1
|
Chanda S, Sen S. Benchmark computations of nearly degenerate singlet and triplet states of N-heterocyclic chromophores. I. Wavefunction-based methods. J Chem Phys 2024; 161:174117. [PMID: 39503472 DOI: 10.1063/5.0225537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
In this paper, we investigate the role of electron correlation in predicting the S1-S0 and T1-S0 excitation energies and, hence, the singlet-triplet gap (ΔEST) in a set of cyclazines, which act as templates for potential candidates for fifth generation organic light emitting diode materials. This issue has recently garnered much interest with the focus being on the inversion of the ΔEST, although experiments have indicated near degenerate levels with both positive and negative being within the experimental error bar [J. Am. Chem. Soc. 102, 6068 (1980), J. Am. Chem. Soc. 108, 17(1986)]. We have carried out a systematic and exhaustive study of various excited state electronic structure methodologies and identified the strengths and shortcomings of the various approaches and approximations in view of this challenging case. We have found that near degeneracy can be achieved either with a proper balance of static and dynamic correlation in multireference theories or with state-specific orbital corrections, including its coupling with correlation. The role of spin contamination is also discussed. Eventually, this paper seeks to produce benchmark numbers for establishing cost-effective theories, which can then be used for screening derivatives of these templates with desirable optical and structural properties. Additionally, we would like to point out that the use of domain-based local pair natural orbital-similarity transformed EOM-coupled cluster singles and doubles as the benchmark for ΔEST [as used in J. Phys. Chem. A 126(8), 1378 (2022), Chem. Phys. Lett. 779, 138827 (2021)] is not a suitable benchmark for these classes of molecules.
Collapse
Affiliation(s)
- Shamik Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur 741246, West Bengal, India
| | - Sangita Sen
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Müller C, Steiner M, Unsleber JP, Weymuth T, Bensberg M, Csizi KS, Mörchen M, Türtscher PL, Reiher M. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. J Phys Chem A 2024; 128:9028-9044. [PMID: 39360814 PMCID: PMC11492315 DOI: 10.1021/acs.jpca.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Automated and high-throughput quantum chemical investigations into chemical processes have become feasible in great detail and broad scope. This results in an increase in complexity of the tasks and in the amount of generated data. An efficient and intuitive way for an operator to interact with these data and to steer virtual experiments is required. Here, we introduce Heron, a graphical user interface that allows for advanced human-machine interactions with quantum chemical exploration campaigns into molecular structure and reactivity. Heron offers access to interactive and automated explorations of chemical reactions with standard electronic structure modules, haptic force feedback, microkinetic modeling, and refinement of data by automated correlated calculations including black-box complete active space calculations. It is tailored to the exploration and analysis of vast chemical reaction networks. We show how interoperable modules enable advanced workflows and pave the way for routine low-entrance-barrier access to advanced modeling techniques.
Collapse
Affiliation(s)
| | | | | | - Thomas Weymuth
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Mitra A, D'Cunha R, Wang Q, Hermes MR, Alexeev Y, Gray SK, Otten M, Gagliardi L. The Localized Active Space Method with Unitary Selective Coupled Cluster. J Chem Theory Comput 2024. [PMID: 39256901 DOI: 10.1021/acs.jctc.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H2)2, (H2)4, and trans-butadiene, and the magnetic coupling constant for a bimetallic compound [Cr2(OH)3(NH3)6]3+. For these systems, we find that LAS-USCCSD reduces the number of required parameters and thus the circuit depth by at least 1 order of magnitude, an aspect which is important for the practical implementation of multireference hybrid quantum-classical algorithms like LAS-UCCSD on near-term quantum computers.
Collapse
Affiliation(s)
- Abhishek Mitra
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruhee D'Cunha
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qiaohong Wang
- Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Stephen K Gray
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Matthew Otten
- Department of Physics, University of Wisconsin - Madison, Madison, Wisconsin 53726, United States
| | - Laura Gagliardi
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Feldmann R, Reiher M. Renormalized Internally Contracted Multireference Coupled Cluster with Perturbative Triples. J Chem Theory Comput 2024; 20. [PMID: 39158160 PMCID: PMC11360144 DOI: 10.1021/acs.jctc.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
In this work, we combine the many-body formulation of the internally contracted multireference coupled cluster (ic-MRCC) method with Evangelista's multireference formulation of the driven similarity renormalization group (DSRG). The DSRG method can be viewed as a unitary multireference coupled cluster theory, which renormalizes the amplitudes based on a flow equation approach to eliminate numerical instabilities. We extend this approach by demonstrating that the unitary flow equation approach can be adapted for nonunitary transformations, rationalizing the renormalization of ic-MRCC amplitudes. We denote the new approach, the renormalized ic-MRCC (ric-MRCC) method. To achieve high accuracy with a reasonable computational cost, we introduce a new approximation to the Baker-Campbell-Hausdorff expansion. We fully consider the linear commutator while approximating the quadratic commutator, for which we neglect specific contractions involving amplitudes with active indices. Moreover, we introduce approximate perturbative triples to obtain the ric-MRCCSD[T] method. We demonstrate the accuracy of our approaches in comparison to advanced multireference methods for the potential energy curves of H8, F2, H2O, N2, and Cr2. Additionally, we show that ric-MRCCSD and ric-MRCSSD[T] match the accuracy of CCSD(T) for evaluating spectroscopic constants and of full configuration interaction energies for a set of small molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Greiner J, Gauss J, Eriksen JJ. Error Control and Automatic Detection of Reference Active Spaces in Many-Body Expanded Full Configuration Interaction. J Phys Chem A 2024; 128:6806-6818. [PMID: 39099303 DOI: 10.1021/acs.jpca.4c04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present a wide-reaching revamp of the generalized many-body expanded full configuration interaction (MBE-FCI) method. First, we outline how to automatize the selection of reference active spaces, whereby the inherent bias introduced through a manual identification is reduced, also within the context of traditional complete active space methods. Second, we allow for the use of compact orbital clusters as expansion objects, which works to circumvent the unfavorable scaling with the number of orbitals included in the space complementary to the reference orbitals. Finally, we present a new algorithm for ensuring that many-body expansions can be efficiently terminated while conservatively accounting for resulting errors. These developments are all tested on a variety of molecular systems and different orbital representations to illustrate the abilities of our algorithm to produce correlation energies within predetermined error bounds, significantly broadening the overall applicability of the MBE-FCI method.
Collapse
Affiliation(s)
- Jonas Greiner
- Department Chemie, Johannes Gutenberg-Universität Mainz Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz Duesbergweg 10-14, 55128 Mainz, Germany
| | - Janus J Eriksen
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 206, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
7
|
Wen X, Boyn JN, Martirez JMP, Zhao Q, Carter EA. Strategies to Obtain Reliable Energy Landscapes from Embedded Multireference Correlated Wavefunction Methods for Surface Reactions. J Chem Theory Comput 2024; 20:6037-6048. [PMID: 39004994 DOI: 10.1021/acs.jctc.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Embedded correlated wavefunction (ECW) theory is a powerful tool for studying ground- and excited-state reaction mechanisms and associated energetics in heterogeneous catalysis. Several factors are important to obtaining reliable ECW energies, critically the construction of consistent active spaces (ASs) along reaction pathways when using a multireference correlated wavefunction (CW) method that relies on a subset of orbital spaces in the configuration interaction expansion to account for static electron correlation, e.g., complete AS self-consistent field theory, in addition to the adequate partitioning of the system into a cluster and environment, as well as the choice of a suitable basis set and number of states included in excited-state simulations. Here, we conducted a series of systematic studies to develop best-practice guidelines for ground- and excited-state ECW theory simulations, utilizing the decomposition of NH3 on Pd(111) as an example. We determine that ECW theory results are relatively insensitive to cluster size, the aug-cc-pVDZ basis set provides an adequate compromise between computational complexity and accuracy, and that a fixed-clean-surface approximation holds well for the derivation of the embedding potential. Additionally, we demonstrate that a merging approach, which involves generating ASs from the molecular fragments at each configuration, is preferable to a creeping approach, which utilizes ASs from adjacent structures as an initial guess, for the generation of consistent potential energy curves involving open-d-shell metal surfaces, and, finally, we show that it is essential to include bands of excited states in their entirety when simulating excited-state reaction pathways.
Collapse
Affiliation(s)
- Xuelan Wen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P Martirez
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, United States
| | - Qing Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
8
|
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.
Collapse
Affiliation(s)
- Abdulrahman Aldossary
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | | - Sergio Pablo-García
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
| | - Shi Xuan Leong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Ella Miray Rajaonson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Luca Thiede
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Gary Tom
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Andrew Wang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Davide Avagliano
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), Paris, F-75005, France
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St., Toronto, ON, M5S 3E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 66118 University Ave., Toronto, M5G 1M1, Canada
- Acceleration Consortium, 80 St George St, Toronto, M5S 3H6, Canada
| |
Collapse
|
9
|
Weymuth T, Unsleber JP, Türtscher PL, Steiner M, Sobez JG, Müller CH, Mörchen M, Klasovita V, Grimmel SA, Eckhoff M, Csizi KS, Bosia F, Bensberg M, Reiher M. SCINE-Software for chemical interaction networks. J Chem Phys 2024; 160:222501. [PMID: 38857173 DOI: 10.1063/5.0206974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.
Collapse
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P Unsleber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L Türtscher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan-Grimo Sobez
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Charlotte H Müller
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Veronika Klasovita
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A Grimmel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Eckhoff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Francesco Bosia
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Hehn L, Deglmann P, Kühn M. Chelate Complexes of 3d Transition Metal Ions─A Challenge for Electronic-Structure Methods? J Chem Theory Comput 2024; 20:4545-4568. [PMID: 38805381 DOI: 10.1021/acs.jctc.3c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Different electronic-structure methods were assessed for their ability to predict two important properties of the industrially relevant chelating agent nitrilotriacetic acid (NTA): its selectivity with respect to six different first-row transition metal ions and the spin-state energetics of its complex with Fe(III). The investigated methods encompassed density functional theory (DFT), the random phase approximation (RPA), coupled cluster (CC) theory, and the auxiliary-field quantum Monte Carlo (AFQMC) method, as well as the complete active space self-consistent field (CASSCF) method and the respective on-top methods: second-order N-electron valence state perturbation theory (NEVPT2) and multiconfiguration pair-density functional theory (MC-PDFT). Different strategies for selecting active spaces were explored, and the density matrix renormalization group (DMRG) approach was used to solve the largest active spaces. Despite somewhat ambiguous multi-reference diagnostics, most methods gave relatively good agreement with experimental data for the chemical reactions connected to the selectivity, which only involved transition-metal complexes in their high-spin state. CC methods yielded the highest accuracy followed by range-separated DFT and AFQMC. We discussed in detail that even higher accuracies can be obtained with NEVPT2, under the prerequisite that consistent active spaces along the entire chemical reaction can be selected, which was not the case for reactions involving Fe(III). A bigger challenge for electronic-structure methods was the prediction of the spin-state energetics, which additionally involved lower spin states that exhibited larger multi-reference diagnostics. Conceptually different, typically accurate methods ranging from CC theory via DMRG-NEVPT2 in combination with large active spaces to AFQMC agreed well that the high-spin state is energetically significantly favored over the other spin states. This was in contrast to most DFT functionals and RPA which yielded a smaller stabilization and some common DFT functionals and MC-PDFT even predicting the low-spin state to be energetically most favorable.
Collapse
Affiliation(s)
- Lukas Hehn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| | - Peter Deglmann
- Quantum Chemistry, BASF SE, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany
| | - Michael Kühn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| |
Collapse
|
11
|
Wardzala J, King DS, Ogunfowora L, Savoie B, Gagliardi L. Organic Reactivity Made Easy and Accurate with Automated Multireference Calculations. ACS CENTRAL SCIENCE 2024; 10:833-841. [PMID: 38680571 PMCID: PMC11046455 DOI: 10.1021/acscentsci.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
In organic reactivity studies, quantum chemical calculations play a pivotal role as the foundation of understanding and machine learning model development. While prevalent black-box methods like density functional theory (DFT) and coupled-cluster theory (e.g., CCSD(T)) have significantly advanced our understanding of chemical reactivity, they frequently fall short in describing multiconfigurational transition states and intermediates. Achieving a more accurate description necessitates the use of multireference methods. However, these methods have not been used at scale due to their often-faulty predictions without expert input. Here, we overcome this deficiency with automated multiconfigurational pair-density functional theory (MC-PDFT) calculations. We apply this method to 908 automatically generated organic reactions. We find 68% of these reactions present significant multiconfigurational character in which the automated multiconfigurational approach often provides a more accurate and/or efficient description than DFT and CCSD(T). This work presents the first high-throughput application of automated multiconfigurational methods to reactivity, enabled by automated active space selection algorithms and the computation of electronic correlation with MC-PDFT on-top functionals. This approach can be used in a black-box fashion, avoiding significant active space inconsistency error in both single- and multireference cases and providing accurate multiconfigurational descriptions when needed.
Collapse
Affiliation(s)
- Jacob
J. Wardzala
- Department
of Chemistry,University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel S. King
- Department
of Chemistry,University of Chicago, Chicago, Illinois 60637, United States
| | - Lawal Ogunfowora
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett Savoie
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
King DS, Truhlar DG, Gagliardi L. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2023; 19:8118-8128. [PMID: 37905518 DOI: 10.1021/acs.jctc.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The selection of an adequate set of active orbitals for modeling strongly correlated electronic states is difficult to automate because it is highly dependent on the states and molecule of interest. Although many approaches have shown some success, no single approach has worked well in all cases. In light of this, we present the "discrete variational selection" (DVS) approach to active space selection, in which one generates multiple trial wave functions from a diverse set of systematically constructed active spaces and then selects between these wave functions variationally. We apply this DVS approach to 207 vertical excitations of small-to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB database by (i) constructing various sets of active space orbitals through diagonalization of parametrized operators and (ii) choosing the result with the lowest average energy among the states of interest. This approach proves ineffective when variationally selecting between wave functions using the density matrix renormalization group (DMRG) or complete active space self-consistent field (CASSCF) energy but is able to provide good results when variationally selecting between wave functions using the energy of the translated PBE (tPBE) functional from multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE approach to selection among state-averaged DMRG wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT. This result matches that of our previous benchmark without the need to filter out poor active spaces and with no further orbital optimization following active space selection of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF results.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Group, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Cuéllar-Zuquin J, Pepino AJ, Fdez. Galván I, Rivalta I, Aquilante F, Garavelli M, Lindh R, Segarra-Martí J. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. J Chem Theory Comput 2023; 19:8258-8272. [PMID: 37882796 PMCID: PMC10851440 DOI: 10.1021/acs.jctc.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
Collapse
Affiliation(s)
- Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Ana Julieta Pepino
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Francesco Aquilante
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
14
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
15
|
Vysotskiy VP, Torbjörnsson M, Jiang H, Larsson ED, Cao L, Ryde U, Zhai H, Lee S, Chan GKL. Assessment of DFT functionals for a minimal nitrogenase [Fe(SH)4H]- model employing state-of-the-art ab initio methods. J Chem Phys 2023; 159:044106. [PMID: 37486046 DOI: 10.1063/5.0152611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
We have designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S. We show that the energy difference between these two isomers (∆E) is hard to estimate with quantum-mechanical (QM) methods. For example, different density functional theory (DFT) methods give ∆E estimates that vary by almost 140 kJ/mol, mainly depending on the amount of exact Hartree-Fock included (0%-54%). The model is so small that it can be treated by many high-level QM methods, including coupled-cluster (CC) and multiconfigurational perturbation theory approaches. With extrapolated CC series (up to fully connected coupled-cluster calculations with singles, doubles, and triples) and semistochastic heat-bath configuration interaction methods, we obtain results that seem to be converged to full configuration interaction results within 5 kJ/mol. Our best result for ∆E is 101 kJ/mol. With this reference, we show that M06 and B3LYP-D3 give the best results among 35 DFT methods tested for this system. Brueckner doubles coupled cluster with perturbaitve triples seems to be the most accurate coupled-cluster approach with approximate triples. CCSD(T) with Kohn-Sham orbitals gives results within 4-11 kJ/mol of the extrapolated CC results, depending on the DFT method. Single-reference CC calculations seem to be reasonably accurate (giving an error of ∼5 kJ/mol compared to multireference methods), even if the D1 diagnostic is quite high (0.25) for one of the two isomers.
Collapse
Affiliation(s)
- Victor P Vysotskiy
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Magne Torbjörnsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Hao Jiang
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ernst D Larsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Lili Cao
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Kaufold B, Chintala N, Pandeya P, Dong SS. Automated Active Space Selection with Dipole Moments. J Chem Theory Comput 2023; 19:2469-2483. [PMID: 37040135 PMCID: PMC10629219 DOI: 10.1021/acs.jctc.2c01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 04/12/2023]
Abstract
Multireference calculations can provide accurate information of systems with strong correlation, which have increasing importance in the development of new molecules and materials. However, selecting a suitable active space for multireference calculations is nontrivial, and the selection of an unsuitable active space can sometimes lead to results that are not physically meaningful. Active space selection often requires significant human input, and the selection that leads to reasonable results often goes beyond chemical intuition. In this work, we have developed and evaluated two protocols for automated selection of the active space for multireference calculations based on a simple physical observable, the dipole moment, for molecules with nonzero ground-state dipole moments. One protocol is based on the ground-state dipole moment, and the other is based on the excited-state dipole moments. To evaluate the protocols, we constructed a dataset of 1275 active spaces from 25 molecules, each with 51 active space sizes considered, and have mapped out the relationship between the active space, dipole moments, and vertical excitation energies. We have demonstrated that, within this dataset, our protocols allow one to choose among a number of accessible active spaces one that is likely to give reasonable vertical excitation energies, especially for the first three excitations, with no parameters manually decided by the user. We show that, with large active spaces removed from consideration, the accuracy is similar and the time-to-solution can be reduced by more than 10 fold. We also show that the protocols can be applied to potential energy surface scans and determining the spin states of transition metal oxides.
Collapse
Affiliation(s)
- Benjamin
W. Kaufold
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Nithin Chintala
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Pratima Pandeya
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- The
Institute for Experiential AI, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Sijia S. Dong
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Physics and Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Bensberg M, Reiher M. Corresponding Active Orbital Spaces along Chemical Reaction Paths. J Phys Chem Lett 2023; 14:2112-2118. [PMID: 36802629 PMCID: PMC9986954 DOI: 10.1021/acs.jpclett.2c03905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The accuracy of reaction energy profiles calculated with multiconfigurational electronic structure methods and corrected by multireference perturbation theory depends crucially on consistent active orbital spaces selected along the reaction path. However, it has been challenging to choose molecular orbitals that can be considered corresponding in different molecular structures. Here, we demonstrate how active orbital spaces can be selected consistently along reaction coordinates in a fully automatized way. The approach requires no structure interpolation between reactants and products. Instead, it emerges from a synergy of the Direct Orbital Selection orbital mapping ansatz combined with our fully automated active space selection algorithm autoCAS. We demonstrate our algorithm for the potential energy profile of the homolytic carbon-carbon bond dissociation and rotation around the double bond of 1-pentene in the electronic ground state. However, our algorithm also applies to electronically excited Born-Oppenheimer surfaces.
Collapse
|
18
|
Mendive-Tapia D, Meyer HD, Vendrell O. Optimal Mode Combination in the Multiconfiguration Time-Dependent Hartree Method through Multivariate Statistics: Factor Analysis and Hierarchical Clustering. J Chem Theory Comput 2023; 19:1144-1156. [PMID: 36716214 DOI: 10.1021/acs.jctc.2c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multiconfiguration time-dependent Hartree (MCTDH) method and its multilayer extension (ML-MCTDH) are powerful algorithms for the efficient computation of nuclear quantum dynamics in high-dimensional systems. By providing time-dependent variational orbitals and an optimal choice of layered effective degrees of freedom, one is able to reduce the computational cost to an amenable number of configurations. However, choices related to selecting properly the mode grouping and tensor tree are strongly system dependent and, thus far, subjectively based on intuition and/or experience. Therefore, herein we detail a new protocol based on multivariate statistics─more specifically, factor analysis and hierarchical clustering─for a reliable and convenient guiding in the optimal design of such complex "system-of-systems" tensor-network decompositions. The advantages of employing the new algorithm and its applicability are tested on water and two floppy protonated water clusters with large amplitude motions.
Collapse
Affiliation(s)
- David Mendive-Tapia
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120Heidelberg, Germany
| | - Hans-Dieter Meyer
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120Heidelberg, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120Heidelberg, Germany
| |
Collapse
|
19
|
Unsleber JP, Liu H, Talirz L, Weymuth T, Mörchen M, Grofe A, Wecker D, Stein CJ, Panyala A, Peng B, Kowalski K, Troyer M, Reiher M. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. J Chem Phys 2023; 158:084803. [PMID: 36859110 DOI: 10.1063/5.0136526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
Collapse
Affiliation(s)
- Jan P Unsleber
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Hongbin Liu
- Microsoft Quantum, Redmond, Washington 98052, USA
| | | | - Thomas Weymuth
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adam Grofe
- Microsoft Quantum, Redmond, Washington 98052, USA
| | - Dave Wecker
- Microsoft Quantum, Redmond, Washington 98052, USA
| | - Christopher J Stein
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Ajay Panyala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Bo Peng
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Karol Kowalski
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | | - Markus Reiher
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
King D, Hermes MR, Truhlar DG, Gagliardi L. Large-Scale Benchmarking of Multireference Vertical-Excitation Calculations via Automated Active-Space Selection. J Chem Theory Comput 2022; 18:6065-6076. [PMID: 36112354 PMCID: PMC9558375 DOI: 10.1021/acs.jctc.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/29/2022]
Abstract
We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF), multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-PDFT), and n-electron valence state second-order perturbation theory (NEVPT2) excitation energies with the approximate pair coefficient (APC) automated active-space selection scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We eliminated poor active spaces (20-40% of calculations) by applying a threshold to the SA-CASSCF absolute error. With the remaining calculations, we find that NEVPT2 performance is significantly impacted by the size of the basis set the wave functions are converged in, regardless of the quality of their description, which is a problem absent in MC-PDFT. Additionally, we find that HMC-PDFT is a significant improvement over MC-PDFT with the translated PBE (tPBE) density functional and that it performs about as well as NEVPT2 and second-order coupled cluster on a set of 373 excitations in the QUESTDB database. We optimized the percentage of SA-CASSCF energy to include in HMC-PDFT when using the tPBE on-top functional, and we find the 25% value used in tPBE0 to be optimal. This work is by far the largest benchmarking of MC-PDFT and HMC-PDFT to date, and the data produced in this work are useful as a validation of HMC-PDFT and of the APC active-space selection scheme. We have made all the wave functions produced in this work (orbitals and CI vectors) available to the public and encourage the community to utilize this data as a tool in the development of further multireference model chemistries.
Collapse
Affiliation(s)
- Daniel
S. King
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputng
Institute, University of Minnesota, Minneapolis Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago Illinois 60637, United States
| |
Collapse
|
21
|
Baiardi A, Lesiuk M, Reiher M. Explicitly Correlated Electronic Structure Calculations with Transcorrelated Matrix Product Operators. J Chem Theory Comput 2022; 18:4203-4217. [PMID: 35666238 DOI: 10.1021/acs.jctc.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the first implementation of the transcorrelated electronic Hamiltonian in an optimization procedure for matrix product states by the density matrix renormalization group (DMRG) algorithm. In the transcorrelation ansatz, the electronic Hamiltonian is similarity-transformed with a Jastrow factor to describe the cusp in the wave function at electron-electron coalescence. As a result, the wave function is easier to approximate accurately with the conventional expansion in terms of one-particle basis functions and Slater determinants. The transcorrelated Hamiltonian in first quantization comprises up to three-body interactions, which we deal with in the standard way by applying robust density fitting to two- and three-body integrals entering the second-quantized representation of this Hamiltonian. The lack of hermiticity of the transcorrelated Hamiltonian is taken care of along the lines of the first work on transcorrelated DMRG [ J. Chem. Phys. 2020, 153, 164115] by encoding it as a matrix product operator and optimizing the corresponding ground state wave function with imaginary-time time-dependent DMRG. We demonstrate our quantum chemical transcorrelated DMRG approach at the example of several atoms and first-row diatomic molecules. We show that transcorrelation improves the convergence rate to the complete basis set limit in comparison to conventional DMRG. Moreover, we study extensions of our approach that aim at reducing the cost of handling the matrix product operator representation of the transcorrelated Hamiltonian.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Michał Lesiuk
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
23
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
24
|
Auth T, Stein CJ, O'Hair RAJ, Koszinowski K. Origin of the different reactivity of the high-valent coinage-metal complexes [RCu iii Me 3 ] - and [RAg iii Me 3 ] - (R=allyl). Chemistry 2022; 28:e202103130. [PMID: 34773654 PMCID: PMC9304237 DOI: 10.1002/chem.202103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/27/2022]
Abstract
High-valent tetraalkylcuprates(iii) and -argentates(iii) are key intermediates of copper- and silver-mediated C-C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3 ]- complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe]- anion upon collisional activation of the cuprate(iii) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2 ]- , consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2 ]- from the argentate(iii) species. Remarkably, the different C-C coupling propensities of the two [RMiii Me3 ]- complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3 ]- . Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Christopher J. Stein
- Theoretical Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen47048DuisburgGermany
| | - Richard A. J. O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne30 Flemington RdParkvilleVictoria3010Australia
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
25
|
Feldmann R, Muolo A, Baiardi A, Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J Chem Theory Comput 2022; 18:234-250. [PMID: 34978441 DOI: 10.1021/acs.jctc.1c00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We recently introduced [J. Chem. Phys. 2020, 152, 204103] the nuclear-electronic all-particle density matrix renormalization group (NEAP-DMRG) method to solve the molecular Schrödinger equation, based on a stochastically optimized orbital basis, without invoking the Born-Oppenheimer approximation. In this work, we combine the DMRG method with the nuclear-electronic Hartree-Fock (NEHF-DMRG) approach, treating nuclei and electrons on the same footing. Inter- and intraspecies correlations are described within the DMRG method without truncating the excitation degree of the full configuration interaction wave function. We extend the concept of orbital entanglement and mutual information to nuclear-electronic wave functions and demonstrate that they are reliable metrics to detect strong correlation effects. We apply the NEHF-DMRG method to the HeHHe+ molecular ion, to obtain accurate proton densities, ground-state total energies, and vibrational transition frequencies by comparison with state-of-the-art data obtained with grid-based approaches and modern configuration interaction methods. For HCN, we improve on the accuracy of the latter approaches with respect to both the ground-state absolute energy and proton density, which is a major challenge for multireference nuclear-electronic state-of-the-art methods.
Collapse
Affiliation(s)
- Robin Feldmann
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrea Muolo
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
26
|
Shee A, Yeh CN, Zgid D. Exploring Coupled Cluster Green's Function as a Method for Treating System and Environment in Green's Function Embedding Methods. J Chem Theory Comput 2022; 18:664-676. [PMID: 34989565 DOI: 10.1021/acs.jctc.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Within the self-energy embedding theory (SEET) framework, we study the coupled cluster Green's function (GFCC) method in two different contexts: as a method to treat either the system or the environment present in the embedding construction. Our study reveals that when GFCC is used to treat the environment we do not see improvement in total energies in comparison to the coupled cluster method itself. To rationalize this puzzling result, we analyze the performance of GFCC as an impurity solver with a series of transition metal oxides. These studies shed light on the strength and weaknesses of such a solver and demonstrate that such a solver gives very accurate results when the size of the impurity is small. We investigate if it is possible to achieve a systematic accuracy of the embedding solution when we increase the size of the impurity problem. We found that in such a case, the performance of the solver worsens, both in terms of finding the ground state solution of the impurity problem and the self-energies produced. We concluded that increasing the rank of GFCC solver is necessary to be able to enlarge impurity problems and achieve a reliable accuracy. We also have shown that natural orbitals from weakly correlated perturbative methods are better suited than symmetrized atomic orbitals (SAO) when the total energy of the system is the target quantity.
Collapse
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
28
|
Golub P, Antalik A, Veis L, Brabec J. Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. J Chem Theory Comput 2021; 17:6053-6072. [PMID: 34570505 DOI: 10.1021/acs.jctc.1c00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active space quantum chemical methods could provide very accurate description of strongly correlated electronic systems, which is of tremendous value for natural sciences. The proper choice of the active space is crucial but a nontrivial task. In this article, we present a neural network-based approach for automatic selection of active spaces, focused on transition metal systems. The training set has been formed from artificial systems composed of one transition metal and various ligands, on which we have performed the density matrix renormalization group and calculated the single-site entropy. On the selected set of systems, ranging from small benchmark molecules up to larger challenging systems involving two metallic centers, we demonstrate that our machine learning models could predict the active space orbitals with reasonable accuracy. We also tested the transferability on out-of-the-model systems, including bimetallic complexes and complexes with ligands, which were not involved in the training set. Also, we tested the correctness of the automatically selected active spaces on a Fe(II)-porphyrin model, where we studied the lowest states at the DMRG level and compared the energy difference between spin states or the energy difference between conformations of ferrocene with recent studies.
Collapse
Affiliation(s)
- Pavlo Golub
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Andrej Antalik
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Jiri Brabec
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
29
|
Paz ASP, Baleeva NS, Glover WJ. Active orbital preservation for multiconfigurational self-consistent field. J Chem Phys 2021; 155:071103. [PMID: 34418944 DOI: 10.1063/5.0058673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We introduce Active Orbital Preservation for Multiconfigurational Self-Consistent Field (AOP-MCSCF), an automated approach to improving the consistency of active space orbitals over multiple molecular configurations. Our approach is based on maximum overlap with a reference set of active space orbitals taken from a single geometry of a chromophore in the gas phase and can be used to automatically preserve the appropriate orbitals of the chromophore across multiple thermally sampled configurations, even when the chromophore is solvated by quantum-mechanically treated water molecules. In particular, using the singular value decomposition of a Molecular Orbital (MO) overlap matrix between the system and reference, we rotate the MOs of the system to align with the reference active space orbitals and use the resulting rotated orbitals as an initial guess to a MCSCF calculation. We demonstrate the approach on aqueous p-hydroxybenzylidene-imidazolinone (HBI) and find that AOP-MCSCF converges to the "correct" orbitals for over 90% of 3000 thermally sampled configurations. In addition, we compute the linear absorption spectrum and find excellent agreement with new experimental measurements up to 5.4 eV (230 nm). We show that electrostatic contributions to the solvation energy of HBI largely explain the observed state-dependent solvatochromism.
Collapse
Affiliation(s)
- Amiel S P Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | |
Collapse
|
30
|
Lei Y, Suo B, Liu W. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces. J Chem Theory Comput 2021; 17:4846-4859. [PMID: 34314180 DOI: 10.1021/acs.jctc.1c00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is shown that in the spirit of "from fragments to molecule" for localizing molecular orbitals [J. Chem. Theory Comput. 2011, 7, 3643], a prechosen set of occupied/virtual valence/core atomic/fragmental orbitals can be transformed to an equivalent set of localized occupied/virtual pre-localized molecular orbitals (pre-LMO), which can then be taken as probes to select the same number of maximally matching localized occupied/virtual Hartree-Fock (HF) or restricted open-shell HF (ROHF) molecular orbitals as the initial local orbitals spanning the desired complete active space (CAS). In each cycle of the self-consistent field (SCF) calculation, the CASSCF orbitals can be localized by means of the noniterative "top-down least-change" algorithm for localizing ROHF orbitals [J. Chem. Phys. 2017, 146, 104104] such that the maximum matching between the orbitals of two adjacent iterations can readily be monitored, leading finally to converged localized CASSCF orbitals that overlap most the guess orbitals. Such an approach is to be dubbed as "imposed CASSCF" (iCASSCF or simply iCAS in short) for good reasons: (1) it has been assumed that only those electronic states that have largest projections onto the active space defined by the prechosen atomic/fragmental orbitals are to be targeted. This is certainly an imposed constraint but has wide applications in organic and transition metal chemistry where valence (or core) atomic/fragmental orbitals can readily be identified. (2) The selection of both initial and optimized local active orbitals is imposed from the very beginning by the pre-LMOs (which span the same space as the prechosen atomic/fragmental orbitals). Apart from the (imposed) automation and localization, iCAS has two additional merits: (a) the guess orbitals are guaranteed to be the same for all geometries, for the pre-LMOs do not change in character with geometry and (b) the use of localized orbitals facilitates the SCF convergence, particularly for large active spaces. Both organic molecules and transition-metal complexes are taken as showcases to reveal the efficacy of iCAS.
Collapse
Affiliation(s)
- Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, Shaanxi, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
31
|
Baiardi A. Electron Dynamics with the Time-Dependent Density Matrix Renormalization Group. J Chem Theory Comput 2021; 17:3320-3334. [PMID: 34043347 DOI: 10.1021/acs.jctc.0c01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we simulate the electron dynamics in molecular systems with the time-dependent density matrix renormalization group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation and design a computational framework in which the dynamics is driven by the exact nonrelativistic electronic Hamiltonian. We show that by parametrizing the wave function as a matrix product state, we can accurately simulate the dynamics of systems including up to 20 electrons and 32 orbitals. We apply the TD-DMRG algorithm to three problems that are hardly targeted by time-independent methods: the calculation of molecular (hyper)polarizabilities, the simulation of electronic absorption spectra, and the study of ultrafast ionization dynamics.
Collapse
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
32
|
Freitag L, González L. The Role of Triplet States in the Photodissociation of a Platinum Azide Complex by a Density Matrix Renormalization Group Method. J Phys Chem Lett 2021; 12:4876-4881. [PMID: 34006109 PMCID: PMC8165699 DOI: 10.1021/acs.jpclett.1c00829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Platinum azide complexes are appealing anticancer photochemotherapy drug candidates because they release cytotoxic azide radicals upon light irradiation. Here we present a density matrix renormalization group self-consistent field (DMRG-SCF) study of the azide photodissociation mechanism of trans,trans,trans-[Pt(N3)2(OH)2(NH3)2], including spin-orbit coupling. We find a complex interplay of singlet and triplet electronic excited states that falls into three different dissociation channels at well-separated energies. These channels can be accessed either via direct excitation into barrierless dissociative states or via intermediate doorway states from which the system undergoes non-radiative internal conversion and intersystem crossing. The high density of states, particularly of spin-mixed states, is key to aid non-radiative population transfer and enhance photodissociation along the lowest electronic excited states.
Collapse
|
33
|
King DS, Gagliardi L. A Ranked-Orbital Approach to Select Active Spaces for High-Throughput Multireference Computation. J Chem Theory Comput 2021; 17:2817-2831. [PMID: 33860669 DOI: 10.1021/acs.jctc.1c00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The past decade has seen a great increase in the application of high-throughput computation to a variety of important problems in chemistry. However, one area which has been resistant to the high-throughput approach is multireference wave function methods, in large part due to the technicalities of setting up these calculations and in particular the not always intuitive challenge of active space selection. As we look toward a future of applying high-throughput computation to all areas of chemistry, it is important to prepare these methods for large-scale automation. Here, we propose a ranked-orbital approach to select active spaces with the goal of standardizing multireference methods for high-throughput computation. This method allows for the meaningful comparison of different active space selection schemes and orbital localizations, and we demonstrate the utility of this approach across 1120 multireference calculations for the excitation energies of small molecules. Our results reveal that it is helpful to distinguish the method used to generate orbitals from the method of ranking orbitals in terms of importance for the active space. Additionally, we propose our own orbital ranking scheme that estimates the importance of an orbital for the active space through a pair-interaction framework from orbital energies and features of the Hartree-Fock exchange matrix. We call this new scheme the "approximate pair coefficient" (APC) method and we show that it performs quite well for the test systems presented.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Rossmannek M, Barkoutsos PK, Ollitrault PJ, Tavernelli I. Quantum HF/DFT-embedding algorithms for electronic structure calculations: Scaling up to complex molecular systems. J Chem Phys 2021; 154:114105. [PMID: 33752343 DOI: 10.1063/5.0029536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the near future, material and drug design may be aided by quantum computer assisted simulations. These have the potential to target chemical systems intractable by the most powerful classical computers. However, the resources offered by contemporary quantum computers are still limited, restricting the simulations to very simple molecules. In order to rapidly scale up to more interesting molecular systems, we propose the embedding of the quantum electronic structure calculation into a classically computed environment obtained at the Hartree-Fock (HF) or density functional theory (DFT) level of theory. This result is achieved by constructing an effective Hamiltonian that incorporates a mean field potential describing the action of the inactive electrons on a selected Active Space (AS). The ground state of the AS Hamiltonian is then determined by means of the variational quantum eigensolver algorithm. We show that with the proposed HF and DFT embedding schemes, we can obtain significant energy corrections to the reference HF and DFT calculations for a number of simple molecules in their strongly correlated limit (the dissociation regime) as well as for systems of the size of the oxirane molecule.
Collapse
Affiliation(s)
- Max Rossmannek
- IBM Quantum, IBM Research - Zurich, 8803 Rüschlikon, Switzerland
| | | | | | - Ivano Tavernelli
- IBM Quantum, IBM Research - Zurich, 8803 Rüschlikon, Switzerland
| |
Collapse
|
35
|
Levine BG, Durden AS, Esch MP, Liang F, Shu Y. CAS without SCF-Why to use CASCI and where to get the orbitals. J Chem Phys 2021; 154:090902. [PMID: 33685182 DOI: 10.1063/5.0042147] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree-Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.
Collapse
Affiliation(s)
- Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael P Esch
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yinan Shu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
36
|
Nowak A, Legeza Ö, Boguslawski K. Orbital entanglement and correlation from pCCD-tailored coupled cluster wave functions. J Chem Phys 2021; 154:084111. [DOI: 10.1063/5.0038205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Artur Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Örs Legeza
- Strongly Correlated Systems “Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
37
|
Mörchen M, Freitag L, Reiher M. Tailored coupled cluster theory in varying correlation regimes. J Chem Phys 2020; 153:244113. [PMID: 33380106 DOI: 10.1063/5.0032661] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The tailored coupled cluster (TCC) approach is a promising ansatz that preserves the simplicity of single-reference coupled cluster theory while incorporating a multi-reference wave function through amplitudes obtained from a preceding multi-configurational calculation. Here, we present a detailed analysis of the TCC wave function based on model systems, which require an accurate description of both static and dynamic correlation. We investigate the reliability of the TCC approach with respect to the exact wave function. In addition to the error in the electronic energy and standard coupled cluster diagnostics, we exploit the overlap of TCC and full configuration interaction wave functions as a quality measure. We critically review issues, such as the required size of the active space, size-consistency, symmetry breaking in the wave function, and the dependence of TCC on the reference wave function. We observe that possible errors caused by symmetry breaking can be mitigated by employing the determinant with the largest weight in the active space as reference for the TCC calculation. We find the TCC model to be promising in calculations with active orbital spaces which include all orbitals with a large single-orbital entropy, even if the active spaces become very large and then may require modern active-space approaches that are not restricted to comparatively small numbers of orbitals. Furthermore, utilizing large active spaces can improve on the TCC wave function approximation and reduce the size-consistency error because the presence of highly excited determinants affects the accuracy of the coefficients of low-excited determinants in the active space.
Collapse
Affiliation(s)
- Maximilian Mörchen
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Leon Freitag
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
38
|
Tóth Z, Pulay P. Comparison of Methods for Active Orbital Selection in Multiconfigurational Calculations. J Chem Theory Comput 2020; 16:7328-7341. [PMID: 33170653 PMCID: PMC7726099 DOI: 10.1021/acs.jctc.0c00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several methods of constructing the active orbital space for multiconfigurational wave functions are compared on typical moderately strongly or strongly correlated ground-state molecules. The relative merits of these methods and problems inherent in multiconfigurational calculations are discussed. Strong correlation in the ground electronic state is found typically in larger conjugated and in antiaromatic systems, transition states which involve bond breaking or formation, and transition metal complexes. Our examples include polyenes, polyacenes, the reactant, product and transition state of the Bergman cyclization, and two transition metal complexes: Hieber's anion [(CO)3FeNO]- and ferrocene. For the systems investigated, the simplest and oldest selection method, based on the fractional occupancy of unrestricted Hartree-Fock natural orbitals (the UNO criterion), yields the same active space as much more expensive approximate full CI methods. A disadvantage of this method used to be the difficulty of finding broken spin symmetry UHF solutions. However, our analytical method, accurate to fourth order in the orbital rotation angles (Tóth and Pulay J. Chem. Phys. 2016, 145, 164102.), has solved this problem. Two further advantages of the UNO criterion are that, unlike most other methods, it measures not only the energetic proximity to the Fermi level but also the magnitude of the exchange interaction with strongly occupied orbitals and therefore allows the estimation of the correlation strength for orbital selection in Restricted Active Space methods.
Collapse
Affiliation(s)
- Zsuzsanna Tóth
- Department of Chemistry and Biochemistry, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Applied Mathematics (CERMICS), Ecole des Ponts ParisTech, Champs sur Marne, 77455 France
| | - Peter Pulay
- Department of Chemistry and Biochemistry, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
39
|
Abstract
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correlator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG with the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
Collapse
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
40
|
Zou J, Niu K, Ma H, Li S, Fang W. Automatic Selection of Active Orbitals from Generalized Valence Bond Orbitals. J Phys Chem A 2020; 124:8321-8329. [PMID: 32894939 DOI: 10.1021/acs.jpca.0c05216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate multireference (MR) calculation of a strongly correlated chemical system usually relies on a correct preselection of a small number of active orbitals from numerous molecular orbitals. Currently, the active orbitals are generally determined by using a trial-and-error method. Such a preselection by chemical intuition and personal experience may be tedious or unreliable, especially for large complicated systems, and accordingly, the construction of active space becomes a bottleneck for large-scale MR calculations. In this work, we propose to automatically select the active orbitals according to the natural orbital occupation numbers by performing black box generalized valence bond calculations. We demonstrate the accuracy of this method through testing calculations of the ground states in various systems, ranging from bond dissociation of diatomic molecules (N2, C2, Cr2) to conjugated molecules (pentacene, hexacene, and heptacene) as well as a binuclear transition-metal complex [Mn2O2(H2O)2(terpy)2]3+ (terpy = 2,2':6,2″-terpyridine) with active spaces up to (30e, 30o) and comparing with the complete active space self-consistent field (CASSCF), density matrix renormalization group (DMRG)-CASSCF references, and other recently proposed inexpensive strategies for constructing active spaces. The results indicate that our method is among the most successful ones within our comparison, providing high-quality initial active orbitals very close to the finally optimized (DMRG-)CASSCF orbitals. The method proposed here is expected to greatly benefit the practical implementation of large active space ground-state MR calculations, for example, large-scale DMRG calculations.
Collapse
Affiliation(s)
- Jingxiang Zou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Ke Niu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
41
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
42
|
Khedkar A, Roemelt M. Extending the ASS1ST Active Space Selection Scheme to Large Molecules and Excited States. J Chem Theory Comput 2020; 16:4993-5005. [PMID: 32644789 DOI: 10.1021/acs.jctc.0c00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multireference electronic structure methods based on the CAS (complete active space) ansatz are well-established as a means to provide reliable predictions of physical properties of strongly correlated systems. A critical aspect of every CAS calculation is the selection of an adequate active space, in particular as the boundaries for tractable active spaces have been shifted significantly with the emergence of efficient approximations to the Full-CI problem like the density matrix renormalization group and full-CI quantum Monte Carlo. Recently, we proposed an active space selection based on first-order perturbation theory (ASS1ST) that yields satisfactory results for the electronic ground state of a variety of strongly correlated systems. In this work, we present a state-averaged extension of ASS1ST (SA-ASS1ST) that determines suitable active spaces when electronically excited states are targeted. Furthermore, the computational costs of the single state and state-averaged variants are significantly reduced by a simple approximation that avoids the most expensive step of the original method, the evaluation of active space four-electron reduced density matrices, altogether. After the applicability of the approximation is established, test calculations on a biomimetic Mn4O4 cluster demonstrate the enhanced range of ASS1ST in terms of system size and complexity. Furthermore, calculations on [VOCl4]2-, MeMn(CO)3-α-diimine, and anthracene show that SA-ASS1ST suggests well-suited active spaces to describe d → d and charge-transfer excitations in transition-metal complexes as well as π → π* excitations in aryl compounds. Finally, the application of ASS1ST on multiple points of the potential energy surface of Cr2 illustrates the applicability of the method even when extremely complicated bonding patterns are met. More importantly, however, it highlights the necessity to use special strategies when different points of a potential energy surface are investigated, e.g., during chemical reactions.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
43
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
44
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
45
|
Loipersberger M, Zee DZ, Panetier JA, Chang CJ, Long JR, Head-Gordon M. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. Inorg Chem 2020; 59:8146-8160. [DOI: 10.1021/acs.inorgchem.0c00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthias Loipersberger
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Z. Zee
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julien A. Panetier
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Abstract
Modern computational chemistry has reached a stage at which massive exploration into chemical reaction space with unprecedented resolution with respect to the number of potentially relevant molecular structures has become possible. Various algorithmic advances have shown that such structural screenings must and can be automated and routinely carried out. This will replace the standard approach of manually studying a selected and restricted number of molecular structures for a chemical mechanism. The complexity of the task has led to many different approaches. However, all of them address the same general target, namely to produce a complete atomistic picture of the kinetics of a chemical process. It is the purpose of this overview to categorize the problems that should be targeted and to identify the principal components and challenges of automated exploration machines so that the various existing approaches and future developments can be compared based on well-defined conceptual principles.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
47
|
Stein CJ, Reiher M. Semiclassical Dispersion Corrections Efficiently Improve Multiconfigurational Theory with Short-Range Density-Functional Dynamic Correlation. J Phys Chem A 2020; 124:2834-2841. [PMID: 32186877 DOI: 10.1021/acs.jpca.0c02130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiconfigurational wave functions are known to describe the electronic structure across a Born-Oppenheimer surface qualitatively correct. However, for quantitative reaction energies, dynamic correlation originating from the many configurations involving excitations out of the restricted orbital space, the active space, must be considered. Standard procedures involve approximations that eventually limit the ultimate accuracy achievable (most prominently, multireference perturbation theory). At the same time, the computational cost increases dramatically due to the necessity to obtain higher-order reduced density matrices. It is this disproportion that leads us here to propose an MC-srDFT-D hybrid approach of semiclassical dispersion (D) corrections to cover long-range dynamic correlation in a multiconfigurational (MC) wave function theory, which includes short-range (sr) dynamic correlation by density functional theory (DFT) without double counting. We demonstrate that the reliability of this approach is very good (at negligible cost), especially when considering that standard second-order multireference perturbation theory usually overestimates dispersion interactions.
Collapse
Affiliation(s)
- Christopher J Stein
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
48
|
Li SJ, Gagliardi L, Truhlar DG. Extended separated-pair approximation for transition metal potential energy curves. J Chem Phys 2020; 152:124118. [PMID: 32241117 DOI: 10.1063/5.0003048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Developing a computational method that is both affordable and accurate for transition-metal chemistry is a major challenge. The bond dissociation energies and the potential energy curves are two important targets for theoretical prediction. Here, we investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) based on wave functions calculated by the complete-active-space (CAS) and generalized active space (GAS) self-consistent-field (SCF) methods for three transition-metal diatomics (TiC, TiSi, and WCl) for which accurate bond energies are available from recent experiments. We compare the results to those obtained by CAS second-order perturbation theory (CASPT2) and Kohn-Sham DFT (KS-DFT). We use six systematic methods to choose the active spaces: (1) we put the bonding orbitals, antibonding orbitals, and singly occupied nonbonding orbitals into the active space in the first method; (2) we also put s and p valence orbitals into the active space; we tried two levels of correlated participating orbitals (CPO) active spaces: (3) nominal CPO (nom-CPO) and (4) extended CPO (ext-CPO); and we used (5) the separated-pair (SP) approximation and (6) a new method presented here called extended separate pairs (ESP) approximation to divide the nom-CPO active space into subspaces. Schemes 1-4 are carried out within the CAS framework, and schemes 5 and 6 are carried out in the GAS framework to eliminate deadwood configurations. For TiC and TiSi, we used all six kinds of active spaces. For WCl, we used three active spaces (nom-CPO, SP, and ESP). We found that MC-PDFT performs better than both CASPT2 and KS-DFT. We also found that the SP (for TiSi) and ESP (for TiC and WCl) approximations are particularly appealing because they make the potential curves smoother and significantly decrease the computational cost of CASSCF calculations. Furthermore, ESP-PDFT can be as accurate as CAS-PDFT.
Collapse
Affiliation(s)
- Shuhang J Li
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
49
|
Jeong W, Stoneburner SJ, King D, Li R, Walker A, Lindh R, Gagliardi L. Automation of Active Space Selection for Multireference Methods via Machine Learning on Chemical Bond Dissociation. J Chem Theory Comput 2020; 16:2389-2399. [DOI: 10.1021/acs.jctc.9b01297] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- WooSeok Jeong
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel King
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ruye Li
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Andrew Walker
- Department of Computer Science and Engineering, University of Minnesota, 200 Union Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Roland Lindh
- Department of Chemistry—BMC, and Uppsala Center for Computational Chemistry—UC3, Uppsala University, 751 23 Uppsala, Sweden
| | - Laura Gagliardi
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|