1
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
2
|
Tworek JW, Elcock AH. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules. J Chem Theory Comput 2023; 19:5099-5111. [PMID: 37409946 PMCID: PMC10413861 DOI: 10.1021/acs.jctc.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/07/2023]
Abstract
The Brownian dynamics (BD) simulation technique is widely used to model the diffusive and conformational dynamics of complex systems comprising biological macromolecules. For the diffusive properties of macromolecules to be described correctly by BD simulations, it is necessary to include hydrodynamic interactions (HIs). When modeled at the Rotne-Prager-Yamakawa (RPY) level of theory, for example, the translational and rotational diffusion coefficients of isolated macromolecules can be accurately reproduced; when HIs are neglected, however, diffusion coefficients can be underestimated by an order of magnitude or more. The principal drawback to the inclusion of HIs in BD simulations is their computational expense, and several previous studies have sought to accelerate their modeling by developing fast approximations for the calculation of the correlated random displacements. Here, we explore the use of an alternative way to accelerate the calculation of HIs, i.e., by replacing the full RPY tensor with an orientationally averaged (OA) version which retains the distance dependence of the HIs but averages out their orientational dependence. We seek here to determine whether such an approximation can be justified in application to the modeling of typical proteins and RNAs. We show that the use of an OA-RPY tensor allows translational diffusion of macromolecules to be modeled with very high accuracy at the cost of rotational diffusion being underestimated by ∼25%. We show that this finding is independent of the type of macromolecule simulated and the level of structural resolution employed in the models. We also show, however, that these results are critically dependent on the inclusion of a non-zero term that describes the divergence of the diffusion tensor: when this term is omitted from simulations that use the OA-RPY model, unfolded macromolecules undergo rapid collapse. Our results indicate that the orientationally averaged RPY tensor is likely to be a useful, fast, approximate way of including HIs in BD simulations of intermediate-scale systems.
Collapse
Affiliation(s)
- John W. Tworek
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adrian H. Elcock
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Muñiz‐Chicharro A, Votapka LW, Amaro RE, Wade RC. Brownian dynamics simulations of biomolecular diffusional association processes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abraham Muñiz‐Chicharro
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Faculty of Biosciences and Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp) Heidelberg University Heidelberg Germany
| | | | | | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ‐ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| |
Collapse
|
4
|
Słyk E, Skóra T, Kondrat S. How macromolecules softness affects diffusion under crowding. SOFT MATTER 2022; 18:5366-5370. [PMID: 35833511 DOI: 10.1039/d2sm00357k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diffusion in a macromolecularly crowded environment is essential for many intracellular processes, from metabolism and catalysis to gene transcription and translation. So far, theoretical and experimental work has focused on anomalous subdiffusion, and the effects of interactions, shapes, and composition, while the compactness or softness of macromolecules has received less attention. Herein, we use Brownian dynamics simulations to study how the softness of crowders affects macromolecular diffusion. We find that in most cases, soft crowders slow down the diffusion less effectively than hard crowders like Ficoll. For instance, at a 30% occupied volume fraction, the diffusion in Ficoll70 is about 20% slower than in soft crowders of the same size. However, our simulations indicate that elongated macromolecules, such as double-stranded DNA pieces, can diffuse comparably or even faster in hard crowders. We relate these effects to the volume excluded by soft and hard crowders to different tracers. Our results show that the softness and shape of macromolecules are crucial factors determining diffusion under crowding, relevant to diverse intracellular environments.
Collapse
Affiliation(s)
- Edyta Słyk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Cholko T, Kaushik S, Wu KY, Montes R, Chang CEA. GeomBD3: Brownian Dynamics Simulation Software for Biological and Engineered Systems. J Chem Inf Model 2022; 62:2257-2263. [PMID: 35549473 DOI: 10.1021/acs.jcim.1c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GeomBD3 is a robust Brownian dynamics simulation package designed to easily handle natural or engineered systems in diverse environments and arrangements. The software package described herein allows users to design, execute, and analyze BD simulations. The simulations use all-atom, rigid molecular models that diffuse according to overdamped Langevin dynamics and interact through electrostatic, Lennard-Jones, and ligand desolvation potentials. The program automatically calculates molecular association rates, surface residence times, and association statistics for any number of user-defined association criteria. Users can also extract molecular association pathways, diffusion coefficients, intermolecular interaction energies, intermolecular contact probability maps, and more using the provided supplementary analysis scripts. We detail the use of the package from start to finish and apply it to a protein-ligand system and a large nucleic acid biosensor. GeomBD3 provides a versatile tool for researchers from various disciplines that can aid in rational design of engineered systems or play an explanatory role as a complement to experiments. GeomBD version 3 is available on our website at http://chemcha-gpu0.ucr.edu/geombd3/ and KBbox at https://kbbox.h-its.org/toolbox/methods/molecular-simulation/geombd/.
Collapse
Affiliation(s)
- Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shivansh Kaushik
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kingsley Y Wu
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Ruben Montes
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
6
|
Skóra T, Popescu MN, Kondrat S. Conformation-changing enzymes and macromolecular crowding. Phys Chem Chem Phys 2021; 23:9065-9069. [PMID: 33885078 DOI: 10.1039/d0cp06631a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We study how crowding affects the activity and catalysis-enhanced diffusion of enzymes and passive tracers by employing a fluctuating-dumbbell model of conformation-changing enzymes. Our Brownian dynamics simulations reveal that the diffusion of enzymes depends qualitatively on the type of crowding. If only enzymes are present in the system, the catalysis-induced enhancement of the enzyme diffusion - somewhat counter-intuitively - increases with crowding, while it decreases if crowding is due to inert particles. For the tracers, the diffusion enhancement increases with increasing the enzyme concentration. We also show how the enzyme activity is reduced by crowding and propose a simple expression to describe this reduction. Our results highlight subtle effects at play concerning enzymatic activity and macromolecular transport in crowded systems, such as, e.g., the interior of living cells.
Collapse
Affiliation(s)
- Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
7
|
Kaushik S, Chang CEA. Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association. Front Mol Biosci 2021; 8:659687. [PMID: 34041265 PMCID: PMC8142692 DOI: 10.3389/fmolb.2021.659687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Ligand–protein association is the first and critical step for many biological and chemical processes. This study investigated the molecular association processes under different environments. In biology, cells have different compartments where ligand–protein binding may occur on a membrane. In experiments involving ligand–protein binding, such as the surface plasmon resonance and continuous flow biosynthesis, a substrate flow and surface are required in experimental settings. As compared with a simple binding condition, which includes only the ligand, protein, and solvent, the association rate and processes may be affected by additional ligand transporting forces and other intermolecular interactions between the ligand and environmental objects. We evaluated these environmental factors by using a ligand xk263 binding to HIV protease (HIVp) with atomistic details. Using Brownian dynamics simulations, we modeled xk263 and HIVp association time and probability when a system has xk263 diffusion flux and a non-polar self-assembled monolayer surface. We also examined different protein orientations and accessible surfaces for xk263. To allow xk263 to access to the dimer interface of immobilized HIVp, we simulated the system by placing the protein 20Å above the surface because immobilizing HIVp on a surface prevented xk263 from contacting with the interface. The non-specific interactions increased the binding probability while the association time remained unchanged. When the xk263 diffusion flux increased, the effective xk263 concentration around HIVp, xk263–HIVp association time and binding probability decreased non-linearly regardless of interacting with the self-assembled monolayer surface or not. The work sheds light on the effects of the solvent flow and surface environment on ligand–protein associations and provides a perspective on experimental design.
Collapse
Affiliation(s)
- Shivansh Kaushik
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| | - Chia-En A Chang
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| |
Collapse
|
8
|
Skóra T, Vaghefikia F, Fitter J, Kondrat S. Macromolecular Crowding: How Shape and Interactions Affect Diffusion. J Phys Chem B 2020; 124:7537-7543. [PMID: 32790396 DOI: 10.1021/acs.jpcb.0c04846] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A significant fraction of the cell volume is occupied by various proteins, polysaccharides, nucleic acids, etc., which considerably reduces the mobility of macromolecules. Theoretical and experimental work so far have mainly focused on the dependence of the mobility on the occupied volume, while the effect of a macromolecular shape received less attention. Herein, using fluorescence correlation spectroscopy (FCS) and Brownian dynamics (BD) simulations, we report on a dramatic slowdown of tracer diffusion by cylindrically shaped double-stranded (ds) DNAs (16 nm in length). We find, for instance, that the translational diffusion coefficient of a streptavidin tracer is reduced by about 60% for a volume fraction of dsDNA as low as just 5%. For comparison, for a spherical crowder (Ficoll70) the slowdown is only 10% at the same volume fraction and 60% reduction occurs at a volume fraction as high as 35%. BD simulations reveal that this reduction can be attributed to a larger volume excluded to a tracer by dsDNA particles, as compared with spherical Ficoll70 at the same volume fraction, and to the differences in the tracer-crowder attractive interactions. In addition, we find using BD simulations that rotational diffusion of dsDNA is less affected by the crowder shape than its translational motion. Our results show that diffusion in crowded systems is determined not merely by the occupied volume fraction, but that the shape and interactions can determine diffusion, which is relevant to the diverse intracellular environments inside living cells.
Collapse
Affiliation(s)
- Tomasz Skóra
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany.,Institut für Biologische Informationsprozesse (IBI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Svyatoslav Kondrat
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany.,Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Ostrowska N, Feig M, Trylska J. Modeling Crowded Environment in Molecular Simulations. Front Mol Biosci 2019; 6:86. [PMID: 31572730 PMCID: PMC6749006 DOI: 10.3389/fmolb.2019.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
Biomolecules perform their various functions in living cells, namely in an environment that is crowded by many macromolecules. Thus, simulating the dynamics and interactions of biomolecules should take into account not only water and ions but also other binding partners, metabolites, lipids and macromolecules found in cells. In the last decade, research on how to model macromolecular crowders around proteins in order to simulate their dynamics in models of cellular environments has gained a lot of attention. In this mini-review we focus on the models of crowding agents that have been used in computer modeling studies of proteins and peptides, especially via molecular dynamics simulations.
Collapse
Affiliation(s)
- Natalia Ostrowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Abstract
Brownian dynamics (BD) is a technique for carrying out computer simulations of physical systems that are driven by thermal fluctuations. Biological systems at the macromolecular and cellular level, while falling in the gap between well-established atomic-level models and continuum models, are especially suitable for such simulations. We present a brief history, examples of important biological processes that are driven by thermal motion, and those that have been profitably studied by BD. We also present some of the challenges facing developers of algorithms and software, especially in the attempt to simulate larger systems more accurately and for longer times.
Collapse
Affiliation(s)
- Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0340, USA.,Department of Pharmocology, University of California San Diego, La Jolla, CA 92093-0636, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0340, USA.,Department of Pharmocology, University of California San Diego, La Jolla, CA 92093-0636, USA
| |
Collapse
|
11
|
Kondrat S, Popescu MN. Brownian dynamics assessment of enhanced diffusion exhibited by ‘fluctuating-dumbbell enzymes’. Phys Chem Chem Phys 2019; 21:18811-18815. [DOI: 10.1039/c9cp02842k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerical simulations show moderate diffusion enhancements for fluctuating-dumbbell enzyme models.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Department of Complex Systems
- Institute of Physical Chemistry PAS
- Kasprzaka 44/52
- 01-224 Warsaw
- Poland
| | - Mihail N. Popescu
- Max-Planck-Institut für Intelligente Systeme
- Heisenbergstrasse 3
- D-70569 Stuttgart
- Germany
| |
Collapse
|
12
|
Campeggio J, Polimeno A, Zerbetto M. DiTe2: Calculating the diffusion tensor for flexible molecules. J Comput Chem 2018; 40:697-705. [DOI: 10.1002/jcc.25742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023]
Affiliation(s)
| | - Antonino Polimeno
- Department of Chemical SciencesUniversity of Padua Padova 35131 Italy
| | - Mirco Zerbetto
- Department of Chemical SciencesUniversity of Padua Padova 35131 Italy
| |
Collapse
|
13
|
Zerbetto M, Angles d'Ortoli T, Polimeno A, Widmalm G. Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling. J Phys Chem B 2018; 122:2287-2294. [PMID: 29385337 DOI: 10.1021/acs.jpcb.7b12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions, but the structures may also be branched. The trisaccharide β-d-Glcp-(1→3)[β-d-Glcp-(1→2)]-α-d-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue, with labeling in each of the two terminal glucosyl residues, enabled the acquisition of high-quality 13C NMR relaxation parameters, T1 and T2, and heteronuclear NOE, with standard deviations of ≤0.5%. For interpretation of the experimental NMR data, a diffusive chain model was used, in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed a very good agreement with experimental data, deviating <3%. The resulting dynamics are described by correlation times of 196 and 174 ps for the β-(1→2)- and β-(1→3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
15
|
Roberts CC, Chang CEA. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration. J Chem Theory Comput 2016; 11:286-92. [PMID: 26574226 DOI: 10.1021/ct5007482] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colocalized multistep enzymatic reaction pathways within biological catabolic and metabolic processes occur with high yield and specificity. Spatial organization on membranes or surfaces may be associated with increased efficiency of intermediate substrate transfer. Using a new Brownian dynamics package, GeomBD, we explored the geometric features of a surface-anchored enzyme system by parallel coarse-grained Brownian dynamics simulations of substrate diffusion over microsecond (μs) to millisecond (ms) time scales. We focused on a recently developed glucose oxidase (GOx), horseradish peroxidase (HRP), and DNA origami-scaffold enzyme system, where the H2O2 substrate of HRP is produced by GOx. The results revealed and explained a significant advantage in catalytic enhancement by optimizing interenzyme distance and orientation in the presence of the scaffold model. The planar scaffold colocalized the enzymes and provided a diffusive barrier that enhanced substrate transfer probability, becoming more relevant with increasing interenzyme distance. The results highlight the importance of protein geometry in the proper assessment of distance and orientation dependence on the probability of substrate transfer. They shed light on strategies for engineering multienzyme complexes and further investigation of enhanced catalytic efficiency for substrate diffusion between membrane-anchoring proteins.
Collapse
Affiliation(s)
- Christopher C Roberts
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Chia-en A Chang
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
16
|
Roberts CC, Chang CEA. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations. J Phys Chem B 2016; 120:8518-31. [PMID: 27248669 DOI: 10.1021/acs.jpcb.6b02236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.
Collapse
Affiliation(s)
- Christopher C Roberts
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
17
|
Sedeh RS, Pan K, Adendorff MR, Hallatschek O, Bathe KJ, Bathe M. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies. J Chem Theory Comput 2015; 12:261-73. [PMID: 26636351 DOI: 10.1021/acs.jctc.5b00965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic nucleic acids can be programmed to form precise three-dimensional structures on the nanometer-scale. These thermodynamically stable complexes can serve as structural scaffolds to spatially organize functional molecules including multiple enzymes, chromophores, and force-sensing elements with internal dynamics that include substrate reaction-diffusion, excitonic energy transfer, and force-displacement response that often depend critically on both the local and global conformational dynamics of the nucleic acid assembly. However, high molecular weight assemblies exhibit long time-scale and large length-scale motions that cannot easily be sampled using all-atom computational procedures such as molecular dynamics. As an alternative, here we present a computational framework to compute the overdamped conformational dynamics of structured nucleic acid assemblies and apply it to a DNA-based tweezer, a nine-layer DNA origami ring, and a pointer-shaped DNA origami object, which consist of 204, 3,600, and over 7,000 basepairs, respectively. The framework employs a mechanical finite element model for the DNA nanostructure combined with an implicit solvent model to either simulate the Brownian dynamics of the assembly or alternatively compute its Brownian modes. Computational results are compared with an all-atom molecular dynamics simulation of the DNA-based tweezer. Several hundred microseconds of Brownian dynamics are simulated for the nine-layer ring origami object to reveal its long time-scale conformational dynamics, and the first ten Brownian modes of the pointer-shaped structure are predicted.
Collapse
Affiliation(s)
| | | | | | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley , Berkeley, California 94720, United States
| | | | | |
Collapse
|
18
|
Boras BW, Hirakis SP, Votapka LW, Malmstrom RD, Amaro RE, McCulloch AD. Bridging scales through multiscale modeling: a case study on protein kinase A. Front Physiol 2015; 6:250. [PMID: 26441670 PMCID: PMC4563169 DOI: 10.3389/fphys.2015.00250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.
Collapse
Affiliation(s)
- Britton W. Boras
- Department of Bioengineering, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Lane W. Votapka
- Department of Chemistry and Biochemistry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Robert D. Malmstrom
- National Biomedical Computation Resource, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of CaliforniaSan Diego, La Jolla, CA, USA
- National Biomedical Computation Resource, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Andrew D. McCulloch
- Department of Bioengineering, University of CaliforniaSan Diego, La Jolla, CA, USA
- National Biomedical Computation Resource, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Medicine, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Saadat A, Khomami B. Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:033307. [PMID: 26465586 DOI: 10.1103/physreve.92.033307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Indexed: 06/05/2023]
Abstract
Evaluating the concentration dependence of static and dynamic properties of macromolecules in semidilute polymer solutions requires accurate calculation of long-range hydrodynamic interactions (HI) and short range excluded volume (EV) forces. In conventional Brownian dynamics simulations (BDS), computation of HI necessitates construction of a dense diffusion tensor commonly performed via Ewald summation. Krylov subspace techniques allow efficient decomposition of this tensor [computational cost scales as O(N^{2}), where N is the total number of beads in bead-spring representation of macromolecules in a simulation box] and computation of Brownian displacements in the box. In this paper, a matrix-free approach for calculation of HI is implemented which leads to O(NlogN) scaling of computational expense. The fidelity of the algorithm is demonstrated by evaluating the asymptotic value of center-of-mass diffusivity of polymer molecules at very low concentrations and their radius of gyration scaling as a function of number of beads for dilute and semidilute solutions (with concentrations up to 5 times the overlap concentration). In turn, a favorable comparison between our results and the blob theory is shown.
Collapse
Affiliation(s)
- Amir Saadat
- Material Research and Innovative Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA
| | - Bamin Khomami
- Material Research and Innovative Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA
| |
Collapse
|
20
|
Długosz M, Antosiewicz JM. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems. J Phys Chem B 2015; 119:8425-39. [PMID: 26068580 DOI: 10.1021/acs.jpcb.5b04675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proper treatment of hydrodynamic interactions is of importance in evaluation of rigid-body mobility tensors of biomolecules in Stokes flow and in simulations of their folding and solution conformation, as well as in simulations of the translational and rotational dynamics of either flexible or rigid molecules in biological systems at low Reynolds numbers. With macromolecules conveniently modeled in calculations or in dynamic simulations as ensembles of spherical frictional elements, various approximations to hydrodynamic interactions, such as the two-body, far-field Rotne-Prager approach, are commonly used, either without concern or as a compromise between the accuracy and the numerical complexity. Strikingly, even though the analytical Rotne-Prager approach fails to describe (both in the qualitative and quantitative sense) mobilities in the simplest system consisting of two spheres, when the distance between their surfaces is of the order of their size, it is commonly applied to model hydrodynamic effects in macromolecular systems. Here, we closely investigate hydrodynamic effects in two and three-body systems, consisting of bead-shell molecular models, using either the analytical Rotne-Prager approach, or an accurate numerical scheme that correctly accounts for the many-body character of hydrodynamic interactions and their short-range behavior. We analyze mobilities, and translational and rotational velocities of bodies resulting from direct forces acting on them. We show, that with the sufficient number of frictional elements in hydrodynamic models of interacting bodies, the far-field approximation is able to provide a description of hydrodynamic effects that is in a reasonable qualitative as well as quantitative agreement with the description resulting from the application of the virtually exact numerical scheme, even for small separations between bodies.
Collapse
Affiliation(s)
- Maciej Długosz
- †Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, Warsaw 02-097, Poland
| | - Jan M Antosiewicz
- ‡Department of Biophysics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
21
|
Kondrat S, Zimmermann O, Wiechert W, Lieres EV. The effect of composition on diffusion of macromolecules in a crowded environment. Phys Biol 2015; 12:046003. [DOI: 10.1088/1478-3975/12/4/046003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Khruschev SS, Abaturova AM, Diakonova AN, Fedorov VA, Ustinin DM, Kovalenko IB, Riznichenko GY, Rubin AB. Brownian-dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Naddaf L, Sayyed-Ahmad A. Intracellular crowding effects on the self-association of the bacterial cell division protein FtsZ. Arch Biochem Biophys 2014; 564:12-9. [DOI: 10.1016/j.abb.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 11/15/2022]
|
24
|
Saadat A, Khomami B. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: A comparative study of the Krylov subspace and Chebyshev based techniques. J Chem Phys 2014; 140:184903. [DOI: 10.1063/1.4873999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Długosz M, Antosiewicz JM. Transient Effects of Excluded Volume Interactions on the Translational Diffusion of Hydrodynamically Anisotropic Molecules. J Chem Theory Comput 2014; 10:2583-90. [DOI: 10.1021/ct500124r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Maciej Długosz
- Center of New Technologies, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | - Jan M. Antosiewicz
- Department of Biophysics,
Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
26
|
Długosz M, Antosiewicz JM. Evaluation of Proteins’ Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments. J Chem Theory Comput 2013; 10:481-91. [DOI: 10.1021/ct4008519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maciej Długosz
- Center of New Technologies and ‡Department of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | - Jan M. Antosiewicz
- Center of New Technologies and ‡Department of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
27
|
Edmonds CM, Hesketh PJ, Nair S. Polymer translocation in solid-state nanopores: Dependence on hydrodynamic interactions and polymer configuration. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Schöneberg J, Noé F. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments. PLoS One 2013; 8:e74261. [PMID: 24040218 PMCID: PMC3770580 DOI: 10.1371/journal.pone.0074261] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/02/2013] [Indexed: 12/14/2022] Open
Abstract
We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.
Collapse
|
29
|
Elcock AH. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules. J Chem Theory Comput 2013; 9:3224-3239. [PMID: 23914146 DOI: 10.1021/ct400240w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman's Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor.
Collapse
Affiliation(s)
- Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Długosz M, Antosiewicz JM. Anisotropic Diffusion Effects on the Barnase–Barstar Encounter Kinetics. J Chem Theory Comput 2013; 9:1667-77. [DOI: 10.1021/ct300937z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, Warsaw
02-089, Poland
| | - Jan M. Antosiewicz
- Department
of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
31
|
Kotsyubynskyy D, Zerbetto M, Soltesova M, Engström O, Pendrill R, Kowalewski J, Widmalm G, Polimeno A. Stochastic modeling of flexible biomolecules applied to NMR relaxation. 2. Interpretation of complex dynamics in linear oligosaccharides. J Phys Chem B 2012. [PMID: 23185964 DOI: 10.1021/jp306627q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A computational stochastic approach is applied to the description of flexible molecules. By combining (i) molecular dynamics simulations, (ii) hydrodynamics approaches, and (iii) a multidimensional diffusive description for internal and global dynamics, it is possible to build an efficient integrated approach to the interpretation of relaxation processes in flexible systems. In particular, the model is applied to the interpretation of nuclear magnetic relaxation measurements of linear oligosaccharides, namely a mannose-containing trisaccharide and the pentasaccharide LNF-1. Experimental data are reproduced with sufficient accuracy without free model parameters.
Collapse
Affiliation(s)
- Dmytro Kotsyubynskyy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mereghetti P, Wade RC. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions. J Phys Chem B 2012; 116:8523-33. [PMID: 22594708 DOI: 10.1021/jp212532h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.
Collapse
Affiliation(s)
- Paolo Mereghetti
- Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| | | |
Collapse
|
33
|
Bauler P, Huber GA, McCammon JA. Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions. J Chem Phys 2012; 136:164107. [PMID: 22559470 DOI: 10.1063/1.4704808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.
Collapse
Affiliation(s)
- Patricia Bauler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
34
|
Długosz M, Antosiewicz JM, Zieliński P, Trylska J. Contributions of far-field hydrodynamic interactions to the kinetics of electrostatically driven molecular association. J Phys Chem B 2012; 116:5437-47. [PMID: 22512305 DOI: 10.1021/jp301265y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We simulated the diffusional encounters in periodic systems of model isotropic and anisotropic molecules using Brownian dynamics. We considered the electrostatic, excluded volume, and far-field hydrodynamic forces between diffusing molecules. Our goal was to estimate to what extent the hydrodynamic interactions influence the association kinetics when the associating partners are oppositely charged and their direct electrostatic interactions are screened by small mobile ions of dissolved salt. Overall, including hydrodynamic interactions decreases the association rate constants. The relative magnitude of this decrease does not depend on the ionic strength for the association of isotropic charged objects. This also holds true for nonspecific association (i.e., without restrictions regarding the relative orientation of binding partners in an encounter complex) of anisotropic objects. However, such dependence is visible for orientation-specific association of anisotropic objects. Moreover, we observe that some orientations of anisotropic molecules are hydrodynamically favorable during their mutual approach, and that such molecules can be hydrodynamically steered toward a particular relative orientation. This hydrodynamic orientational steering is impeded in case of strong electrostatic interactions or steric hindrance.
Collapse
Affiliation(s)
- Maciej Długosz
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland.
| | | | | | | |
Collapse
|
35
|
Schmidt RR, Cifre JGH, de la Torre JG. Comparison of Brownian dynamics algorithms with hydrodynamic interaction. J Chem Phys 2011; 135:084116. [PMID: 21895168 DOI: 10.1063/1.3626868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydrodynamic interaction is an essential effect to consider in Brownian dynamics simulations of polymer and nanoparticle dilute solutions. Several mathematical approaches can be used to build Brownian dynamics algorithms with hydrodynamic interaction, the most common of them being the exact but time demanding Cholesky decomposition and the Chebyshev polynomial expansion. Recently, Geyer and Winter [J. Chem. Phys. 130, 1149051 (2009)] have proposed a new approximation to treat the hydrodynamic interaction that seems quite efficient and is increasingly used. So far, a systematic comparison among those approaches has not been clearly made. In this paper, several features and the efficiency of typical implementations of those approaches are evaluated by using bead-and-spring chain models. The different sensitivity to the bead overlap detected for the different implementations may be of interest to select the suitable algorithm for a given simulation.
Collapse
|