1
|
Vester J, Olsen JMH. Assessing the Partial Hessian Approximation in QM/MM-Based Vibrational Analysis. J Chem Theory Comput 2024. [PMID: 39423336 DOI: 10.1021/acs.jctc.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The partial Hessian approximation is often used in vibrational analysis of quantum mechanics/molecular mechanics (QM/MM) systems because calculating the full Hessian matrix is computationally impractical. This approach aligns with the core concept of QM/MM, which focuses on the QM subsystem. Thus, using the partial Hessian approximation implies that the main interest is in the local vibrational modes of the QM subsystem. Here, we investigate the accuracy and applicability of the partial Hessian vibrational analysis (PHVA) approach as it is typically used within QM/MM, i.e., only the Hessian belonging to the QM subsystem is computed. We focus on solute-solvent systems with small, rigid solutes. To separate two of the major sources of errors, we perform two separate analyses. First, we study the effects of the partial Hessian approximation on local normal modes, harmonic frequencies, and harmonic IR and Raman intensities by comparing them to those obtained using full Hessians, where both partial and full Hessians are calculated at the QM level. Then, we quantify the errors introduced by QM/MM used with the PHVA by comparing normal modes, frequencies, and intensities obtained using partial Hessians calculated using a QM/MM-type embedding approach to those obtained using partial Hessians calculated at the QM level. Another aspect of the PHVA is the appearance of normal modes resembling the translation and rotation of the QM subsystem. These pseudotranslational and pseudorotational modes should be removed as they are collective vibrations of the atoms in the QM subsystem relative to a frozen MM subsystem and, thus, not well-described. We show that projecting out translation and rotation, usually done for systems in isolation, can adversely affect other normal modes. Instead, the pseudotranslational and pseudorotational modes can be identified and removed.
Collapse
Affiliation(s)
- Jonas Vester
- DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jógvan Magnus Haugaard Olsen
- DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Gao B. Tinned: A symbolic library for response theory and high-order derivatives. J Comput Chem 2024; 45:2136-2152. [PMID: 38780502 DOI: 10.1002/jcc.27437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
A symbolic C++ library-Tinned-has been developed for symbolic differentiation and manipulation in response theory. By recognizing different key building blocks in the density matrix-based (Thorvaldsen et al., J. Chem. Phys. 2008, 129, 214108) and coupled-cluster response theories, we have implemented their corresponding C++ symbolic classes, including but not limited to one- and two-electron operators, exchange-correlation energy and potential, and coupled-cluster operator. Formulas of response theory can be well expressed in terms of the symbolic classes in the library Tinned. Their high-order perturbation-strength derivatives can be straightforwardly computed and extracted afterwards for numerical evaluation. The library Tinned will greatly facilitate the development work of response theory and may lead to a unified framework for response theory at different levels of electronic structure theory.
Collapse
Affiliation(s)
- Bin Gao
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
4
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Franke PR, Stanton JF. Influence of fourth-order vibrational corrections on semi-experimental (reSE) structures of linear molecules. J Chem Phys 2024; 160:014102. [PMID: 38174791 DOI: 10.1063/5.0177694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Semi-experimental structures (reSE) are derived from experimental ground state rotational constants combined with theoretical vibrational corrections. They permit a meaningful comparison with equilibrium structures based on high-level ab initio calculations. Typically, the vibrational corrections are evaluated with second-order vibrational perturbation theory (VPT2). The amount of error introduced by this approximation is generally thought to be small; however, it has not been thoroughly quantified. Herein, we assess the accuracy of theoretical vibrational corrections by extending the treatment to fourth order (VPT4) for a series of small linear molecules. Typical corrections to bond distances are on the order of 10-5 Å. Larger corrections, nearly 0.0002 Å, are obtained to the bond lengths of NCCN and CNCN. A borderline case is CCCO, which will likely require variational computations for a satisfactory answer. Treatment of vibrational effects beyond VPT2 will thus be important when one wishes to know bond distances confidently to four decimal places (10-4 Å). Certain molecules with shallow bending potentials, e.g., HOC+, are not amenable to a VPT2 description and are not improved by VPT4.
Collapse
Affiliation(s)
- Peter R Franke
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
6
|
Papapostolou A, Scheurer M, Dreuw A, Rehn DR. responsefun: Fun with Response Functions in the Algebraic Diagrammatic Construction Framework. J Chem Theory Comput 2023; 19:6375-6391. [PMID: 37676497 DOI: 10.1021/acs.jctc.3c00456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We present the open-source responsefun package, which implements a universally applicable procedure for computing molecular response properties within the algebraic diagrammatic construction (ADC) framework, exploiting the intermediate state representation (ISR) approach. With symbolic mathematics, the user can simply enter textbook sum-over-states (SOS) expressions from time-dependent perturbation theory, which are then automatically translated into the corresponding symbolic ADC/ISR formulations. Using the data structures provided by the hybrid Python/C++ module adcc for calculating excited states with ADC, the specified response property is directly evaluated, and the result is returned to the user. Employing the novel responsefun package, we present the first ADC/ISR calculations of second-order hyperpolarizability tensors and three-photon-absorption matrix elements.
Collapse
Affiliation(s)
- Antonia Papapostolou
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Evangelista FA. Automatic derivation of many-body theories based on general Fermi vacua. J Chem Phys 2022; 157:064111. [PMID: 35963725 DOI: 10.1063/5.0097858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper describes Wick&d, an implementation of the algebra of second-quantized operators normal ordered with respect to general correlated references and the corresponding Wick theorem [D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997) and W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997)]. Wick&d employs a compact representation of operators and a backtracking algorithm to efficiently evaluate Wick contractions. Since Wick&d can handle both fully and partially contracted terms, it can be applied to both projective and Fock-space many-body formalisms. To demonstrate the usefulness of Wick&d, we use it to evaluate the single-reference coupled cluster equations up to octuple excitations and report an automated derivation and implementation of the second-order driven similarity renormalization group multireference perturbation theory.
Collapse
Affiliation(s)
- Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Dundas KHM, Beerepoot MTP, Ringholm M, Reine S, Bast R, List NH, Kongsted J, Ruud K, Olsen JMH. Harmonic Infrared and Raman Spectra in Molecular Environments Using the Polarizable Embedding Model. J Chem Theory Comput 2021; 17:3599-3617. [PMID: 34009969 PMCID: PMC8278393 DOI: 10.1021/acs.jctc.0c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/14/2022]
Abstract
We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric dipole moments and dipole-dipole polarizabilities within the PE model. The derivatives are implemented using a general open-ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating accurate vibrational spectra of molecules embedded in realistic environments.
Collapse
Affiliation(s)
- Karen
Oda Hjorth Minde Dundas
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maarten T. P. Beerepoot
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Magnus Ringholm
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Radovan Bast
- Department
of Information Technology, UiT The Arctic
University of Norway, N-9037 Tromsø, Norway
| | - Nanna Holmgaard List
- Department
of Chemistry and the PULSE Institute, Stanford
University, 94305 Stanford, California, United States
- SLAC
National Accelerator Laboratory, 94025 Menlo Park, California, United States
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
9
|
Olsen JMH, Reine S, Vahtras O, Kjellgren E, Reinholdt P, Hjorth Dundas KO, Li X, Cukras J, Ringholm M, Hedegård ED, Di Remigio R, List NH, Faber R, Cabral Tenorio BN, Bast R, Pedersen TB, Rinkevicius Z, Sauer SPA, Mikkelsen KV, Kongsted J, Coriani S, Ruud K, Helgaker T, Jensen HJA, Norman P. Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. J Chem Phys 2020; 152:214115. [PMID: 32505165 DOI: 10.1063/1.5144298] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.
Collapse
Affiliation(s)
- Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Erik Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Karen Oda Hjorth Dundas
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Janusz Cukras
- Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Magnus Ringholm
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden
| | - Roberto Di Remigio
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Radovan Bast
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas Bondo Pedersen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kenneth Ruud
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trygve Helgaker
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Gräfenstein J. Efficient calculation of NMR isotopic shifts: Difference-dedicated vibrational perturbation theory. J Chem Phys 2019; 151:244120. [PMID: 31893883 DOI: 10.1063/1.5134538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present difference-dedicated second-order vibrational perturbation theory (VPT2) as an efficient method for the computation of nuclear magnetic resonance (NMR) isotopic shifts, which reflect the geometry dependence of the NMR property in combination with different vibration patterns of two isotopologues. Conventional calculations of isotopic shifts, e.g., by standard VPT2, require scanning the geometry dependence over the whole molecule, which becomes expensive rapidly as the molecule size increases. In DD-VPT2, this scan can be restricted to a small region around the substitution site. At the heart of DD-VPT2 is a set of localized vibration modes common to the two isotopologues and designed such that the difference between the vibration patterns is caught by a small subset of them (usually fewer than 10). We tested the DD-VPT2 method for a series of molecules with increasing size and found that this method provides results with the same quality as VPT2 and in good agreement with the experiment, with computational savings up to 95% and less numerical instabilities. The method is easy to automatize and straightforward to generalize to other molecular properties.
Collapse
Affiliation(s)
- Jürgen Gräfenstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Cammi R. The Role of Computational Chemistry in the Experimental Determination of the Dipole Moment of Molecules in Solution. J Comput Chem 2019; 40:2309-2317. [DOI: 10.1002/jcc.26009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto Cammi
- Department of Chemistry, Life Science and Environmental SustainabilityUniversity of Parma I‐43100 Parma Italy
| |
Collapse
|
12
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
13
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
14
|
Baiardi A, Bloino J, Barone V. Time-Dependent Formulation of Resonance Raman Optical Activity Spectroscopy. J Chem Theory Comput 2018; 14:6370-6390. [PMID: 30281300 DOI: 10.1021/acs.jctc.8b00488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, we extend the theoretical framework recently developed for the simulation of resonance Raman (RR) spectra of medium-to-large sized systems to its chiral counterpart, namely, resonance Raman optical activity (RROA). The theory is based on a time-dependent (TD) formulation, with the transition tensors obtained as half-Fourier transforms of the appropriate cross-correlation functions. The implementation has been kept as general as possible, supporting adiabatic and vertical models for the PES representation, both in Cartesian and internal coordinates, with the possible inclusion of Herzberg-Teller (HT) effects. Thanks to the integration of this TD-RROA procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects can be included in an effective way. The implementation is validated on one of the smallest chiral molecule (methyloxirane). Practical applications are illustrated with three medium-size organic molecules (naproxen-OCD3, quinidine and 2-Br-hexahelicene), whose simulated spectra are compared to the corresponding experimental data.
Collapse
Affiliation(s)
- Alberto Baiardi
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Julien Bloino
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
15
|
Gong JZ, Matthews DA, Changala PB, Stanton JF. Fourth-order vibrational perturbation theory with the Watson Hamiltonian: Report of working equations and preliminary results. J Chem Phys 2018; 149:114102. [DOI: 10.1063/1.5040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Justin Z. Gong
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Devin A. Matthews
- Institute for Computational Engineering and Sciences, The University of Texas, Austin, Texas 78712, USA
| | - P. Bryan Changala
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - John F. Stanton
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
16
|
Pietropolli Charmet A, Cornaton Y. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Morgan WJ, Matthews DA, Ringholm M, Agarwal J, Gong JZ, Ruud K, Allen WD, Stanton JF, Schaefer HF. Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde. J Chem Theory Comput 2018; 14:1333-1350. [DOI: 10.1021/acs.jctc.7b01138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. James Morgan
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - Devin A. Matthews
- Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, Austin, Texas 78712, United States
| | - Magnus Ringholm
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry, University of Tromsø − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jay Agarwal
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - Justin Z. Gong
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry, University of Tromsø − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Wesley D. Allen
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - John F. Stanton
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Di Remigio R, Beerepoot MTP, Cornaton Y, Ringholm M, Steindal AH, Ruud K, Frediani L. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation. Phys Chem Chem Phys 2018; 19:366-379. [PMID: 27905594 DOI: 10.1039/c6cp06814f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.
Collapse
Affiliation(s)
- Roberto Di Remigio
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Yann Cornaton
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Arnfinn Hykkerud Steindal
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Luca Frediani
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
19
|
Cornaton Y, Ringholm M, Ruud K. Complete analytic anharmonic hyper-Raman scattering spectra. Phys Chem Chem Phys 2018; 18:22331-42. [PMID: 27459194 DOI: 10.1039/c6cp03463b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first computational treatment of the complete second-order vibrational perturbation theory applied to hyper-Raman scattering spectroscopy. The required molecular properties are calculated in a fully analytic manner using a recently developed program [Ringholm, Jonsson and Ruud, J. Comp. Chem., 2014, 35, 622] that utilizes recursive routines. For some of the properties, these calculations are the first analytic calculations of their kind at their respective levels of theory. We apply this approach to the calculation of the hyper-Raman spectra of methane, ethane and ethylene and compare these to available experimental data. We show that the anharmonic corrections have a larger effect on the vibrational frequencies than on the spectral intensities, but that the inclusion of combination and overtone bands in the anharmonic treatment can improve the agreement with the experimental data, although the quality of available experimental data limits a detailed comparison.
Collapse
Affiliation(s)
- Yann Cornaton
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
20
|
Biczysko M, Bloino J, Puzzarini C. Computational challenges in Astrochemistry. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, College of SciencesShanghai University Shanghai China
| | - Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetalliciUOS di Pisa, Area della Ricerca CNR Pisa Italy
- Scuola Normale Superiore Classe di Scienze, Pisa Italy
| | - Cristina Puzzarini
- Department of Chemistry “Giacomo Ciamician”University of Bologna Bologna Italy
| |
Collapse
|
21
|
Fahleson T, Norman P. Resonant-convergent second-order nonlinear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theory. J Chem Phys 2017; 147:144109. [DOI: 10.1063/1.4991616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Fahleson
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Patrick Norman
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
22
|
Alam MM, Beerepoot MTP, Ruud K. Channel interference in multiphoton absorption. J Chem Phys 2017; 146:244116. [DOI: 10.1063/1.4990438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Md. Mehboob Alam
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maarten T. P. Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
23
|
Egidi F, Williams-Young DB, Baiardi A, Bloino J, Scalmani G, Frisch MJ, Li X, Barone V. Effective Inclusion of Mechanical and Electrical Anharmonicity in Excited Electronic States: VPT2-TDDFT Route. J Chem Theory Comput 2017; 13:2789-2803. [PMID: 28453287 DOI: 10.1021/acs.jctc.7b00218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a reliable and cost-effective procedure for the inclusion of anharmonic effects in excited-state energies and spectroscopic intensities by means of second-order vibrational perturbation theory. This development is made possible thanks to a recent efficient implementation of excited-state analytic Hessians and properties within the time-dependent density functional theory framework. As illustrated in this work, by taking advantage of such algorithmic developments, it is possible to perform calculations of excited-state infrared spectra of medium-large isolated molecular systems, with anharmonicity effects included in both the energy and property surfaces. We also explore the use of this procedure for the inclusion of anharmonic effects in the simulation of vibronic bandshapes of electronic spectra and compare the results with previous, more approximate models.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - David B Williams-Young
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Alberto Baiardi
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR) , UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Giovanni Scalmani
- Gaussian, Inc. , 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian, Inc. , 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
24
|
Anelli M, Ringholm M, Ruud K. Gauge-origin independent calculations of electric-field-induced second-harmonic generation circular intensity difference using London atomic orbitals. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1249979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marco Anelli
- Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, Tromsø, Norway
| | - Magnus Ringholm
- Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, Tromsø, Norway
| | - Kenneth Ruud
- Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, Tromsø, Norway
| |
Collapse
|
25
|
Friese DH, Beerepoot MTP, Ringholm M, Ruud K. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements. J Chem Theory Comput 2016; 11:1129-44. [PMID: 25821415 PMCID: PMC4357236 DOI: 10.1021/ct501113y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/05/2023]
Abstract
![]()
We present an implementation of single
residues for response functions
to arbitrary order using a recursive approach. Explicit expressions
in terms of density-matrix-based response theory for the single residues
of the linear, quadratic, cubic, and quartic response functions are
also presented. These residues correspond to one-, two-, three- and
four-photon transition matrix elements. The newly developed code is
used to calculate the one-, two-, three- and four-photon absorption
cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon
absorption in the framework of response theory. We find that the calculated
multiphoton absorption cross sections are not very sensitive to the
size of the basis set as long as a reasonably large basis set with
diffuse functions is used. The choice of exchange–correlation
functional, however, significantly affects the calculated cross sections
of both charge-transfer transitions and other transitions, in particular,
for the larger para-nitroaminostilbene molecule.
We therefore recommend the use of a range-separated exchange–correlation
functional in combination with the augmented correlation-consistent
double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton
absorption properties.
Collapse
|
26
|
Friese DH, Ruud K. Three-photon circular dichroism: towards a generalization of chiroptical non-linear light absorption. Phys Chem Chem Phys 2016; 18:4174-84. [PMID: 26782622 DOI: 10.1039/c5cp07102j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the theory of three-photon circular dichroism (3PCD), a novel non-linear chiroptical property not yet described in the literature. We derive the observable absorption cross section including the orientational average of the necessary seventh-rank tensors and provide origin-independent expressions for 3PCD using either a velocity-gauge treatment of the electric dipole operator or a length-gauge formulation using London atomic orbitals. We present the first numerical results for hydrogen peroxide, 3-methylcyclopentanone (MCP) and 4-helicene, including also a study of the origin dependence and basis set convergence of 3PCD. We find that for the 3PCD-brightest low-lying Rydberg state of hydrogen peroxide, the dichroism is extremely basis set dependent, with basis set convergence not being reached before a sextuple-zeta basis is used, whereas for the MCP and 4-helicene molecules, the basis set dependence is more moderate and at the triple-zeta level the 3PCD contributions are more or less converged irrespective of whether the considered states are Rydberg states or not. The character of the 3PCD-brightest states in MCP is characterized by a fairly large charge-transfer character from the carbonyl group to the ring system. In general, the quadrupole contributions to 3PCD are found to be very small.
Collapse
Affiliation(s)
- Daniel H Friese
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | |
Collapse
|
27
|
Cornaton Y, Ringholm M, Louant O, Ruud K. Analytic calculations of anharmonic infrared and Raman vibrational spectra. Phys Chem Chem Phys 2016; 18:4201-15. [PMID: 26784673 PMCID: PMC5063043 DOI: 10.1039/c5cp06657c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.
Collapse
Affiliation(s)
- Yann Cornaton
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Orian Louant
- Laboratory of Theoretical Chemistry, UCPTS, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
28
|
Steindal AH, Beerepoot MTP, Ringholm M, List NH, Ruud K, Kongsted J, Olsen JMH. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems. Phys Chem Chem Phys 2016; 18:28339-28352. [DOI: 10.1039/c6cp05297e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the theory and implementation of an open-ended framework for electric response properties that includes effects from the molecular environment modeled by the polarizable embedding model.
Collapse
Affiliation(s)
- Arnfinn Hykkerud Steindal
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Maarten T. P. Beerepoot
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Magnus Ringholm
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Nanna Holmgaard List
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | - Kenneth Ruud
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | | |
Collapse
|
29
|
List NH, Olsen JMH, Kongsted J. Excited states in large molecular systems through polarizable embedding. Phys Chem Chem Phys 2016; 18:20234-50. [DOI: 10.1039/c6cp03834d] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the polarizable embedding model enables rational design of light-sensitive functional biological materials.
Collapse
Affiliation(s)
- Nanna Holmgaard List
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| |
Collapse
|
30
|
Friese DH, Mikhaylov A, Krzeszewski M, Poronik YM, Rebane A, Ruud K, Gryko DT. Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption. Chemistry 2015; 21:18364-74. [PMID: 26511232 PMCID: PMC4713190 DOI: 10.1002/chem.201502762] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/11/2022]
Abstract
A combined experimental and theoretical study of the two-photon absorption (2PA) properties of a series of quadrupolar molecules possessing a highly electron-rich heterocyclic core, pyrrolo[3,2-b]pyrrole, is presented. In agreement with quantum-chemical calculations, large 2PA cross-section values, σ2PA ≈10(2) -10(3) GM (1 GM=10(50) cm(4) s photon(-1) ), are observed at wavelengths of 650-700 nm, which correspond to the two-photon allowed but one-photon forbidden transitions. The calculations also predict that increased planarity of this molecule through removal of two N-substituents leads to further increase in the σ2PA values. Surprisingly, the most quadrupolar pyrrolo[3,2-b]pyrrole derivative, containing two 4-nitrophenyl substituents at positions 2 and 5, demonstrates a very strong solvatofluorochromic effect, with a fluorescence quantum yield as high as 0.96 in cyclohexane, whereas the fluorescence vanishes in DMSO.
Collapse
Affiliation(s)
- Daniel H Friese
- Universitetet i Tromsø-Norges Arktiske Universitet, Centre for Theoretical and Computational Chemistry Tromsø, 9037 Tromsø (Norway)
| | | | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)
| | - Aleksander Rebane
- Department of Physics, Montana State University, Bozeman, MT 59717 (USA).
- National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, 12618 Tallinn (Estonia).
| | - Kenneth Ruud
- Universitetet i Tromsø-Norges Arktiske Universitet, Centre for Theoretical and Computational Chemistry Tromsø, 9037 Tromsø (Norway).
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland).
| |
Collapse
|
31
|
Friese DH, Ringholm M, Gao B, Ruud K. Open-Ended Recursive Calculation of Single Residues of Response Functions for Perturbation-Dependent Basis Sets. J Chem Theory Comput 2015; 11:4814-24. [DOI: 10.1021/acs.jctc.5b00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel H. Friese
- Centre for Theoretical and
Computational Chemisty (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Magnus Ringholm
- Centre for Theoretical and
Computational Chemisty (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Bin Gao
- Centre for Theoretical and
Computational Chemisty (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and
Computational Chemisty (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
32
|
Friese DH, Bast R, Ruud K. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes. ACS PHOTONICS 2015; 2:572-577. [PMID: 26120588 PMCID: PMC4477907 DOI: 10.1021/acsphotonics.5b00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.
Collapse
Affiliation(s)
- Daniel H. Friese
- Centre
for Theoretical and Computational Chemisty, Department of Chemistry, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Radovan Bast
- Theoretical
Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S-10691 Stockholm, Sweden
- PDC Centre for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm, Sweden
| | - Kenneth Ruud
- Centre
for Theoretical and Computational Chemisty, Department of Chemistry, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
33
|
Ringholm M, Bast R, Oggioni L, Ekström U, Ruud K. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients. J Chem Phys 2014; 141:134107. [DOI: 10.1063/1.4896606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Radovan Bast
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden
- PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm, Sweden
| | - Luca Oggioni
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan, Italy
| | - Ulf Ekström
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
34
|
Gao B, Ringholm M, Bast R, Ruud K, Thorvaldsen AJ, Jaszuński M. Analytic density functional theory calculations of pure vibrational hyperpolarizabilities: the first dipole hyperpolarizability of retinal and related molecules. J Phys Chem A 2014; 118:748-56. [PMID: 24405250 DOI: 10.1021/jp408103y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a general approach for the analytic calculation of pure vibrational contributions to the molecular (hyper)polarizabilities at the density functional level of theory. The analytic approach allows us to study large molecules, and we apply the new code to the study of the first dipole hyperpolarizabilities of retinal and related molecules. We investigate the importance of electron correlation as described by the B3LYP exchange-correlation functional on the pure vibrational and electronic hyperpolarizabilities and compare the computed hyperpolarizabilities with available experimental data. The effects of electron correlation on the pure vibrational corrections vary signficantly even between these structurally very similar molecules, making it difficult to estimate these effects without explicit calculations at the density functional theory level. As expected, the frequency-dependent first hyperpolarizability, which determines the experimentally observed second-harmonic generation, is dominated by the electronic term, whereas for the static hyperpolarizability, the vibrational contribution is equally important. As a consequence, frequency extrapolation of the measured optical hyperpolarizabilities can only provide an estimate for the electronic contribution to the static hyperpolarizability, not its total value. The relative values of the hyperpolarizabilities for different molecules, obtained from the calculations, are in reasonable agreement with experimental data.
Collapse
Affiliation(s)
- Bin Gao
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway , N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|