1
|
Lu T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J Chem Phys 2024; 161:082503. [PMID: 39189657 DOI: 10.1063/5.0216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Analysis of electron wavefunction is a key component of quantum chemistry investigations and is indispensable for the practical research of many chemical problems. After more than ten years of active development, the wavefunction analysis program Multiwfn has accumulated very rich functions, and its application scope has covered numerous aspects of theoretical chemical research, including charge distribution, chemical bond, electron localization and delocalization, aromaticity, intramolecular and intermolecular interactions, electronic excitation, and response property. This article systematically introduces the features and functions of the latest version of Multiwfn and provides many representative examples. Through this article, readers will be able to fully understand the characteristics and recognize the unique value of Multiwfn. The source code and precompiled executable files of Multiwfn, as well as the manual containing a detailed introduction to theoretical backgrounds and very rich tutorials, can all be downloaded for free from the Multiwfn website (http://sobereva.com/multiwfn).
Collapse
Affiliation(s)
- Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100024, People's Republic of China
| |
Collapse
|
2
|
Weinhold F, Glendening ED. Natural resonance-theoretic conceptions of extreme electronic delocalization in soft materials. Phys Chem Chem Phys 2024; 26:2815-2822. [PMID: 38196333 DOI: 10.1039/d3cp04790c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
In the broad context of Dalton's atomic hypothesis and subsequent classical vs. quantum understanding of macroscopic materials, we show how Pauling's resonance-type conceptions, as quantified in natural resonance theory (NRT) analysis of modern wavefunctions, can be modified to unify description of interatomic interactions from the Lewis-like limit of localized e-pair covalency in molecules to the extreme delocalized limit of supramolecular "soft matter" aggregation. Such "NRT-centric" integration of NRT bond orders for hard- and soft-matter interactions is illustrated with application to a long-predicted and recently synthesized organometallic sandwich-type complex ("diberyllocene") that exhibits bond orders ranging from the soft limit (bBeC ≈ 0.01) to the typical values (bCC ≈ 1.35) of molecular resonance-covalency in the organic domain, with intermediate value (bBeBe ≈ 0.86) for intermetallic Be⋯Be interaction.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Eric D Glendening
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA.
| |
Collapse
|
3
|
Santos CV, Monteiro SA, Soares ASC, Souto ICA, Moura RT. Decoding Chemical Bonds: Assessment of the Basis Set Effect on Overlap Electron Density Descriptors and Topological Properties in Comparison to QTAIM. J Phys Chem A 2023; 127:7997-8014. [PMID: 37703453 DOI: 10.1021/acs.jpca.3c04504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Quantum chemical bonding descriptors based on the total and overlap density can provide valuable information about chemical interactions in different systems. However, these descriptors can be sensitive to the basis set used. To address this, different numerical treatments of electron density have been proposed to reduce the basis set dependency. In this work, we introduce overlap properties (OPs) obtained through numerical treatment of the electron density and present the topology of overlap density (TOP) for the first time. We compare the basis set dependency of numerical OP and TOP descriptors with their quantum theory of atoms in molecules (QTAIM) counterparts, considering the total electron density. Three single (C-C, C-O, and C-F) bonds in ethane, methanol, and fluoromethane and two double (C═C and C═O) bonds in ethene and formaldehyde were analyzed. Diatomic molecules Li-X with X = F, Cl, and Br were also analyzed. Eight parameters, including QTAIM descriptors and OP/TOP descriptors, are used to assess the basis dependency at the ωB97X-D level of theory using 28 basis sets from three classes: Pople, Ahlrichs, and Dunning. The study revealed that the topological overlap electron density properties exhibit comparatively lesser dependence on the basis set compared to their total electron density counterparts. Remarkably, these properties retain their chemical significance even with reduced basis set dependency. Similarly, numerical OP descriptors show less basis set dependency than their QTAIM counterparts. The excess of polarization functions increases charge concentration in the interatomic region and influences both QTAIM and OP descriptors. The basis sets Def2TZVP, 6-31++G(d,p), 6-311++G(d,p), cc-pVDZ, cc-pVTZ, and cc-pVQZ demonstrate reduced variability for the tested bond classes in this study, with particular emphasis on the triple-ζ quality Ahlrichs' basis set. We recommend against using basis sets with numerous polarization functions, such as augmented Dunning's and Ahlrichs' quadruple-ζ.
Collapse
Affiliation(s)
- Carlos V Santos
- Department of Chemistry, Federal University of Paraiba, Joao Pessoa, Paraiba 58051-970, Brazil
| | - Shirlene A Monteiro
- Department of Chemistry, State University of Paraiba, Campina Grande, Paraiba 58051-970, Brazil
| | - Amanda S C Soares
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
| | - Isabeli C A Souto
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
| | - Renaldo T Moura
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
4
|
Griffith R, Bremner JB. Computational Evaluation of N-Based Transannular Interactions in Some Model Fused Medium-Sized Heterocyclic Systems and Implications for Drug Design. Molecules 2023; 28:molecules28041631. [PMID: 36838625 PMCID: PMC9961457 DOI: 10.3390/molecules28041631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
As part of a project on fused medium-sized ring systems as potential drugs, we have previously demonstrated the usefulness of Density Functional Theory (DFT) to evaluate amine nitrogen-based transannular interactions across the central 10-membered ring in the bioactive dibenzazecine alkaloid, protopine. A range of related hypothetical systems have been investigated, together with transannular interactions involving ring-embedded imino or azo group nitrogens and atoms or groups (Y) across the ring. Electrostatic potential energies mapped onto electron density surfaces in the different ring conformations were evaluated in order to characterise these conformations. Unexpectedly, the presence of sp2 hybridised nitrogen atoms in the medium-sized rings did not influence the conformations appreciably. The strength and type of the N…Y interactions are determined primarily by the nature of Y. This is also the case when the substituent on the interacting nitrogen is varied from CH3 (protopine) to H or OH. With Y = BOH, very strong interactions were observed in protopine analogues, as well as in rings incorporating imino or azo groups. Strong to moderate interactions were observed with Y = CS, CO and SO in all ring systems. Weaker interactions were observed with Y = S, O and weaker ones again with an sp3 hybridised carbon (Y = CH2). The transannular interactions can influence conformational preferencing and shape and change electron distributions at key sites, which theoretically could modify properties of the molecules while providing new or enhanced sites for biological target interactions, such as the H or OH substituent. The prediction of new strong transannular interaction types such as with Y = BOH and CS should be helpful in informing priorities for synthesis and other experimental studies.
Collapse
Affiliation(s)
- Renate Griffith
- School of Natural Sciences (Chemistry), College of Sciences and Engineering, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
- Correspondence:
| | - John B. Bremner
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Sharma H, Tewari T, Chikkali SH, Vanka K. Computational Insights into the Iron-Catalyzed Magnesium-Mediated Hydroformylation of Alkynes. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Escobedo A, Piccirillo J, Aranda J, Diercks T, Mateos B, Garcia-Cabau C, Sánchez-Navarro M, Topal B, Biesaga M, Staby L, Kragelund BB, García J, Millet O, Orozco M, Coles M, Crehuet R, Salvatella X. A glutamine-based single α-helix scaffold to target globular proteins. Nat Commun 2022; 13:7073. [PMID: 36400768 PMCID: PMC9674830 DOI: 10.1038/s41467-022-34793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jonathan Piccirillo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Tammo Diercks
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Macarena Sánchez-Navarro
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Busra Topal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Lasse Staby
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Oscar Millet
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tubingen, Germany
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Sabet-Sarvestani H, Bolourian S, Eshghi H, Hosseini F, Hosseini H. Nitronium salts as mild and inexpensive oxidizing reagents toward designing efficient strategies in organic syntheses; A mechanistic investigation based on the DFT insights. J Mol Graph Model 2022; 116:108253. [PMID: 35752083 DOI: 10.1016/j.jmgm.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Today, introducing and evaluating the performance of novel reagents are an undeniable part of designing a successful synthetic strategy. Herein, we study the efficiency and mechanism of recently synthesized nitronium salts (e.g., NO2FSO3, NO2CF3SO3, NO2HS2O7, NO2BF4, NO2PF6, and NO2HSO4) in the oxidation reaction of ethanol to acetic acid, as a model of the primary alcohol transformations to linear carboxylic acid. An aldehyde molecule is the first produced species in this reaction which is converted to the acetic acid molecule in the presence of in situ-produced nitric acid. Concerning the proposed mechanism, among the studied nitronium salts, two different behaviors can be observed in the transition state of the step in which the aldehyde molecule is formed. The calculated barrier energies of this step have been scrutinized by powerful descriptors such as Quantum Theory of Atoms in Molecules (QTAIM), Natural Bond Orbital (NBO), Electrostatic Potential (ESP) surfaces, and Activation Strain Model (ASM). The outcomes of the studied descriptors illustrate that nitronium salts have different performances in progressing the formation of the aldehyde molecule. Indeed, the likeness of the transition state of this step to the products for NO2FSO3, NO2CF3SO3, and NO2HS2O7 species is more significant than the others. Accordingly, these reagents have more potential to apply as oxidizing agents in the primary alcohol transformations to linear carboxylic acid.
Collapse
Affiliation(s)
- Hossein Sabet-Sarvestani
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| | - Shadi Bolourian
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Hosseini
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamed Hosseini
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
8
|
Correa E, Montaño D, Restrepo A. Cation ⋯anion bonding interactions in 1–Ethyl–3–Methylimidazolium based ionic liquids. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Romero-Fernández MP, Cintas P, Rojas-Buzo S. Switchable Cycloadditions of Mesoionic Dipoles: Refreshing up a Regioselective Approach to Two Distinctive Heterocycles. J Org Chem 2022; 87:12854-12866. [PMID: 36103345 PMCID: PMC9552231 DOI: 10.1021/acs.joc.2c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Mesoionic rings are
among the most versatile 1,3-dipoles, as witnessed
recently by their incorporation into bio-orthogonal strategies, and
capable of affording unconventional heterocycles beyond the expected
scope of Huisgen cycloadditions. Herein, we revisit in detail the
reactivity of thiazol-3-ium-4-olates with alkynes, leading to thiophene
and/or pyrid-2-one derivatives. A structural variation at the parent
mesoionic dipole alters sufficiently the steric outcome, thereby favoring
the regioselective formation of a single transient cycloadduct, which
undergoes chemoselective fragmentation to either five- or six-membered
heterocycles. The synthetic protocol benefits largely from microwave
(MW) activation, which enhances reaction rates. The mechanism has
been interrogated with the aid of density functional theory (DFT)
calculations, which sheds light into the origin of the regioselectivity
and points to a predictive formulation of reactivity involving competing
pathways of mesoionic cycloadditions.
Collapse
Affiliation(s)
- M. Pilar Romero-Fernández
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Sergio Rojas-Buzo
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
10
|
Weinhold F. High-Density “Windowpane” Coordination Patterns of Water Clusters and Their NBO/NRT Characterization. Molecules 2022; 27:molecules27134218. [PMID: 35807463 PMCID: PMC9268199 DOI: 10.3390/molecules27134218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Cluster mixture models for liquid water at higher pressures suggest the need for water clusters of higher coordination and density than those commonly based on tetrahedral H-bonding motifs. We show here how proton-ordered water clusters of increased coordination and density can assemble from a starting cyclic tetramer or twisted bicyclic (Möbius-like) heptamer to form extended Aufbau sequences of stable two-, three-, and four-coordinate “windowpane” motifs. Such windowpane clusters exhibit sharply reduced (~90°) bond angles that differ appreciably from the tetrahedral angles of idealized crystalline ice Ih. Computed free energy and natural resonance theory (NRT) bond orders provide quantitative descriptors for the relative stabilities of clusters and strengths of individual coordinative linkages. The unity and consistency of NRT description is demonstrated to extend from familiar supra-integer bonds of the molecular regime to the near-zero bond orders of the weakest linkages in the present H-bond clusters. Our results serve to confirm that H-bonding exemplifies resonance–covalent (fractional) bonding in the sub-integer range and to further discount the dichotomous conceptions of “electrostatics” for intermolecular bonding vs. “covalency” for intramolecular bonding that still pervade much of freshman-level pedagogy and force-field methodology.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Wang Y, Gao H, Ke M, Zeng X, Miao X, Cheng X, Deng W. Chain-Length- and Concentration-Dependent Isomerization of Bithiophenyl-Based Diaminotriazine Derivatives in Two-Dimensional Polymorphic Self-Assembly §. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7005-7012. [PMID: 35609242 DOI: 10.1021/acs.langmuir.2c00585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bithiophenyl-based diaminotriazine derivatives (2TDT-n, n = 10, 12, 16, and 18) with different chain lengths display colhex/p6mm mesophases. Their supramolecular self-assembled mechanism is investigated using scanning tunneling microscopy (STM) at the 1-octanoic acid/graphite interface at various concentrations. The chain length effect on the two-dimensional adlayers is observed in this system, and 2TDT-n molecules show a structural phase transition from the four-leaf arrangement to the two-row linear nanostructure accompanied by the emergence of molecular isomerization with the increase of the side-chain length. The self-assembled structure of 2TDT-10 is composed of a four-leaf pattern with uniform s-cis conformers. In 2TDT-12, three kinds of nanostructures (bamboo-like, two-row linear pattern-I, and flower-like) are observed. These nanostructures are randomly constituted by cis and trans conformers, and the ratios of the s-cis conformer in three kinds of patterns are 55.7, 42.3, and 62.5%, respectively. Furthermore, when n = 16 and 18, the ratio of the s-cis conformer further decreases to 19.0 and 4.3%, respectively. Those molecules mainly form linear nanostructures consisting of s-trans conformers. Therefore, it is reasonable to conclude that the side-chain length has a great effect on the self-assembled patterns and the molecular conformation of bithiophenyl-based diaminotriazine derivatives. Density functional theory calculations are applied to optimize molecular conformers and assess their single-point energies, showing that the s-cis conformation has higher energy than the s-trans conformer. We speculate that the ratio of two conformers in nanostructures might be similar to that of the liquid crystalline phase.
Collapse
Affiliation(s)
- Yi Wang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hongfei Gao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Chemistry School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Meixue Ke
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xiaofang Zeng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xiaohong Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Chemistry School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
12
|
Analysis of Conformational Preferences in Caffeine. Molecules 2022; 27:molecules27061937. [PMID: 35335301 PMCID: PMC8949453 DOI: 10.3390/molecules27061937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/10/2022] Open
Abstract
High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.
Collapse
|
13
|
Density functional theory assessment of transannular N⋯Y interactions in some medium-sized heterocycles. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Gómez S, Rojas-Valencia N, Giovannini T, Restrepo A, Cappelli C. Ring Vibrations to Sense Anionic Ibuprofen in Aqueous Solution as Revealed by Resonance Raman. Molecules 2022; 27:molecules27020442. [PMID: 35056755 PMCID: PMC8780161 DOI: 10.3390/molecules27020442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022] Open
Abstract
We unravel the potentialities of resonance Raman spectroscopy to detect ibuprofen in diluted aqueous solutions. In particular, we exploit a fully polarizable quantum mechanics/molecular mechanics (QM/MM) methodology based on fluctuating charges coupled to molecular dynamics (MD) in order to take into account the dynamical aspects of the solvation phenomenon. Our findings, which are discussed in light of a natural bond orbital (NBO) analysis, reveal that a selective enhancement of the Raman signal due to the normal mode associated with the C-C stretching in the ring, νC=C, can be achieved by properly tuning the incident wavelength, thus facilitating the recognition of ibuprofen in water samples.
Collapse
Affiliation(s)
- Sara Gómez
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- Correspondence: (S.G.); (C.C.)
| | - Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin 050010, Colombia; (N.R.-V.); (A.R.)
| | - Tommaso Giovannini
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin 050010, Colombia; (N.R.-V.); (A.R.)
| | - Chiara Cappelli
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- Correspondence: (S.G.); (C.C.)
| |
Collapse
|
15
|
David J, Gómez S, Guerra D, Guerra D, Restrepo A. A Comprehensive Picture of the Structures, Energies, and Bonding in the Alanine Dimers. Chemphyschem 2021; 22:2401-2412. [PMID: 34554628 DOI: 10.1002/cphc.202100585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 12/14/2022]
Abstract
High level quantum mechanical computations and extensive stochastic searches of the potential energy surfaces of the Alanine dimers uncover rich and complex structural and interaction landscapes. A total of 416 strongly bound (up 13.4 kcal mol-1 binding energies at the DLPNO-CCSD(T)/6-311++G(d,p) level corrected by the basis set superposition error and by the zero point vibrational energies over B3LYP-D3 geometries), close energy equilibrium structures were located, bonded via 32 specific types of intermolecular contacts including Y⋅⋅⋅H-X primary and Y⋅⋅⋅H-C secondary hydrogen bonds, H⋅⋅⋅H dihydrogen contacts, and non conventional anti-electrostatic Y δ - ⋯ X δ - interactions. The putative global minimum is triply degenerate, corresponding to the structure of the common dimer of a carboxylic acid. All quantum descriptors of chemical bonding point to a multitude of weak individual interactions within each dimer, whose cumulative effect results in large binding energies and in an attractive fluxional wall of non-covalent interactions in the interstitial region between the monomers.
Collapse
Affiliation(s)
- Jorge David
- Escuela de Ciencias, Departamento de Ciencias Físicas, Universidad Eafit, AA 3300, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Doris Guerra
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Dario Guerra
- Departamento de Educación y Ciencias Básicas, Instituto Tecnológico Metropolitano, Calle 73 No. 76 A-354, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
16
|
Kolesnikova IN, Kuznetsov VV, Goloveshkin AS, Chegodaev NA, Makhova NN, Shishkov IF. 6,6′-Dimethyl-1,1′,5,5′-tetraaza-6,6′-bi(bicyclo[3.1.0]hexane): synthesis and investigation of molecular structure by quantum-chemical calculations, NMR spectroscopy and X-ray diffraction analysis. Struct Chem 2021. [DOI: 10.1007/s11224-021-01806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Karachi SS, Eskandari K. Boron Triel Bonds: A Quantum Chemical Topology Perspective. ChemistrySelect 2021. [DOI: 10.1002/slct.202103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sara S. Karachi
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Kiamars Eskandari
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
18
|
Rojas-Valencia N, Gómez S, Núñez-Zarur F, Cappelli C, Hadad C, Restrepo A. Thermodynamics and Intermolecular Interactions during the Insertion of Anionic Naproxen into Model Cell Membranes. J Phys Chem B 2021; 125:10383-10391. [PMID: 34492187 DOI: 10.1021/acs.jpcb.1c06766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The insertion process of Naproxen into model dimyristoylphosphatidylcholine (DMPC) membranes is studied by resorting to state-of-the-art classical and quantum mechanical atomistic computational approaches. Molecular dynamics simulations indicate that anionic Naproxen finds an equilibrium position right at the polar/nonpolar interphase when the process takes place in aqueous environments. With respect to the reference aqueous phase, the insertion process faces a small energy barrier of ≈5 kJ mol-1 and yields a net stabilization of also ≈5 kJ mol-1. Entropy changes along the insertion path, mainly due to a growing number of realizable microstates because of structural reorganization, are the main factors driving the insertion. An attractive fluxional wall of noncovalent interactions is characterized by all-quantum descriptors of chemical bonding (natural bond orbitals, quantum theory of atoms in molecules, noncovalent interaction, density differences, and natural charges). This attractive wall originates in the accumulation of tiny transfers of electron densities to the interstitial region between the fragments from a multitude of individual intermolecular contacts stabilizing the tertiary drug/water/membrane system.
Collapse
Affiliation(s)
- Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia.,Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia.,Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit, AA 3300 Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francisco Núñez-Zarur
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cacier Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia
| |
Collapse
|
19
|
Pandey SK, Arunan E. Effects of Multiple OH/SH Substitution on the H‐Bonding/Stability versus Aromaticity of Benzene Rings: From Computational Insights. ChemistrySelect 2021. [DOI: 10.1002/slct.202100689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarvesh Kumar Pandey
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Bangalore 560 012 India
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 India
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Bangalore 560 012 India
| |
Collapse
|
20
|
Bates TG, de Lange JH, Cukrowski I. The CH···HC interaction in biphenyl is a delocalized, molecular-wide and entirely non-classical interaction: Results from FALDI analysis. J Comput Chem 2021; 42:706-718. [PMID: 33565106 DOI: 10.1002/jcc.26491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022]
Abstract
In this study we aim to determine the origin of the electron density describing a CH···HC interaction in planar and twisted conformers of biphenyl. In order to achieve this, the fragment, atomic, localized, delocalized, intra- and inter-atomic (FALDI) decomposition scheme was utilized to decompose the density in the inter-nuclear region between the ortho-hydrogens in both conformers. Importantly, the structural integrity, hence also topological properties, were fully preserved as no 'artificial' partitioning of molecules was implemented. FALDI-based qualitative and quantitative analysis revealed that the majority of electron density arises from two, non-classical and non-local effects: strong overlap of ortho CH σ-bonds, and long-range electron delocalization between the phenyl rings and ortho carbons and hydrogens. These effects resulted in a delocalized electron channel, that is, a density bridge or a bond path in a QTAIM terminology, linking the H-atoms in the planar conformer. The same effects and phenomena are present in both conformers of biphenyl. We show that the CH···HC interaction is a molecular-wide event due to large and long-range electron delocalization, and caution against approaches that investigate CH···HC interactions without fully taking into account the remainder of the molecule.
Collapse
Affiliation(s)
- Thomas G Bates
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jurgens H de Lange
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignacy Cukrowski
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
21
|
Sarkar S, Ghosh SR, Brandão P, Jana AD. Role of imidazole edge to edge supramolecular interaction in the crystal packing of Cu(II)(SCN−)2(imidazole)2 complex: A novel variety of supramolecular interaction revealed by CCDC database analysis and explored through DFT computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Matamoros E, Cintas P, Palacios JC. Amphipathic 1,3-oxazolidines from N-alkyl glucamines and benzaldehydes: stereochemical and mechanistic studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj05503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral N,O-heterocycles appended to a non-reducing carbohydrate chain, which are valuable synthons, reveal further stereodynamic implications.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- E-06006 Badajoz
- Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- E-06006 Badajoz
- Spain
| | - Juan C. Palacios
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- E-06006 Badajoz
- Spain
| |
Collapse
|
23
|
Gupta R, Rezabal E, Hasrack G, Frison G. Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case*. Chemistry 2020; 26:17230-17241. [PMID: 32780465 DOI: 10.1002/chem.202001945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Quantum chemical calculations and NBO, ETS-NOCV, QTAIM and ELF interpretative approaches have been carried out on C-donor ligand-stabilized dihydrido borenium cations. Numerous descriptors of the C-B π-bond strength obtained from orbital localization, energy partitioning or topological methods as well as from structural and chemical parameters have been calculated for 39 C-donor ligands including N-heterocyclic carbenes and carbones. Comparison of the results allows the identification of relative and absolute descriptors of the π interaction. For both families of descriptors excellent correlations are obtained. This enables the establishment of a π-donation capability scale and shows that the interpretative methods, despite their conceptual differences, describe the same chemical properties. These results also reveal noticeable shortcomings in these popular methods, and some precautions that need to be taken to interpret their results adequately.
Collapse
Affiliation(s)
- Radhika Gupta
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Elixabete Rezabal
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Faculty of Chemistry, Donostia International Physics Center (DIPC), University of the Basque Country UPV/EHU, 20018, Donostia, Spain
| | - Golshid Hasrack
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gilles Frison
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
24
|
Kaneko M, Sasaki Y, Matsumiya M, Nakase M, Takeshita K. Density functional modeling of Am3+/Eu3+ selectivity with diethylenetriaminepentaacetic acid and its bisamide chelates. J NUCL SCI TECHNOL 2020. [DOI: 10.1080/00223131.2020.1842267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Yuji Sasaki
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Masahiko Matsumiya
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Masahiko Nakase
- Fukushima Reconstruction and Revitalization Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Kenji Takeshita
- Fukushima Reconstruction and Revitalization Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
25
|
Gómez S, Ramírez-Malule H, Cardona-G W, Osorio E, Restrepo A. Double-Ring Epimerization in the Biosynthesis of Clavulanic Acid. J Phys Chem A 2020; 124:9413-9426. [PMID: 33135896 DOI: 10.1021/acs.jpca.0c05427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All reaction steps during the biosynthesis of suicidal clavulanic acid (coformulated with β-lactam antibiotics and used to fight bacterial infections) are known, except for the crucial 3S,5S → 3R,5R double epimerization needed to produce a biologically active stereoisomer, for which mechanistic hypothesis is subject to debate. In this work, we provide evidence for a reaction channel for the double inversion of configuration that involves a total of six reaction steps. When mediated by an enzyme with a terminal S-H bond, this highly complex reaction is spontaneous in the absence of solvents. Polarizable continuum models introduce reaction barriers in aqueous environments because of the strong destabilization of the first transition state. Molecular geometries and electronic structures in both cases indicate that solvent-free spontaneity and aqueous medium barriers are both firmly rooted in a substantial reorganization of the electron density right at the onset of the reaction, mostly involving a cyclic evolution/involution of large regions of π delocalization used to stabilize the excess charge left after the initial proton abstraction.
Collapse
Affiliation(s)
- Sara Gómez
- Instituto de Quı́mica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 50010 Medellı́n, Colombia.,Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Howard Ramírez-Malule
- Escuela de Ingenierı́a Quı́mica, Universidad del Valle, A.A. 25360, 76001 Cali, Colombia
| | - Wilson Cardona-G
- Instituto de Quı́mica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 50010 Medellı́n, Colombia
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, 73001 Ibagué, Colombia
| | - Albeiro Restrepo
- Instituto de Quı́mica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 50010 Medellı́n, Colombia
| |
Collapse
|
26
|
Sadik MNK, De S. S
2
N
2
– A 6π‐Electron Ligand with Tunable σ‐ and π‐ Donor‐Acceptor Property. ChemistrySelect 2020. [DOI: 10.1002/slct.202003299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammed N. K. Sadik
- Department of Applied Chemistry Cochin University of Science and Technology Thrikakkara Kochi 682 022 India
| | - Susmita De
- Department of Applied Chemistry Cochin University of Science and Technology Thrikakkara Kochi 682 022 India
- Inter University Centre for Nanomaterials and Devices (IUCND) Cochin University of Science and Technology Kochi 682 022 India
| |
Collapse
|
27
|
Ravaei I, Azami SM. Block deformation analysis: Density matrix blocks as intramolecular deformation density. J Comput Chem 2020; 41:2446-2458. [PMID: 32844467 DOI: 10.1002/jcc.26400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 11/07/2022]
Abstract
Block deformation analysis as deformation density of atomic orbitals is introduced to analyze intramolecular interactions. In this respect, density matrix blocks in terms of natural atomic orbitals are employed to find interacting and noninteracting multicenter subsystem and extract the corresponding deformation density. Eigenanalysis of this deformation density is performed to result eigenvalues and eigenorbitals as displaced charge due to the intramolecular interaction and orbital space responsible for charge reorganization, respectively, that possesses advantages of other methods, simultaneously. It is applied to several small molecules, different types of carbon allotropes including zero-, one-, and two-dimensional nanostructures, and challenging systems such as ortho-hydrogen atoms in planar biphenyl. Results highly correlate with delocalization and Wiberg bond indices and show that eigenvalues of block deformation analysis deserved to be considered as bonding index.
Collapse
Affiliation(s)
- Isa Ravaei
- Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran
| | | |
Collapse
|
28
|
Cukrowski I, de Lange JH, van Niekerk DME, Bates TG. Molecular Orbitals Support Energy-Stabilizing "Bonding" Nature of Bader's Bond Paths. J Phys Chem A 2020; 124:5523-5533. [PMID: 32520541 DOI: 10.1021/acs.jpca.0c02234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our MO-based findings proved a bonding nature of each density bridge (DB, or a bond path with an associated critical point, CP) on a Bader molecular graph. A DB pinpoints universal physical and net energy-lowering processes that might, but do not have to, lead to a chemical bond formation. Physical processes leading to electron density (ED) concentration in internuclear regions of three distinctively different homopolar H,H atom-pairs as well as classical C-C and C-H covalent bonds were found to be exactly the same. Notably, properties of individual MOs are internuclear-region specific as they (i) concentrate, deplete, or do not contribute to ED at a CP and (ii) delocalize electron-pairs through either in- (positive) or out-of-phase (negative) interference. Importantly, dominance of a net ED concentration and positive e--pairs delocalization made by a number of σ-bonding MOs is a common feature at a CP. This feature was found for the covalently bonded atoms as well as homopolar H,H atom-pairs investigated. The latter refer to a DB-free H,H atom-pair of the bay in the twisted biphenyl (Bph) and DB-linked H,H atom-pairs (i) in cubic Li4H4, where each H atom is involved in three highly repulsive interactions (over +80 kcal/mol), and (ii) in a weak attractive interaction when sterically clashing in the planar Bph.
Collapse
Affiliation(s)
- Ignacy Cukrowski
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Jurgens H de Lange
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Daniël M E van Niekerk
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Thomas G Bates
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| |
Collapse
|
29
|
Rojas-Valencia N, Gómez S, Guerra D, Restrepo A. A detailed look at the bonding interactions in the microsolvation of monoatomic cations. Phys Chem Chem Phys 2020; 22:13049-13061. [PMID: 32478372 DOI: 10.1039/d0cp00428f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Global and local descriptors of the properties of intermolecular bonding, formally derived from independent methodologies (QTAIM, NCI, NBO, density differences) afford a highly complex picture of the bonding interactions responsible for microsolvation of monoatomic cations. In all cases, the dominant factor dictating geometries and interaction strengths is the electrophilic power of the metal cation. The formal charge disrupts the hydrogen bonding network otherwise present in pristine water clusters, making the hydrogen bonds considerably stronger, even inducing some degree of covalency. All MO interactions are highly ionic, with strengths than in some cases approach that of the reference LiCl bond. Accumulation of electron density in the region connecting MO is observed, thus, ionic bonding in the microsolvation of monoatomic cations is not as simple as an electrostatic interaction between opposing charges.
Collapse
Affiliation(s)
- Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. and Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit, AA 3300, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Doris Guerra
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
30
|
Ghosh SR, Jana AD. B
13
+
is a Tri‐Spoke Wheel: A New Revelation through Electronic Structure Analysis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sourav Ranjan Ghosh
- Department of PhysicsBehala College Parnasree Kolkata 700060 India
- Department of PhysicsHeritage Institute of Technology Kolkata 700107 India
| | | |
Collapse
|
31
|
Abstract
We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending on how the three centres were bonded. Herein, we show that they could be classified as V, L, Δ, Y, T and I (linear) arrangements depending on the way the three centres are bonded. These different structures are found in B2H6 (V), CH5+ (V), Me-C2H2+ (L), B3+ (Δ), C3H3+ (Δ), H3+ (Y), 2-norbornyl+ (T), SiH5+ (T), and Al2H7− (I). Our results suggest that CH3Li2+ does not contain a 3c-2e bond according to NBO analysis. Therefore, we propose that 3c-2e bonds are classified more accurately as V, L, Δ, Y, T, or I, based on the electron density topology.
Collapse
|
32
|
Li YZ, Zhou XL, Huo BQ, Chen DZ, Liu ZH, Sheng XH. Reactions of the Lipid Hydroperoxides With Aminic Antioxidants: The Influence of Stereoelectronic and Resonance Effects on Hydrogen Atom Transfer. Front Chem 2019; 7:850. [PMID: 31921773 PMCID: PMC6927943 DOI: 10.3389/fchem.2019.00850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 01/31/2023] Open
Abstract
Aminic radical-trapping antioxidants (RTAs), as one of the most important antioxidants, have not received sufficient attention yet. But, an increasing number of aminic RTAs have been identified as ferroptosis inhibitors in recent years, which can potentially mediate many pathological states including inflammation, cancer, neurodegenerative disease, as well as ocular and kidney degeneration. This highlights the importance of aminic RTAs in the field of medicine. Herein, we systematically explored the radical scavenging mechanism of aminic RTAs with a quantum chemical method, particularly emphasizing the role of stereoelectronic factors and resonance factors on the transfer of H-atom and the stability to one-electron oxidation. These theoretical results elucidate the diversity of free radical scavenging mechanisms for aminic RTAs, and has significant implications for the rational design of new aminic RTAs.
Collapse
Affiliation(s)
- Yu-Zhen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Xiao-Lu Zhou
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bao-Qi Huo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Zhao-Hua Liu
- Center for New Drug Evaluation, School of Pharmaceutical Sciences of Shandong University, Jinan, China
| | - Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Rojas-Valencia N, Gómez S, Montillo S, Manrique-Moreno M, Cappelli C, Hadad C, Restrepo A. Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes. J Phys Chem B 2019; 124:79-90. [DOI: 10.1021/acs.jpcb.9b09705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Sebastian Montillo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Cacier Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
34
|
Kaneko M, Kato A, Nakashima S, Kitatsuji Y. Density Functional Theory (DFT)-Based Bonding Analysis Correlates Ligand Field Strength with 99Ru Mössbauer Parameters of Ruthenium–Nitrosyl Complexes. Inorg Chem 2019; 58:14024-14033. [DOI: 10.1021/acs.inorgchem.9b02024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Akane Kato
- Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Nakashima
- Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yoshihiro Kitatsuji
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| |
Collapse
|
35
|
Szymanski S, Majerz I. Aromaticity and Electron Density of Hypericin. JOURNAL OF NATURAL PRODUCTS 2019; 82:2106-2115. [PMID: 31348658 DOI: 10.1021/acs.jnatprod.8b00872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of the substituents on the geometry of the central ring system of hypericin has been analyzed. Substitution that causes flattening of the hypericin central rings is connected with introducing the aromatic character of the empty rings. All the hypericin rings have an aromatic character illustrated by the Harmonic Oscillator Measure of Aromaticity (HOMA), Nucleus Independent Chemical Shift (NICS), Fluctuation Index (FLU), and Ellipticity Index (EL) indices. Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analyses performed on 7,14-dihydrophenanthro[1,10,9,8-opqra]perylene, its substituted analogues, and hypericin show an influence of this substitution on electron density of the central rings.
Collapse
Affiliation(s)
- Sebastian Szymanski
- Faculty of Pharmacy , Wroclaw Medical University , Borowska 211a , 50-556 Wroclaw , Poland
| | - Irena Majerz
- Faculty of Pharmacy , Wroclaw Medical University , Borowska 211a , 50-556 Wroclaw , Poland
| |
Collapse
|
36
|
Lyu S, Beiranvand N, Freindorf M, Kraka E. Interplay of Ring Puckering and Hydrogen Bonding in Deoxyribonucleosides. J Phys Chem A 2019; 123:7087-7103. [PMID: 31323178 DOI: 10.1021/acs.jpca.9b05452] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cremer-Pople ring puckering analysis and the Konkoli-Cremer local mode analysis supported by the topological analysis of the electron density were applied for the first comprehensive analysis of the interplay between deoxyribose ring puckering and intramolecular H-bonding in 2'-deoxycytidine, 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxyguanosine. We mapped for each deoxyribonucleoside the complete conformational energy surface and the corresponding pseudorotation path. We found only incomplete pseudorotation cycles, caused by ring inversion, which we coined as pseudolibration paths. On each pseudolibration path a global and a local minimum separated by a transition state were identified. The investigation of H-bond free deoxyribonucleoside analogs revealed that removal of the H-bond does not restore the full conformational flexibility of the sugar ring. Our work showed that ring puckering predominantly determines the conformational energy; the larger the puckering amplitude, the lower the conformational energy. In contrast no direct correlation between conformational energy and H-bond strength was found. The longest and weakest H-bonds are located in the local minimum region, whereas the shortest and strongest H-bonds are located outside the global and local minimum regions at the turning points of the pseudolibration paths, i.e., H-bonding determines the shape and length of the pseudolibration paths. In addition to the H-bond strength, we evaluated the covalent/electrostatic character of the H-bonds applying the Cremer-Kraka criterion of covalent bonding. H-bonding in the puric bases has a more covalent character whereas in the pyrimidic bases the H-bond character is more electrostatic. We investigated how the mutual orientation of the CH2OH group and the base influences H-bond formation via two geometrical parameters describing the rotation of the substituents perpendicular to the sugar ring and their tilting relative to the ring center. According to our results, rotation is more important for H-bond formation. In addition we assessed the influence of the H-bond acceptor, the lone pair (N, respectively O), via the delocalization energy. We found larger delocalization energies corresponding to stronger H-bonds for the puric bases. The global minimum conformation of 2'-deoxyguanosine has the strongest H-bond of all conformers investigated in this work with a bond strength of 0.436 which is even stronger than the H-bond in the water dimer (0.360). The application of our new analysis to DNA deoxyribonucleotides and to unnatural base pairs, which have recently drawn a lot of attention, is in progress.
Collapse
Affiliation(s)
- Siying Lyu
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Nassim Beiranvand
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| |
Collapse
|
37
|
Escobedo A, Topal B, Kunze MBA, Aranda J, Chiesa G, Mungianu D, Bernardo-Seisdedos G, Eftekharzadeh B, Gairí M, Pierattelli R, Felli IC, Diercks T, Millet O, García J, Orozco M, Crehuet R, Lindorff-Larsen K, Salvatella X. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nat Commun 2019; 10:2034. [PMID: 31048691 PMCID: PMC6497633 DOI: 10.1038/s41467-019-09923-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA. Polyglutamine (polyQ) tracts are low-complexity regions and their expansion is linked to certain neurodegenerative diseases. Here the authors combine experimental and computational approaches to find that the length of the androgen receptor polyQ tract correlates with its helicity and show that the polyQ helical structure is stabilized by hydrogen bonds between the Gln side chains and main chain carbonyl groups.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Busra Topal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Giulio Chiesa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Daniele Mungianu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | | | - Bahareh Eftekharzadeh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Margarida Gairí
- NMR Facility, Scientific and Technological Centers University of Barcelona (CCiTUB), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Tammo Diercks
- CIC bioGUNE, Bizkaia Science and Technology Park bld 801A, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Bizkaia Science and Technology Park bld 801A, 48160, Derio, Bizkaia, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain. .,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
38
|
Manogaran D. Making and breaking of small water clusters: A combined quantum chemical and molecular dynamics approach. J Comput Chem 2019; 40:1556-1569. [DOI: 10.1002/jcc.25811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Dhivya Manogaran
- Solid State and Structural Chemistry UnitIndian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
39
|
Bresien J, Hering‐Junghans C, Kumm P, Schulz A, Thomas M, Villinger A. Dispersion Makes a Difference – The Solid‐State Structure of Hg[N(SiMe
3
)
2
]
2. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonas Bresien
- Abt. Anorganische Chemie Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Christian Hering‐Junghans
- Abt. Anorganische Chemie Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Peter Kumm
- Technische Werkstatt Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Axel Schulz
- Abt. Anorganische Chemie Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
- Materialdesign Leibnitz‐Institut für Katalyse an der Universität Rostock e.V. A.‐Einstein‐Str. 29a 8059 Rostock Germany
| | - Max Thomas
- Abt. Anorganische Chemie Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Alexander Villinger
- Abt. Anorganische Chemie Institut für Chemie Universität Rostock A.‐Einstein‐Str. 3a 18059 Rostock Germany
| |
Collapse
|
40
|
Weinhold F, Glendening ED. Comment on “Natural Bond Orbitals and the Nature of the Hydrogen Bond”. J Phys Chem A 2018; 122:724-732. [DOI: 10.1021/acs.jpca.7b08165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Weinhold
- Theoretical
Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - E. D. Glendening
- Department
of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| |
Collapse
|
41
|
Noss ME, Hylden AT, Carroll PJ, Berry DH. Electrochemistry of Ruthenium Bis(imino)pyridine Compounds: Evidence for an ECE Mechanism and Isolation of Mono and Dicationic Complexes. Inorg Chem 2017; 57:435-445. [DOI: 10.1021/acs.inorgchem.7b02677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael E. Noss
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Anne T. Hylden
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Donald H. Berry
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
42
|
Singh A, Sahoo DK, Sethi SK, Jena S, Biswal HS. Nature and Strength of the Inner-Core H⋅⋅⋅H Interactions in Porphyrinoids. Chemphyschem 2017; 18:3625-3633. [DOI: 10.1002/cphc.201700742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ankit Singh
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Srikant Kumar Sethi
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Subhrakant Jena
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
43
|
Moore KB, Sadeghian K, Sherrill CD, Ochsenfeld C, Schaefer HF. C-H···O Hydrogen Bonding. The Prototypical Methane-Formaldehyde System: A Critical Assessment. J Chem Theory Comput 2017; 13:5379-5395. [PMID: 29039941 DOI: 10.1021/acs.jctc.7b00753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Distinguishing the functionality of C-H···O hydrogen bonds (HBs) remains challenging, because their properties are difficult to quantify reliably. Herein, we present a study of the model methane-formaldehyde complex (MFC). Six stationary points on the MFC potential energy surface (PES) were obtained at the CCSD(T)/ANO2 level. The CCSDT(Q)/CBS interaction energies of the conformers range from only -1.12 kcal mol-1 to -0.33 kcal mol-1, denoting a very flat PES. Notably, only the lowest energy stationary point (MFC1) corresponds to a genuine minimum, whereas all other stationary points-including the previously studied ideal case of ae(C-H···O) = 180°-exhibit some degree of freedom that leads to MFC1. Despite the flat PES, we clearly see that the HB properties of MFC1 align with those of the prototypical water dimer O-H···O HB. Each HB property generally becomes less prominent in the higher-energy conformers. Only the MFC1 conformer prominently exhibits (1) elongated C-H donor bonds, (2) attractive C-H···O═C interactions, (3) n(O) → σ*(C-H) hyperconjugation, (4) critical points in the electron density from Bader's method and from the noncovalent interactions method, (5) positively charged donor hydrogen, and (6) downfield NMR chemical shifts and nonzero 2J(CM-HM···OF) coupling constants. Based on this research, some issues merit further study. The flat PES hinders reliable determinations of the HB-induced shifts of the C-H stretches; a similarly difficult challenge is observed for the experiment. The role of charge transfer in HBs remains an intriguing open question, although our BLW and NBO computations suggest that it is relevant to the C-H···O HB geometries. These issues notwithstanding, the prominence of the HB properties in MFC1 serves as clear evidence that the MFC is predominantly bound by a C-H···O HB.
Collapse
Affiliation(s)
- Kevin B Moore
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Keyarash Sadeghian
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
44
|
Varadwaj A, Varadwaj PR, Yamashita K. Hybrid organic-inorganic CH3NH3PbI3perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J Comput Chem 2017; 38:2802-2818. [DOI: 10.1002/jcc.25073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| |
Collapse
|
45
|
Chen H, Adams S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCRJ 2017; 4:614-625. [PMID: 28989717 PMCID: PMC5619853 DOI: 10.1107/s2052252517010211] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 05/30/2023]
Abstract
Based on a description of bond valence as a function of valence electron density, a systematic bond softness sensitive approach to determine bond-valence parameters and related quantities such as coordination numbers is elaborated and applied to determine bond-valence parameters for 706 cation-anion pairs. While the approach is closely related to the earlier softBV parameter set, the new softNC1 parameters proposed in this work may be simpler to apply in plausibility checks of crystal structures, as they follow the first coordination shell convention. The performance of this softNC1 bond-valence parameter set is compared with that of the previously derived softBV parameter set that also factors in contributions from higher coordination shells, and with a benchmarking parameter set that has been optimized following the conventional choice of a universal value of the bond-valence parameter b. The results show that a systematic adaptation of the bond-valence parameters to the bond softness leads to a significant improvement in the bond-valence parameters, particularly for bonds involving soft anions, and is safer than individual free refinements of both R0 and b from a limited number of reference cation environments.
Collapse
Affiliation(s)
- Haomin Chen
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Stefan Adams
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
46
|
Pandey SK, Manogaran D, Manogaran S, Schaefer HF. Quantification of Hydrogen Bond Strength Based on Interaction Coordinates: A New Approach. J Phys Chem A 2017; 121:6090-6103. [DOI: 10.1021/acs.jpca.7b04752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dhivya Manogaran
- Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India
| | - Sadasivam Manogaran
- Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
47
|
Zhang Z, Jiang W, Wang B, Wang Z. Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Hunt PA. Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids. Top Curr Chem (Cham) 2017; 375:59. [PMID: 28523638 PMCID: PMC5480408 DOI: 10.1007/s41061-017-0142-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/16/2017] [Indexed: 01/18/2023]
Abstract
Hydrogen bonding (H-bonding) is an important and very general phenomenon. H-bonding is part of the basis of life in DNA, key in controlling the properties of water and ice, and critical to modern applications such as crystal engineering, catalysis applications, pharmaceutical and agrochemical development. H-bonding also plays a significant role for many ionic liquids (IL), determining the secondary structuring and affecting key physical parameters. ILs exhibit a particularly diverse and wide range of traditional as well as non-standard forms of H-bonding, in particular the doubly ionic H-bond is important. Understanding the fundamental nature of the H-bonds that form within ILs is critical, and one way of accessing this information, that cannot be recovered by any other computational method, is through quantum chemical electronic structure calculations. However, an appropriate method and basis set must be employed, and a robust procedure for determining key structures is essential. Modern generalised solvation models have recently been extended to ILs, bringing both advantages and disadvantages. QC can provide a range of information on geometry, IR and Raman spectra, NMR spectra and at a more fundamental level through analysis of the electronic structure.
Collapse
Affiliation(s)
- Patricia A Hunt
- Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
49
|
Vallejos MM, Pellegrinet SC. Theoretical Study of the BF3-Promoted Rearrangement of Oxiranyl N-Methyliminodiacetic Acid Boronates. J Org Chem 2017; 82:5917-5925. [DOI: 10.1021/acs.joc.7b01096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Margarita M. Vallejos
- Laboratorio
de Química Orgánica, IQUIBA-NEA, Universidad Nacional del Nordeste, CONICET, FACENA, Av. Libertad 5460, Corrientes 3400, Argentina
| | - Silvina C. Pellegrinet
- Instituto
de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas
y Farmacéuticas, Universidad Nacional de Rosario, Suipacha
531, Rosario 2000, Argentina
| |
Collapse
|
50
|
de la Concepción JG, Ávalos M, Babiano R, Cintas P, Jiménez JL, Light ME, Palacios JC. Assessing stereoelectronic effects in dipolar cycloadditions yielding fused thiazolopyridone rings. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|