1
|
Hoffmann G, Guégan F, Labet V, Joubert L, Chermette H, Morell C, Tognetti V. Expanding horizons in conceptual density functional theory: Novel ensembles and descriptors to decipher reactivity patterns. J Comput Chem 2024; 45:1716-1726. [PMID: 38580454 DOI: 10.1002/jcc.27363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Conceptual density functional theory (CDFT) and the quantum reactivity descriptors stemming from it have proven to be valuable tools for understanding the chemical behavior of molecules. This article is presented as being intrinsically of dual character. In a first part, it briefly reviews, in a deliberately didactical way, the main ensembles in CDFT, while the second half presents two additional ensembles, where the chemical hardness acts as a natural variable, and their respective reactivity descriptors. The evaluation of these reactivity descriptors on common organic chemical reagents are presented and discussed.
Collapse
Affiliation(s)
- Guillaume Hoffmann
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Villeurbanne, France
| | - Frédéric Guégan
- IC2MP UMR 7285, Université de Poitiers - CNRS, Poitiers, France
| | - Vanessa Labet
- Sorbonne Université CNRS, MONARIS, UMR8233, Paris, France
| | - Laurent Joubert
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
| | - Henry Chermette
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Villeurbanne, France
| | - Christophe Morell
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Villeurbanne, France
| | - Vincent Tognetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
| |
Collapse
|
2
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
3
|
Li Y, Zhang Y, Yang W, Lin Y. The reaction pathway and mechanism of 2,4-dichlorophenol removal by modified fly ash-loaded nZVI/Ni particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27770-z. [PMID: 37256401 DOI: 10.1007/s11356-023-27770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is more valuable in environmental restoration than other materials. Chemical treatment of fly ash (CFA) was employed as a support material to disperse iron nickel bimetal nanoparticles (CFA-nZVI/Ni) to remove 2,4-dichlorophenol (2,4-DCP). Batch experiments showed that 2,4-DCP was completely removed by CFA-nZVI/Ni, and an optimal loading ratio was 8:1. The degradation of 2,4-DCP by CFA-nZVI/Ni was a chemical control reaction with an activation energy of 95.6 kJ mol-1 and followed pseudo-first-order kinetics. The addition of Cl- increased the removal rate of 2,4-DCP by 4%, while the addition of CO32- and SO42- decreased the removal rate of 2,4-DCP by 32% and 72.3%, respectively. The removal process of 2,4-DCP by CFA-nZVI/Ni included adsorption and reduction. The 2-CP (7.1 mg/L) and 4-CP (11.6 mg/L) could be converted to phenol using the CFA-nZVI/Ni system. Cl on the para-position of 2,4-DCP was simpler to remove than on the ortho-position. The following steps were taken in the electrophilic substitution reaction between substituted phenols and hydrogen radicals: 2,4-DCP > 2-CP > 4-CP > phenol. This research provides a novel concept to effectively remove 2,4-DCP and mechanism analysis.
Collapse
Affiliation(s)
- Yajun Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yongxiang Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China.
| | - Wenjing Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yuhui Lin
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| |
Collapse
|
4
|
Pal R, Chattaraj PK. Electrophilicity index revisited. J Comput Chem 2023; 44:278-297. [PMID: 35546516 DOI: 10.1002/jcc.26886] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the chemistry community; because the electrophilicity index is a very useful global reactivity descriptor defined within a conceptual density functional theory framework. Our group has also introduced electrophilicity based new global and local reactivity descriptors and also new associated electronic structure principles, which are important indicators of structure, stability, bonding, reactivity, interactions, and dynamics in a wide variety of physico-chemical systems and processes. This index along with its local counterpart augmented by the associated electronic structure principles could properly explain molecular vibrations, internal rotations and various types of chemical reactions. The concept of the electrophilicity index has been extended to dynamical processes, excited states, confined environment, spin-dependent and temperature-dependent situations, biological activity, site selectivity, aromaticity, charge removal and acceptance, presence of external perturbation through solvents, external electric and magnetic fields, and so forth. Although electrophilicity and its local variant can adequately interpret the behavior of a wide variety of systems and different physico-chemical processes involving them, their predictive potential remains to be explored. An exhaustive review on all these aspects will set the tone of the future research in that direction.
Collapse
Affiliation(s)
- Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | |
Collapse
|
5
|
Bocalandro M, González Armesto JJ, Montero-Cabrera LA, Martínez González M. 1,3 Dipolar Cycloaddition of Münchnones: Factors behind the Regioselectivity. J Phys Chem A 2023; 127:645-660. [PMID: 36629023 DOI: 10.1021/acs.jpca.2c06472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 1,3 dipolar cycloaddition reactions of münchnones and alkenes provide an expedite synthetic way to substituted pyrroles, an exceedingly important structural motif in the pharmaceutical and material science fields of research. The factors governing their regioselectivity rationalization are not well understood. Using several approaches, we investigate a set of 14 reactions (featuring two münchnones, 12 different alkenes, and two alkynes). The Natural Bond Theory and the Non-Covalent Interaction Index analyses of the noncovalent interaction energies fail to predict the experimental major regioisomer. Employing global cDFT descriptors or local ones such as the Fukui function and dual descriptor yields similarly inaccurate predictions. Only the local softness pairing, within Pearson's Hard and Soft Acids and Bases principle, constitutes a reliable predictor for the major reaction product. By taking into account an estimator for the steric effects, the correct regioisomer is predicted. Steric effects play a major role in driving the regioselectivity, as was corroborated by energy decomposition analysis of the transition states.
Collapse
Affiliation(s)
- Meylin Bocalandro
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| | | | - Luis A Montero-Cabrera
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| | - Marco Martínez González
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| |
Collapse
|
6
|
Cador A, Hoffmann G, Tognetti V, Joubert L. A theoretical study on aza-Michael additions. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Orlandi M, Escudero-Casao M, Licini G. Nucleophilicity Prediction via Multivariate Linear Regression Analysis. J Org Chem 2021; 86:3555-3564. [PMID: 33534569 PMCID: PMC7901016 DOI: 10.1021/acs.joc.0c02952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The concept of nucleophilicity is
at the basis of most transformations
in chemistry. Understanding and predicting the relative reactivity
of different nucleophiles is therefore of paramount importance. Mayr’s
nucleophilicity scale likely represents the most complete collection
of reactivity data, which currently includes over 1200 nucleophiles.
Several attempts have been made to theoretically predict Mayr’s
nucleophilicity parameters N based on calculation
of molecular properties, but a general model accounting for different
classes of nucleophiles could not be obtained so far. We herein show
that multivariate linear regression analysis is a suitable tool for
obtaining a simple model predicting N for virtually
any class of nucleophiles in different solvents for a set of 341 data
points. The key descriptors of the model were found to account for
the proton affinity, solvation energies, and sterics.
Collapse
Affiliation(s)
- Manuel Orlandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| | - Margarita Escudero-Casao
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Hoffmann G, Tognetti V, Joubert L. Electrophilicity Indices and Halogen Bonds: Some New Alternatives to the Molecular Electrostatic Potential. J Phys Chem A 2020; 124:2090-2101. [DOI: 10.1021/acs.jpca.9b10233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guillaume Hoffmann
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| | - Vincent Tognetti
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| | - Laurent Joubert
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| |
Collapse
|
9
|
|
10
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Graton J, Rahali S, Le Questel JY, Montavon G, Pilmé J, Galland N. Spin-orbit coupling as a probe to decipher halogen bonding. Phys Chem Chem Phys 2018; 20:29616-29624. [PMID: 30318527 DOI: 10.1039/c8cp05690k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω+S,max, determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds.
Collapse
Affiliation(s)
- Jérôme Graton
- Université de Nantes, CEISAM, UMR CNRS 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
12
|
Lamine W, Boughdiri S, Christ L, Morell C, Chermette H. Coordination chemistry of Zn
2+
with Sal(ph)en ligands: Tetrahedral coordination or penta‐coordination? a DFT analysis. J Comput Chem 2018. [DOI: 10.1002/jcc.25755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Walid Lamine
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
- Université de Tunis El ManarFaculté des Sciences de Tunis, UR11ES19 Unité de recherche Physico‐Chimie des Matériaux Condensés El‐Manar II, 2092, Tunis Tunisia
| | - Salima Boughdiri
- Université de Tunis El ManarFaculté des Sciences de Tunis, UR11ES19 Unité de recherche Physico‐Chimie des Matériaux Condensés El‐Manar II, 2092, Tunis Tunisia
| | - Lorraine Christ
- Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de LyonIRCELYON, UMR CNRS 5256, Université Lyon 1 69626, Villeurbanne Cedex France
| | - Christophe Morell
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
| | - Henry Chermette
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
| |
Collapse
|
13
|
Hoffmann G, Tognetti V, Joubert L. Can molecular and atomic descriptors predict the electrophilicity of Michael acceptors? J Mol Model 2018; 24:281. [DOI: 10.1007/s00894-018-3802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
|
14
|
Abstract
In this work some possibilities for deriving a local electrophilicity are studied. First, we consider the original definition proposed by Chattaraj, Maiti, and Sarkar (J Phys Chem A 107:4973, 2003), in which the local electrophilicity is given by the product of the global electrophilicity, and the Fukui function for charge acceptance is derived by two different approaches, making use of the chain rule for functional derivatives. We also modify the proposals based on the electron density so as to have a definition with the same units of the original definition, which also introduces a dependence in the Fukui function for charge donation. Additionally, we also explore other possibilities using the tools of information theory and the temperature dependent reactivity indices of the density functional theory of chemical reactivity. The poor results obtained from the last two approaches lead us to conjecture that this is due to the fact that the global electrophilicity is not a derivative, like most of the other reactivity indices. The conclusion is that Chattaraj's suggestion seems to be the simplest, but at the same time a very reliable approach to this important property.
Collapse
|
15
|
Virca CN, Lohmolder JR, Tsang JB, Davis MM, McCormick TM. Effect of Ligand Modification on the Mechanism of Electrocatalytic Hydrogen Production by Ni(pyridinethiolate)3– Derivatives. J Phys Chem A 2018; 122:3057-3065. [DOI: 10.1021/acs.jpca.7b11912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C. N. Virca
- Portland State University, 1825 Southwest Broadway, Portland, Oregon 97232, United States
| | - J. R. Lohmolder
- Portland State University, 1825 Southwest Broadway, Portland, Oregon 97232, United States
| | - J. B. Tsang
- Portland State University, 1825 Southwest Broadway, Portland, Oregon 97232, United States
| | - M. M. Davis
- Portland State University, 1825 Southwest Broadway, Portland, Oregon 97232, United States
| | - T. M. McCormick
- Portland State University, 1825 Southwest Broadway, Portland, Oregon 97232, United States
| |
Collapse
|
16
|
Merzoud L, Saal A, Moussaoui R, Ouamerali O, Morell C, Chermette H. Fluorine substituent effect on the stereochemistry of catalyzed and non-catalyzed Diels–Alder reactions. The case of R-butenone with cyclopentadiene: a computational assessment of the mechanism. Phys Chem Chem Phys 2018; 20:16102-16116. [DOI: 10.1039/c8cp00985f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A semiquantitative prediction of stereoselectivity due to substitutions of dienophile is obtained.
Collapse
Affiliation(s)
- Lynda Merzoud
- Laboratory of Computational and Theoretical Chemistry and Photonics
- USTHB University
- Algeria
- Département de Chimie
- UMMTO University of Tizi–Ouzou
| | - Amar Saal
- Laboratory of Computational and Theoretical Chemistry and Photonics
- USTHB University
- Algeria
- Département de Chimie
- UMMTO University of Tizi–Ouzou
| | - Ramdane Moussaoui
- Laboratoire de Chimie Appliquée et de Génie Chimique
- Université M. Mammeri
- Tizi Ouzou
- Algeria
| | - Ourida Ouamerali
- Laboratory of Computational and Theoretical Chemistry and Photonics
- USTHB University
- Algeria
| | - Christophe Morell
- Université de Lyon
- Université Claude Bernard Lyon 1
- ENS-Lyon
- Institut des Sciences Analytiques
- 69622 Villeurbanne Cedex
| | - Henry Chermette
- Université de Lyon
- Université Claude Bernard Lyon 1
- ENS-Lyon
- Institut des Sciences Analytiques
- 69622 Villeurbanne Cedex
| |
Collapse
|
17
|
Tognetti V, Joubert L. On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations. Chemphyschem 2017; 18:2675-2687. [DOI: 10.1002/cphc.201700637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Vincent Tognetti
- Normandy Univ. COBRA UMR 6014 & FR 3038Université de Rouen, INSA Rouen, CNRS 1 rue Tesniére 76821 Mont St Aignan, Cedex France
| | - Laurent Joubert
- Normandy Univ. COBRA UMR 6014 & FR 3038Université de Rouen, INSA Rouen, CNRS 1 rue Tesniére 76821 Mont St Aignan, Cedex France
| |
Collapse
|
18
|
Conceptual DFT analysis of the regioselectivity of 1,3-dipolar cycloadditions: nitrones as a case of study. J Mol Model 2017; 23:236. [DOI: 10.1007/s00894-017-3382-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
19
|
Tognetti V, Guégan F, Luneau D, Chermette H, Morell C, Joubert L. Structural effects in octahedral carbonyl complexes: an atoms-in-molecules study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Methylenecyclopropene: local vision of the first 1B 2 excited state. J Mol Model 2017; 23:22. [PMID: 28064374 DOI: 10.1007/s00894-016-3191-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
The 1A1 ground and the first 1B2 excited states of the methylenecyclopropene (triafulvene) are described by localized wave functions, based on 20 structures valence bond structures. The results are compared to CASSCF(4,4) calculations for both the energetics and the dipole moment. Additional calculations with partial electronic delocalization are presented, and it is shown that the dipole moment modification does not correspond to a situation where the antiaromatic situation prevails (with 4n electrons in the cycle). Part of the analysis uses a "trust factor" that helps to decide if a wave function is appropriate to describe a given state. The trust factor compares the VB wave function to the CASSCF's with their overlap. Finally, the valence bond density is used to produce density maps that illustrate the electron transfer upon excitation. Graphical Abstract A projector-based method compares CASSCF wave functions to local wave functions, including Lewis structures as shown in the picture. A "trust factor" (τ) is obtained. Both the ground state and the first excited state of the methylenecyclopropene are discussed.
Collapse
|
21
|
Tognetti V, Bouzbouz S, Joubert L. A theoretical study of the diastereoselective allylation of aldehydes with new chiral allylsilanes. J Mol Model 2016; 23:5. [DOI: 10.1007/s00894-016-3173-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
22
|
Sánchez-Márquez J. Introducing new reactivity descriptors: “Bond reactivity indices.” Comparison of the new definitions and atomic reactivity indices. J Chem Phys 2016; 145:194105. [DOI: 10.1063/1.4967293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Piedras A, Gómez B, Carmona-Espíndola J, Arroyo R, Gázquez JL. Intramolecular charge transfer model in fluorescence processes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Aliyenne A, Pin F, Nimbarte VD, Lawson AM, Comesse S, Sanselme M, Tognetti V, Joubert L, Daïch A. Bi(OTf)3
-Catalysed Access to 2,3-Substituted Isoindolinones and Tricyclic N,O-Acetals by Trapping of Bis-N
-Acyliminium Species in a Tandem Process. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ahmed Aliyenne
- Normandie Univ.; UNIHAVRE; CNRS; URCOM 76600 Le Havre France
- Ecole Normale Supérieure de Nouakchott; Département des Sciences Exactes; B.P. 990 Ksar Nouakchott Mauritania
| | - Frédéric Pin
- Normandie Univ.; UNIHAVRE; CNRS; URCOM 76600 Le Havre France
| | | | | | | | | | | | | | - Adam Daïch
- Normandie Univ.; UNIHAVRE; CNRS; URCOM 76600 Le Havre France
| |
Collapse
|
25
|
|
26
|
Yahia-Ouahmed M, Tognetti V, Joubert L. Intramolecular halogen bonding: an interacting quantum atoms study. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1796-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Guégan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C. Towards the first theoretical scale of the trans effect in octahedral complexes. Phys Chem Chem Phys 2016; 18:982-90. [DOI: 10.1039/c5cp04982b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this paper, we show that trans effects in octahedral complexes can primarily be related to differences in the ability, for a given ligand, to cede electron density to the metal cation under the influence of the ligand at the trans position.
Collapse
Affiliation(s)
- Frédéric Guégan
- Université de Lyon
- Institut des Sciences Analytiques
- UMR 5280
- CNRS
- Université Claude Bernard Lyon 1
| | - Vincent Tognetti
- Normandy University
- COBRA UMR 6014 & FR 3038
- Université de Rouen
- INSA Rouen
- CNRS
| | - Laurent Joubert
- Normandy University
- COBRA UMR 6014 & FR 3038
- Université de Rouen
- INSA Rouen
- CNRS
| | - Henry Chermette
- Université de Lyon
- Institut des Sciences Analytiques
- UMR 5280
- CNRS
- Université Claude Bernard Lyon 1
| | - Dominique Luneau
- Université de Lyon
- Laboratoire des Multimatériaux et Interfaces
- UMR 5615
- CNRS
- Université Claude Bernard Lyon 1
| | - Christophe Morell
- Université de Lyon
- Institut des Sciences Analytiques
- UMR 5280
- CNRS
- Université Claude Bernard Lyon 1
| |
Collapse
|
28
|
Melissen STAG, Tognetti V, Dupas G, Jouanneau J, Lê G, Joubert L. A DFT study of the formation of xanthydrol motifs during electrophilic poly(aryl ether ketone) synthesis. J Mol Model 2015; 22:18. [DOI: 10.1007/s00894-015-2861-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/08/2015] [Indexed: 11/24/2022]
|
29
|
Mayr H, Ofial AR. A quantitative approach to polar organic reactivity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:619-646. [PMID: 26315811 DOI: 10.1080/1062936x.2015.1078409] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
A method is presented which allows one to predict toxic effects which are triggered by the formation of covalent bonds between electron-deficient (electrophilic) compounds and biological electron-rich (nucleophilic) targets, as proteins or nucleic acids. It is based on our comprehensive nucleophilicity and electrophilicity scales, which we constructed as an aid for the planning of organic syntheses. For the construction of these scales, rate constants for the reactions of benzhydrylium ions (aryl2CH(+)) and structurally related quinone methides with nucleophiles have been measured and correlated by the equation lg k(20 °C) = sN(E + N), which yields absolute rate constants k (L mol(-1) s(-1)) from one parameter for electrophiles (the electrophilicity E) and two for nucleophiles (the nucleophilicity parameter N and the susceptibility sN). A freely accessible database (http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html) is described, which presently comprises data for 1000 nucleophiles and 260 electrophiles and provides links to the original literature reports. The kinetic scales are complemented by a thermodynamic counterpart, which enables one to calculate association constants K (L mol(-1)) of electrophiles with nucleophiles from the empirical Lewis acidity parameters LA and Lewis basicity parameters LB by the equation lg K (20°C) = LA + LB.
Collapse
Affiliation(s)
- H Mayr
- a Department Chemie der Ludwig-Maximilians-Universität München , München , Germany
| | - A R Ofial
- a Department Chemie der Ludwig-Maximilians-Universität München , München , Germany
| |
Collapse
|
30
|
|
31
|
|