1
|
Hia EM, Suh IW, Jang SR, Park CH. Magnetically responsive micro-clustered calcium phosphate-reinforced cell-laden microbead sodium alginate hydrogel for accelerated osteogenic tissue regeneration. Carbohydr Polym 2024; 346:122666. [PMID: 39245476 DOI: 10.1016/j.carbpol.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
The rising prevalence of bone injuries has increased the demand for minimally invasive treatments. Microbead hydrogels, renowned for cell encapsulation, provide a versatile substrate for bone tissue regeneration. They deliver bioactive agents, support cell growth, and promote osteogenesis, aiding bone repair and regeneration. In this study, we synthesized superparamagnetic iron oxide nanoparticles (Sp) coated with a calcium phosphate layer (m-Sp), achieving a distinctive flower-like micro-cluster morphology. Subsequently, sodium alginate (SA) microbead hydrogels containing m-Sp (McSa@m-Sp) were fabricated using a dropping gelation strategy. McSa@m-Sp is magnetically targetable, enhance cross-linking, control degradation rates, and provide strong antibacterial activity. Encapsulation studies with MC3T3-E1 cells revealed enhanced viability and proliferation. These studies also indicated significantly elevated alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, as confirmed by Alizarin Red S (ARS) and Von Kossa staining, along with increased collagen production within the McSa@m-Sp microbead hydrogels. Immunocytochemistry (ICC) and gene expression studies supported the osteoinductive potential of McSa@m-Sp, showing increased expression of osteogenic markers including RUNX-2, collagen-I, osteopontin, and osteocalcin. Thus, McSa@m-Sp microbead hydrogels offer a promising strategy for multifunctional scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Il Won Suh
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
2
|
Vettori L, Tran HA, Mahmodi H, Filipe EC, Wyllie K, Liu Chung Ming C, Cox TR, Tipper J, Kabakova IV, Rnjak-Kovacina J, Gentile C. Silk fibroin increases the elasticity of alginate-gelatin hydrogels and regulates cardiac cell contractile function in cardiac bioinks. Biofabrication 2024; 16:035025. [PMID: 38776895 DOI: 10.1088/1758-5090/ad4f1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Silk fibroin (SF) is a natural protein extracted fromBombyx morisilkworm thread. From its common use in the textile industry, it emerged as a biomaterial with promising biochemical and mechanical properties for applications in the field of tissue engineering and regenerative medicine. In this study, we evaluate for the first time the effects of SF on cardiac bioink formulations containing cardiac spheroids (CSs). First, we evaluate if the SF addition plays a role in the structural and elastic properties of hydrogels containing alginate (Alg) and gelatin (Gel). Then, we test the printability and durability of bioprinted SF-containing hydrogels. Finally, we evaluate whether the addition of SF controls cell viability and function of CSs in Alg-Gel hydrogels. Our findings show that the addition of 1% (w/v) SF to Alg-Gel hydrogels makes them more elastic without affecting cell viability. However, fractional shortening (FS%) of CSs in SF-Alg-Gel hydrogels increases without affecting their contraction frequency, suggesting an improvement in contractile function in the 3D cultures. Altogether, our findings support a promising pathway to bioengineer bioinks containing SF for cardiac applications, with the ability to control mechanical and cellular features in cardiac bioinks.
Collapse
Affiliation(s)
- L Vettori
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| | - H A Tran
- University of New South Wales, Kensington, NSW 2052, Australia
| | - H Mahmodi
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - E C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - K Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - C Liu Chung Ming
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| | - T R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - J Tipper
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - I V Kabakova
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | | - C Gentile
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- University of Sydney, Camperdown, NSW 2050, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
6
|
Zhang B, Jiang X. Magnetic Nanoparticles Mediated Thrombolysis-A Review. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2023; 4:109-132. [PMID: 38111792 PMCID: PMC10727495 DOI: 10.1109/ojnano.2023.3273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of in vitro and in vivo thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
7
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
9
|
Khatun S, Appidi T, Rengan AK. Casein nanoformulations - Potential biomaterials in theranostics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
11
|
Deng N, Li J, Lyu H, Huang R, Liu H, Guo C. Degradable silk-based soft actuators with magnetic responsiveness. J Mater Chem B 2022; 10:7650-7660. [PMID: 36128873 DOI: 10.1039/d2tb01328b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft actuators with stimuli-responsiveness have great potential in biomedical applications such as drug delivery and minimally invasive surgery. In this study, protein-based soft actuators with magnetic actuation are fabricated using naturally occurring silk proteins and synthesized Fe3O4 magnetic nanoparticles (NPs). Briefly, magnetic silk films are first prepared by solution casting of a mixture containing silk proteins, synthesized Fe3O4 NPs, and glycerol. The molecular structures of the magnetic silk films are characterized by FTIR spectroscopy, which show that the β-sheet content in the films is about 20%. The mechanical tests show that the magnetic silk films can be stretched to over 200% under wet conditions and Young's modulus is estimated to be 4.89 ± 0.69 MPa, matching the stiffness of soft tissues. Furthermore, the enzymatic degradability, good biocompatibility, and in vivo X-ray visibility of the films are demonstrated by the in vitro enzymatic degradation test, in vivo biocompatibility test, and micro-CT imaging, respectively. Degradable silk-based soft actuators with magnetic responsiveness are successfully prepared by thermal forming or plastic molding of the magnetic silk films. The fabricated soft actuators can be actuated and move with precise locomotive gaits in solutions using a magnet. In addition, the retention of the soft actuators and localized drug delivery in gastrointestinal tracts by attaching a magnet to the abdominal skin are demonstrated using model systems. The degradable silk-based soft actuators provide many opportunities for improving current therapeutic strategies in biomedicine.
Collapse
Affiliation(s)
- Niping Deng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.,School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Jinghang Li
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Ruochuan Huang
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
12
|
Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, Kesharwani P, Mokhtarzadeh A, Oroojalian F, Sahebkar A. Conductive and Semiconductive Nanocomposite-Based Hydrogels for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200526. [PMID: 35822350 DOI: 10.1002/adhm.202200526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide and the most common cause is myocardial infarction. Therefore, appropriate approaches should be used to repair damaged heart tissue. Recently, cardiac tissue engineering approaches have been extensively studied. Since the creation of the nature of cardiovascular tissue engineering, many advances have been made in cellular and scaffolding technologies. Due to the hydrated and porous structures of the hydrogel, they are used as a support matrix to deliver cells to the infarct tissue. In heart tissue regeneration, bioactive and biodegradable hydrogels are required by simulating native tissue microenvironments to support myocardial wall stress in addition to preserving cells. Recently, the use of nanostructured hydrogels has increased the use of nanocomposite hydrogels and has revolutionized the field of cardiac tissue engineering. Therefore, to overcome the limitation of the use of hydrogels due to their mechanical fragility, various nanoparticles of polymers, metal, and carbon are used in tissue engineering and create a new opportunity to provide hydrogels with excellent properties. Here, the types of synthetic and natural polymer hydrogels, nanocarbon-based hydrogels, and other nanoparticle-based materials used for cardiac tissue engineering with emphasis on conductive nanostructured hydrogels are briefly introduced.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| |
Collapse
|
13
|
Appana Dalavi P, Prabhu A, M S, Chatterjee K, Venkatesan J. Casein-Coated Molybdenum Disulfide Nanosheets Augment the Bioactivity of Alginate Microspheres for Orthopedic Applications. ACS OMEGA 2022; 7:26092-26106. [PMID: 35936459 PMCID: PMC9352227 DOI: 10.1021/acsomega.2c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
Defects and disorders of the bone due to disease, trauma, or abnormalities substantially affect a person's life quality. Research in bone tissue engineering is motivated to address these clinical needs. The present study demonstrates casein-mediated liquid exfoliation of molybdenum disulfide (MoS2) and its coupling with alginate to create microspheres to engineer bone graft substitutes. Casein-exfoliated nano-MoS2 was chemically characterized using different analytical techniques. The UV-visible spectrum of nano-MoS2-2 displayed strong absorption peaks at 610 and 668 nm. In addition, the XPS spectra confirmed the presence of the molybdenum (Mo, 3d), sulfur (S, 2p), carbon (C, 1s), oxygen (O, 1s), and nitrogen (N, 1s) elements. The exfoliated MoS2 nanosheets were biocompatible with the MG-63, MC3T3-E1, and C2C12 cells at 250 μg/mL concentration. Further, microspheres were created using alginate, and they were characterized physiochemically and biologically. Stereomicroscopic images showed that the microspheres were spherical with an average diameter of 1 ± 0.2 mm. The dispersion of MoS2 in the alginate matrix was uniform. The alginate-MoS2 microspheres promoted apatite formation in the SBF (simulated body fluid) solution. Moreover, the alginate-MoS2 was biocompatible with MG-63 cells and promoted cell proliferation. Higher alkaline phosphatase activity and mineralization were observed on the alginate-MoS2 with the MG-63 cells. Hence, the developed alginate-MoS2 microsphere could be a potential candidate for a bone graft substitute.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
14
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022:1-25. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point-of-care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sree Vandana Yerramsetty
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Sree Varshini Murali
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
15
|
Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| |
Collapse
|
16
|
Khalili M, Keshvari H, Imani R, Sohi AN, Esmaeili E, Tajabadi M. Study of osteogenic potential of electrospun
PCL
incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mahsa Khalili
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Hamid Keshvari
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Rana Imani
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Elaheh Esmaeili
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Maryam Tajabadi
- School of Metallurgy and Materials Engineering Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|
17
|
Shahsavari Alavijeh M, Rad I, Hatamie S. Magnetic nanocomposite’s mechanism of action during the hyperthermia treatment of the breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
20
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
21
|
Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, Ahmadi Tafti SH, Jamshidi K, Soufizomorrod M, Soleimani M. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomed Mater 2021; 16. [PMID: 34144542 DOI: 10.1088/1748-605x/ac0cbf] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) on injectable hydrogels are mostly used to regenerate articular cartilage, which would have a variety of outcomes. Chondrocyte extracellular vesicles (EVs) have attracted many attentions for their chondrogenic differentiation capacity; however, the roles of EVs in both chondrogenic differentiation of MSCs and cartilage regeneration are poorly understood yet. In the current study, to investigate the differentiation effects of human articular chondrocyte EVs on adipose-derived MSCs, they were cultured in injectable chitosan-hyaluronic acid (CS-HA) hydrogel and then treated with chondrocyte EVs for 21 days. The continuous treatment of EVs performed on MSCs increased chondrogenic genes' expressions ofSOX9andCOL2A1and induced expression of Col II protein. In addition, glycosaminoglycans secretion was detected in the EV-treated MSCs after about 14 days. The therapeutic efficiency of this hydrogel and EVs was studied in a rabbit osteochondral defect model. MRI results revealed that the cartilage regeneration capacity of EV-treated MSCs with CS-HA hydrogel was greater than the untreated MSCs or the EV-treated MSCs without hydrogel. Moreover, histological results showed hyaline-like cartilage in the CS-HA/MSC and CS-HA/EV/MSC groups in the cartilage defect sites. These findings suggested that the chondrocyte-EVs and CS-HA hydrogel could provide the preferable niche for chondrogenic differentiation of MSCs and cartilage regeneration in osteoarthritis cartilage injuries.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
23
|
Morrison E, Suvarnapathaki S, Blake L, Camci-Unal G. Unconventional biomaterials for cardiovascular tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Sohrabi A, Hosseini M, Abazari MF, Zare Karizi S, Sadeghi Oskouei SA, Hajati-Birgani N, Karimi Hafshejani F, Hashemi SAR, Rahmati M, Askari M. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020; 9:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are one of the leading causes of death globally. Among various cardiovascular diseases, myocardial infarction is an important one. Compared with conventional treatments, cardiac tissue engineering provides an alternative to repair and regenerate the injured tissue. Among various types of materials used for tissue engineering applications, silk biomaterials have been increasingly utilized due to their biocompatibility, biological functions, and many favorable physical/chemical properties. Silk biomaterials are often used alone or in combination with other materials in the forms of patches or hydrogels, and serve as promising delivery systems for bioactive compounds in tissue engineering repair scenarios. This review focuses primarily on the promising characteristics of silk biomaterials and their recent advances in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Yue
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
26
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
27
|
Torabi M, Abazari MF, Zare Karizi S, Kohandani M, Hajati‐Birgani N, Norouzi S, Nejati F, Mohajerani A, Rahmati T, Mokhames Z. Efficient cardiomyocyte differentiation of induced pluripotent stem cells on
PLGA
nanofibers enriched by platelet‐rich plasma. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maryam Torabi
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology Tehran University of Medical Sciences Tehran Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch Islamic Azad University Pishva Iran
| | - Mina Kohandani
- Department of Biology, Faculty of Biological Sciences Islamic Azad University, East Tehran Branch Tehran Iran
| | - Nazanin Hajati‐Birgani
- Department of Biology, Faculty of Science and Research Islamic Azad University Tehran Iran
| | - Sara Norouzi
- Department of Biology, Faculty of Science and Research Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Institute of Molecular Biology Vrije Universiteit Brussel Brussels Belgium
| | - Alireza Mohajerani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Tahereh Rahmati
- SinaCell Research and Product Center Pardis Technology Park Tehran Iran
| | - Zakiye Mokhames
- Department of Molecular Diagnostic, Emam Ali Educational and Therapeutic Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
28
|
R. Amin D, Sink E, Narayan SP, Abdel-Hafiz M, Mestroni L, Peña B. Nanomaterials for Cardiac Tissue Engineering. Molecules 2020; 25:E5189. [PMID: 33171802 PMCID: PMC7664640 DOI: 10.3390/molecules25215189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
End stage heart failure is a major cause of death in the US. At present, organ transplant and left-ventricular assist devices remain the only viable treatments for these patients. Cardiac tissue engineering presents the possibility of a new option. Nanomaterials such as gold nanorods (AuNRs) and carbon nanotubes (CNTs) present unique properties that are beneficial for cardiac tissue engineering approaches. In particular, these nanomaterials can modulate electrical conductivity, hardness, and roughness of bulk materials to improve tissue functionality. Moreover, they can deliver bioactive cargo to affect cell phenotypes. This review covers recent advances in the use of nanomaterials for cardiac tissue engineering.
Collapse
Affiliation(s)
- Devang R. Amin
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Eric Sink
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Suguna P. Narayan
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
| | - Brisa Peña
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Yuan J, Hou Q, Zhong L, Dai X, Lu Q, Li M, Fu X. Sustained release of inhibitor from bionic scaffolds for wound healing and functional regeneration. Biomater Sci 2020; 8:5647-5655. [PMID: 33049013 DOI: 10.1039/d0bm00929f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecules play remarkable roles in promoting tissue regeneration, but are limited by their burst release. Small molecules such as deferoxamine (DFO) have been released slowly from silk hydrogels and stimulated angiogenesis and wound healing, but failed to achieve functional recovery of skin. Various bioactive molecules are required to create a suitable niche for better skin regeneration by controlling their release behaviors. Herein, a small molecule SB216763, a GSK-3 inhibitor, was loaded on silk fibroin nanofibers (SNF), and then mixed with chitosan (CS) to prepare the small molecule-loaded composite bionic scaffolds (CSNF-SB). Given the interaction of SNF and SB216763, the sustained release of SB216763 for more than 21 days was achieved for SNF and CSNF-SB composite scaffolds. Compared to drug-free CSNF scaffolds, CSNF-SB showed better cell adhesion and proliferation capacity, suggesting bioactivity. The upregulated expression of β-catenin in fibroblasts in vitro revealed that the released small molecules maintained their function in composite scaffolds. Quicker and better wound healing was realized with the drug-loaded scaffolds, which was significantly superior to that treated with drug-free scaffolds. Unlike the DFO-loaded silk hydrogel system, hair follicle neogenesis was also found in the drug-loaded-scaffold treatment wounds, demonstrating functional recovery. Therefore, silk nanofibers as versatile carriers for different small bioactive molecules could be used to fabricate scaffolds with optimized niches and then achieve functional recovery of tissues. The small molecule-loaded bionic scaffolds have a promising future in skin tissue regeneration.
Collapse
Affiliation(s)
- Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
32
|
Andalib N, Kehtari M, Seyedjafari E, Motamed N, Matin MM. Improved efficacy of bio‐mineralization of human mesenchymal stem cells on modified
PLLA
nanofibers coated with bioactive materials via enhanced expression of integrin α2β1. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nazanin Andalib
- Department of Biology, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Mousa Kehtari
- Department of Stem Cell BiologyStem Cell Technology Research Center Tehran Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of ScienceUniversity of Tehran Tehran Iran
| | - Nassrin Motamed
- Department of Cell & Mol. Biology School of Biology, College of ScienceUniversity of Tehran Tehran Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of BiotechnologyFerdowsi University of Mashhad Mashhad Iran
- Stem Cell and Regenerative Medicine Research GroupIranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| |
Collapse
|