 35069691 PMCID: PMC8770548 DOI: 10.3389/fgene.2021.793628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Gastric cancer (GC) was usually associated with poor prognosis and invalid therapeutical response to immunotherapy due to biological heterogeneity. It is urgent to screen reliable indices especially immunotherapy-associated parameters that can predict the therapeutic responses to immunotherapy of GC patients. Methods: Gene expression profile of 854 GC patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets (GSE84433) with their corresponding clinical and somatic mutation data. Based on immune cell infiltration (ICI) levels, molecular clustering classification was performed to identify subtypes and ICI scores in GC patients. After functional enrichment analysis of subtypes, we further explored the correlation between ICI scores and Tumor Mutation Burden (TMB) and the significance in clinical immunotherapy response. Results: Three subtypes were identified based on ICI scores with distinct immunological and prognostic characteristics. The ICI-cluster C, associated with better outcomes, was characterized by significantly higher stromal and immune scores, T lymphocytes infiltration and up-regulation of PD-L1. ICI scores were identified through using principal component analysis (PCA) and the low ICI scores were consistent with the increased TMB and the immune-activating signaling pathways. Contrarily, the high-ICI score cluster was involved in the immunosuppressive pathways, such as TGF-beta, MAPK and WNT signaling pathways, which might be responsible for poor prognosis of GC. External immunotherapy and chemotherapy cohorts validated the patients with lower ICI scores exhibited significant therapeutic responses and clinical benefits. Conclusion: This study elucidated that ICI score could sever as an effective prognostic and predictive indicator for immunotherapy in GC. These findings indicated that the systematic assessment of tumor ICI landscapes and identification of ICI scores have crucial clinical implications and facilitate tailoring optimal immunotherapeutic strategies.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyan Jiang
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 2021; 23:458-476. [PMID: 34901389 PMCID: PMC8637188 DOI: 10.1016/j.omto.2021.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant tumor types and the third leading cause of cancer-related death worldwide. Its morbidity and mortality are very high due to a lack of understanding about its pathogenesis and the slow development of novel therapeutic strategies. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with a length of more than 200 nt. They play crucial roles in a wide spectrum of physiological and pathological processes by regulating the expression of genes involved in proliferation, differentiation, apoptosis, cell cycle, invasion, metastasis, DNA damage, and carcinogenesis. The aberrant expression of lncRNAs has been found in various cancer types. A growing amount of evidence demonstrates that lncRNAs are involved in many aspects of GC pathogenesis, including its occurrence, metastasis, and recurrence, indicating their potential role as novel biomarkers in the diagnosis, prognosis, and therapeutic targets of GC. This review systematically summarizes the biogenesis, biological properties, and functions of lncRNAs and highlights their critical role and clinical significance in GC. This information may contribute to the development of better diagnostics and treatments for GC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jianxun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
LINC00665 Targets miR-214-3p/MAPK1 Axis to Accelerate Hepatocellular Carcinoma Growth and Warburg Effect. JOURNAL OF ONCOLOGY 2021; 2021:9046798. [PMID: 34804162 PMCID: PMC8598336 DOI: 10.1155/2021/9046798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Inhibition of aerobic glycolysis is a hopeful method for cancer treatment. In this study, we aimed to explore LINC00665/miR-214-3p/MAPK1 role in regulating cell viability and aerobic glycolysis in hepatocellular carcinoma (HCC). The expressions of LINC00665 in 50 paired HCC tissues and normal tissues were determined by qRT-PCR. Pearson analysis was applied to evaluate the association between the expression levels of miR-214-3p, LINC00665, and MAPK1 in HCC tissues. The interactions between miR-214-3p and LINC00665 or MAPK1 were determined by luciferase reporter assay and RNA immunoprecipitation. CCK-8 and colony formation assays were used for cell viability evaluation. Lactate production, glucose consumption, and ATP levels were measured to assess Warburg effect. The results showed that LINC00665 was overexpressed in HCC, which positively associated with MAPK1 level and negatively associated with miR-214-3p level in HCC tissues. Overexpression of LINC00665 led to significant enhancements in cell viability and colony formation, whereas this effect was weakened when miR-214-3p was overexpressed or MAPK1 was downregulated. In addition, deletion of LINC00665 expression repressed tumor formation in vivo. Mechanically, LINC00665 increased MAPK1 expression through binding to miR-214-3p. Collectively, this study revealed that LINC00665 accelerated cell growth and Warburg effect through sponging miR-214-3p to increase MAPK1 expression in HCC.
Collapse
|
15
|
Wei W, Zhao X, Liu J, Zhang Z. Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis. Aging (Albany NY) 2021; 13:17499-17515. [PMID: 34232917 PMCID: PMC8312465 DOI: 10.18632/aging.203240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00665 was demonstrated to be upregulated in lung adenocarcinoma (LUAD) and target miR-181c-5p. ZIC2, which is upregulated in LUAD, serves as a putative target of miR-181c-5p. In this study, we aimed to reveal whether LINC00665 regulates miR-181c-5p/ZIC2 axis to promote LUAD progression. The results showed that LINC00665, HOXA1, ZIC2, and HOXA11 levels were increased in LUAD tissues, while miR-181c-5p level was decreased when compared to the adjacent normal tissues. High expression levels of LINC00665, ZIC2, HOXA1 and HOXA11, and low expression of miR-181c-5p were closely linked to poor prognosis of LUAD patients. Knockdown of LINC00665 induced obvious inhibitions in cell viability, clone formation, invasion and tumorigenesis in LUAD cells, whereas miR-181c-5p downregulation significantly neutralized these effects. In addition, downregulation of ZIC2 obviously reversed the enhancements of cell viability, clone formation, invasion and tumorigenesis induced by miR-181c-5p knockdown. In summary, the present study reveals that silencing of LINC00665 suppresses LUAD progression through targeting miR-181c-5p/ZIC2 axis.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Jiang Liu
- Department of Molecule Imaging and Nuclear Medicine in Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| |
Collapse
|
16
|
LINC00665 Facilitates the Malignant Processes of Osteosarcoma by Increasing the RAP1B Expression via Sponging miR-708 and miR-142-5p. ACTA ACUST UNITED AC 2021; 2021:5525711. [PMID: 34306997 PMCID: PMC8282375 DOI: 10.1155/2021/5525711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OS) is a kind of fatal primary bone tumors in adolescents and young adults. Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs which occupy a part of the latest hot topics. We aimed to investigate the roles of lncRNA LINC00665 in OS in this study. In this study, we found that LINC00665 was highly expressed in OS tissues and cell lines, and its high expression was associated with malignant feature and poor prognosis of OS. In OS cells, LINC00665 could facilitate the proliferation, migration, and invasion to play an oncogenic role. Mechanistically, LINC00665 served as a sponge for miR-708 and miR-142-5p and positively mediated the expression of their target RAP1B. Finally, we confirmed that LINC00665 exercised its biological functions by mediating RAP1B. In conclusion, LINC00665 is overexpressed in OS and facilitates the malignant processes of OS cells by increasing the RAP1B expression via sponging miR-708 and miR-142-5p.
Collapse
|
17
|
Yan YM, Zheng JN, Wu LW, Rao QW, Yang QR, Gao D, Wang Q. Prediction of a Competing Endogenous RNA Co-expression Network by Comprehensive Methods in Systemic Sclerosis-Related Interstitial Lung Disease. Front Genet 2021; 12:633059. [PMID: 34290731 PMCID: PMC8287190 DOI: 10.3389/fgene.2021.633059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 11/27/2022] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated connective tissue disease characterized by fibrosis of multi-organs, and SSc-related interstitial lung disease (SSc-ILD) is a leading cause of morbidity and mortality. To explore molecular biological mechanisms of SSc-ILD, we constructed a competing endogenous RNA (ceRNA) network for prediction. Expression profiling data were obtained from the Gene Expression Omnibus (GEO) database, and differential expressed mRNAs and miRNAs analysis was further conducted between normal lung tissue and SSc lung tissue. Also, the interactions of miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA were predicted by online databases including starBase, LncBase, miRTarBase, and LncACTdb. The ceRNA network containing 11 lncRNAs, 7 miRNAs, and 20 mRNAs were constructed. Based on hub genes and miRNAs identified by weighted correlation network analysis (WGCNA) method, three core sub-networks—SNHG16, LIN01128, RP11-834C11.4(LINC02381)/hsa-let-7f-5p/IL6, LINC01128/has-miR-21-5p/PTX3, and LINC00665/hsa-miR-155-5p/PLS1—were obtained. Combined with previous studies and enrichment analyses, the lncRNA-mediated network affected LPS-induced inflammatory and immune processes, fibrosis development, and tumor microenvironment variations. The ceRNA network, especially three core sub-networks, may be served as early biomarkers and potential targets for SSc, which also provides further insights into the occurrence, progression, and accurate treatment of SSc at the molecular level.
Collapse
Affiliation(s)
- Yue-Mei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-Na Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Wei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian-Wen Rao
- Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao-Rong Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Wang A, Zhang T, Wei W, Wang H, Zhang Z, Yang W, Xia W, Mao Q, Xu L, Jiang F, Dong G. The Long Noncoding RNA LINC00665 Facilitates c-Myc Transcriptional Activity via the miR-195-5p MYCBP Axis to Promote Progression of Lung Adenocarcinoma. Front Oncol 2021; 11:666551. [PMID: 34277412 PMCID: PMC8281894 DOI: 10.3389/fonc.2021.666551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently received growing substantial attention in cancer research due to their important roles in various cancer types. However, the underlying mechanisms and functions of lncRNAs, especially in lung adenocarcinoma (LUAD), remain elusive. Based on pan-cancer screening analyses, we identified that the noncoding RNA LINC00665 was up-regulated in lung adenocarcinoma, which was subsequently confirmed in clinical samples and cell lines. Higher expression of LINC00665 was positively associated with poor prognosis and advanced T stage. Next, using gain- and loss- of function approaches, we revealed that LINC00665 promotes cell proliferation, cell migration, invasion, and suppresses cell apoptosis in LUAD through in vitro and in vivo experiments. Additionally, our findings showed that LINC00665 was predominately localized in the cytoplasm so as to interact with Ago2 protein, which could function as miRNA sponges. The results of bioinformatics prediction and RNA pull-down assay indicated that LINC00665 directly interacted with miR-195-5p. This was also confirmed by fluorescence colocalization. Furthermore, luciferase reporter assay demonstrated that Myc binding protein (MYCBP, also called AMY-1), which enhanced c-Myc transcriptional activity, was the target gene of LINC00665 dependent on miR-195-5p. Finally, rescue functional assay results uncovered that the oncogenic capability of LINC00665 was dependent on miR-195-5p and c-Myc transcriptional activity. In summary, this work elucidates that LINC00665 accelerates LUAD progression via the miR-195-5p/MYCBP axis by acting as a competing endogenous RNA (ceRNA), suggesting that LINC00665 may represent a potential therapeutic target for clinical intervention of LUAD.
Collapse
Affiliation(s)
- Anpeng Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Te Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hui Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Zeyu Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenming Yang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Abuduer M, A EZG. LINC00665 promotes the viability, migration and invasion of T cell acute lymphoblastic leukemia cells by targeting miR-101 via modulating PI3K/Akt pathway. Tissue Cell 2021; 71:101579. [PMID: 34171521 DOI: 10.1016/j.tice.2021.101579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a high-risk malignancy. The effects of cancer growth-related Long Intergenic Non-Protein Coding RNA 665 (LINC00665) in T-ALL remained obscure, and therefore further exploration was conducted on that in this study. The expression of LINC00665 in acute myeloid leukemia (LAML) tissues and myeloid tissues was analyzed using Gene Expression Profiling Interactive Analysis (GEPIA) 2. The target microRNA (miR) of LINC00665 was predicted by LncBase Predicted v.2 and verified using dual-luciferase reporter assay. After LINC00665 and miR-101 in T-ALL cells were overexpressed or silenced, the viability, migration and invasion of cell were detected using cell counting kit-8 and Transwell assays. The expressions of LINC00665, miR-101, Cyclin D1, Matrix metalloproteinases (MMP)-2, MMP-9, phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K), PI3K, p-Akt, Akt were detected by quantitative real-time Polymerase Chain Reaction (qRT-PCR) and western blot. High expression of LINC00665 was presented in LAML tissues, the peripheral blood samples from patients with T-ALL and T-ALL cells. Overexpression of LINC00665 promoted the viability, migration and invasion of T-ALL cells and downregulated miR-101 expression, whereas silencing of LINC00665 did oppositely. MiR-101 could competitively bind to LINC00665, and was low-expressed in T-ALL. MiR-101 mimic inhibited viability, migration and invasion of T-ALL cells, and reversed effects of overexpressed LINC00665, whilst miR-101 inhibitor reversed the effects of LINC00665 silencing. Besides, overexpressed LINC00665 upregulated the expressions of Cyclin D1 MMP-2, and MMP-9 and the ratios of p-PI3K/PI3K and p-Akt/Akt, which were reversed by miR-101 mimic. LINC00665 could enhance the viability, migration and invasion abilities of T-ALL cells by targeting miR-101 via activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Muhebaier Abuduer
- Haematology Department, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Er Zi Gu A
- Haematology Department, People's Hospital of Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
20
|
Yue C, Yu C, Peng R, Wang J, Li G, Xu L. LINC00665/miR-379-5p/GRP78 regulates cisplatin sensitivity in gastric cancer by modulating endoplasmic reticulum stress. Cytotechnology 2021; 73:413-422. [PMID: 34149174 DOI: 10.1007/s10616-021-00466-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acquired resistance to cisplatin (DDP)-based chemotherapy greatly hinders the treatment of gastric cancer (GC). LINC00665 serves as an oncogene in GC. Hence, the current study was designed to investigate the regulatory effects of LINC00665 on DDP-resistance of GC. LINC00665 and miR-379-5p expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Glucose regulated protein 78 (GRP78) protein level was measured by western blot assay. Interactions between LINC00665 and miR-379-5p or between miR-379-5p and GRP78 were verified by dual luciferase reporter assay. Cell counting kit 8 (CCK-8) assay and flow cytometry assay respectively determine the proliferative ability and apoptosis of GC cells. Western blot analysis was also performed to detect the protein levels of C/EBP-homologous protein (CHOP), X box binding protein (XBP1) and apoptosis-related proteins. In addition, GRP78 expression was evaluated by immunofluorescence. It was observed that the expression levels of LINC00665 and GRP78 were upregulated, and the expression level of miR-379-5p was downregulated in DDP-sensitive and DDP-resistant GC cell lines. What's more, GRP78 expression and the cell growth inhibition rates of DDP-sensitive and DDP-resistant GC cells had a negative correlation. Additionally, miR-379-5p was a target miRNA of LINC00665, and GRP78 was a target mRNA of miR-379-5p. Functional studies revealed that knockdown of LINC00665 inhibited DDP-resistant GC cell proliferation, induced apoptosis as well as suppressed Endoplasmic reticulum (ER) stress. Mechanistically, knockdown of LINC00665 downregulated GRP78 expression by strengthening miR-379-5p. LINC00665 silencing could overcome DPP-resistance of GC cells by downregulating GRP78 via sponging miR-379-5p, indicating that LINC00665 might be a potential therapeutic target for DDP- resistant GC patients.
Collapse
Affiliation(s)
- Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Chen Yu
- Department of Integrated Traditional Chinese and Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Jian Wang
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
21
|
Yang X, Wang Y, Pang S, Li X, Wang P, Ma R, Ma Y, Song C. LINC00665 promotes the progression of acute myeloid leukemia by regulating the miR-4458/DOCK1 pathway. Sci Rep 2021; 11:5009. [PMID: 33658535 PMCID: PMC7930206 DOI: 10.1038/s41598-021-82834-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the role of LINC00665, miR-4458 and DOCK1 and their interactions in the development of acute myeloid leukemia (AML). The relative expression of LINC00665, miR-4458 and DOCK1 in AML samples was measured using qRT-PCR, and the protein level of DOCK1 in AML cell lines was examined using western blot. CCK8, BrdU, transwell, cell adhesion, and caspase-3 activity assays were carried out to evaluate the viability, proliferation, migration, adhesion, and apoptosis of AML cells, respectively. Luciferase reporter, RIP, and RNA pull-down assays were also performed to confirm the target relationship among LINC00665, miR-4458 and DOCK1. Findings revealed that LINC00665 and DOCK1 were aberrantly overexpressed in AML tissues and that the expression of miR-4458 was low in AML tissues. Silencing LINC00665 or DOCK1 presented significant restriction to the proliferation, migration and adhesion of AML cells. Apart from that, it was found that inhibiting miR-4458 could enhance the proliferation, migration and adhesion of AML cells but suppress the apoptosis of AML cells. Experimental results also indicated that LINC00665 exerted its positive function on AML cells by sponging miR-4458 and that miR-4458 influenced the progression of AML cells by targeting DOCK1 directly. Overall, this finding not only provided a novel molecular pathway for the diagnosis and treatment of AML but also showed that LINC00665 could enhance the progression of AML by regulating the miR-4458/DOCK1 pathway.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/genetics
- Base Pairing
- Case-Control Studies
- Cell Adhesion
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- HL-60 Cells
- Humans
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- rac GTP-Binding Proteins/antagonists & inhibitors
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China.
| | - Yan Wang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Sulei Pang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Xiaojie Li
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Panpan Wang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Ruojin Ma
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Yunyun Ma
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| | - Chunge Song
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfu Front Road, ZhengzhouHenan, 450052, China
| |
Collapse
|
22
|
Dai H, Sheng X, Sha R, Peng J, Yang F, Zhou L, Lin Y, Xu Y, Zhang S, Yin W, Lu J. Linc00665 Can Predict the Response to Cisplatin-Paclitaxel Neoadjuvant Chemotherapy for Breast Cancer Patients. Front Oncol 2021; 11:604319. [PMID: 33738251 PMCID: PMC7961084 DOI: 10.3389/fonc.2021.604319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Linc00665 is a novel long non-coding RNA that can promote the progression of breast cancer, but its value in predicting the efficacy of neoadjuvant chemotherapy (NAC) for breast cancer has not been reported. We aim to analyze the correlation between Linc00665 expression and pathological complete response (pCR) in breast cancer patients. Materials and Methods The present study examined the predictive role of Linc00665 expression in pCR after NAC using both univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curve and area under curve (AUC) were utilized to evaluate the performance of Linc00665 in predicting pCR. The Kyoto Encyclopedia of Gene and Genome (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were also conducted to determine the biological processes where Linc00665 may participate in. Results The present study study totally enrolled 102 breast cancer patients. The univariate analysis showed that Linc00665 level, human epidermal growth factor receptor 2 (HER2) status and hormone receptor (HR) status were correlated with pCR. The multivariate analysis showed that Linc00665 expression was an independent predictor of pCR (OR = 0.351, 95% CI: 0.125–0.936, P = 0.040), especially in patients with HR-positive/HER2-negative subtype (OR = 0.272, 95% CI: 0.104–0.664, P = 0.005). The KEGG analysis indicated that Linc00665 may be involved in drug metabolism. The GSEA analysis revealed that Linc00665 is correlated to DNA damage repair. Conclusion Linc00665 may be a potential novel predictive biomarker for breast cancer in NAC, especially for HR-positive/HER2-negative patients.
Collapse
Affiliation(s)
- Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rui Sha
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shan Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
24
|
Dai Y, Zhang Y, Hao M, Zhu R. LINC00665 functions as a competitive endogenous RNA to regulate AGTR1 expression by sponging miR‑34a‑5p in glioma. Oncol Rep 2021; 45:1202-1212. [PMID: 33650673 PMCID: PMC7859982 DOI: 10.3892/or.2021.7949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most aggressive tumor of the central nervous system. Long non‑coding RNAs (lncRNAs) may be involved in modulating tumor generation. The present study analyzed an lncRNA microarray of glioma and selected long intergenic non‑protein coding RNA 665 (LINC00665) as the research object. The mode of expression and biological function of LINC00665 in glioma were assessed using lncRNA microarray and RT‑qPCR analyses. Gain‑of‑function assays and/or loss‑of‑function assays were implemented to explore the role of LINC00665 in the progression of glioma. Dual‑luciferase reporter and RNA immunoprecipitation assays explored the downstream molecular mechanism of LINC00665. The function of the molecular pathway in progression of glioma was analyzed using rescue assays. High expression of LINC00665 was marked in glioma tissues and cells, which correlated with an unsatisfactory prognosis. Upregulation of LINC00665 significantly promoted the proliferation and invasion of glioma cells. LINC00665 acted as a competing endogenous RNA by sponging miR‑34a‑5p to upregulate angiotensin II receptor type 1 (AGTR1). LINC00665 promoted the progression of glioma by acting as a competitive endogenous RNA to competitively bind to miR‑34a‑5p and mediate AGTR1 expression.
Collapse
Affiliation(s)
- Yongyue Dai
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yucheng Zhang
- Department of General Surgery, Wenzhou Hospital Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Maolin Hao
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Renwu Zhu
- Department of General Surgery, Wenzhou Hospital Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
25
|
Xu D, Song Q, Liu Y, Chen W, Lu L, Xu M, Fang X, Zhao W, Zhou H. LINC00665 promotes Ovarian Cancer progression through regulating the miRNA-34a-5p/E2F3 axis. J Cancer 2021; 12:1755-1763. [PMID: 33613764 PMCID: PMC7890326 DOI: 10.7150/jca.51457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Objective: To clarify the role of LINC00665 in ovarian cancer (OC) progression and the possible mechanism. Methods: LINC00665 levels in OC tissues and cell lines were detected by qRT-PCR. The correlation between LINC00665 and clinicopathologic characteristics of OC patients was assessed. Biological functions of OC cell phenotypes influenced by LINC00665 were examined by CCK-8, colony formation and Transwell assay. Dual-luciferase reporter assay and RIP assay were conducted to verify the interaction between LINC00665 and its downstream target. Results: LINC00665 was upregulated in OC and linked to poor prognosis. Knockdown of LINC00665 blocked malignant proliferative, migratory and invasive functions of OC cells. By competitively binding miRNA-34a-5p, LINC00665 abolished the inhibitory effect of miR-34a-3p on its downstream gene E2F3, thus promoting OC progression. Conclusion: LINC00665/miRNA-34a-5p/E2F3 axis is involved in OC progression, providing novel insights into the clinical treatment of OC.
Collapse
Affiliation(s)
- Dan Xu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China.,Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxia Song
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wansu Chen
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Lijuan Lu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Min Xu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Xiaohui Fang
- Department of clinical laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wenjie Zhao
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Huifang Zhou
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.,Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
26
|
Tu Z, Wu L, Wang P, Hu Q, Tao C, Li K, Huang K, Zhu X. N6-Methylandenosine-Related lncRNAs Are Potential Biomarkers for Predicting the Overall Survival of Lower-Grade Glioma Patients. Front Cell Dev Biol 2020; 8:642. [PMID: 32793593 PMCID: PMC7390977 DOI: 10.3389/fcell.2020.00642] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
The prognostic value of N6-methylandenosine-related long non-coding RNAs (m6A-related lncRNAs) was investigated in 646 lower-grade glioma (LGG) samples from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. We implemented Pearson correlation analysis to explore the m6A-related lncRNAs, and then univariate Cox regression analysis was performed to screen their prognostic roles in LGG patients. Twenty-four prognostic m6A-related lncRNAs were identified as prognostic lncRNAs and they were inputted in a least absolute shrinkage and selection operator (LASSO) Cox regression to establish a m6A-related lncRNA prognostic signature (m6A-LPS, including 9 m6A-related prognostic lncRNAs) in the TCGA dataset. Corresponding risk scores of patients were calculated and divided LGG patients into low- and high-risk subgroups by the median value of risk scores in each dataset. The m6A-LPS was validated in the CGGA dataset and it showed a robust prognostic ability in the stratification analysis. Principal component analysis showed that the low- and high-risk subgroups had distinct m6A status. Enrichment analysis indicated that malignancy-associated biological processes, pathways and hallmarks were more common in the high-risk subgroup. Moreover, we constructed a nomogram (based on m6A-LPS, age and World Health Organization grade) that had a strong ability to forecast the overall survival (OS) of the LGG patients in both datasets. We also establish a competing endogenous RNA (ceRNA) network based on seven of the twenty-four m6A-related lncRNAs. Besides, we also detected five m6A-related lncRNA expression levels in 22 clinical samples using quantitative real-time polymerase chain reaction assay.
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Kuangxun Li
- College of Queen Mary, Nanchang University, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|