• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4600962)   Today's Articles (1928)   Subscriber (49363)
For: Unzueta PA, Beran GJO. Polarizable continuum models provide an effective electrostatic embedding model for fragment-based chemical shift prediction in challenging systems. J Comput Chem 2020;41:2251-2265. [PMID: 32748418 DOI: 10.1002/jcc.26388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/04/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
Number Cited by Other Article(s)
1
Hartman JD, Capistran D. Predicting 51V nuclear magnetic resonance observables in molecular crystals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024;62:416-428. [PMID: 38114304 DOI: 10.1002/mrc.5420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
2
Chaloupecká E, Tyrpekl V, Bártová K, Nishiyama Y, Dračínský M. NMR crystallography of amino acids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024;130:101921. [PMID: 38422809 DOI: 10.1016/j.ssnmr.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
3
Holmes ST, Boley CM, Dewicki A, Gardner ZT, Vojvodin CS, Iuliucci RJ, Schurko RW. Carbon-13 chemical shift tensor measurements for nitrogen-dense compounds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024;62:179-189. [PMID: 38230444 DOI: 10.1002/mrc.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
4
Hartman JD, Spock LE, Harper JK. Benchmark accuracy of predicted NMR observables for quadrupolar 14 N and 17 O nuclei in molecular crystals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023;61:253-267. [PMID: 36567433 DOI: 10.1002/mrc.5328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
5
Iuliucci RJ, Hartman JD, Beran GJO. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids? J Phys Chem A 2023;127:2846-2858. [PMID: 36940431 DOI: 10.1021/acs.jpca.2c07657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
6
Chandy SK, Raghavachari K. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2023;19:544-561. [PMID: 36630261 DOI: 10.1021/acs.jctc.2c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
7
Jørgensen FK, Reinholdt P, Hedegård ED, Kongsted J. Nuclear Magnetic Shielding Constants with the Polarizable Density Embedding Model. J Chem Theory Comput 2022;18:7384-7393. [PMID: 36332108 DOI: 10.1021/acs.jctc.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
8
Hartman JD, Harper JK. Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022;122:101832. [PMID: 36198253 DOI: 10.1016/j.ssnmr.2022.101832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
9
Unzueta PA, Greenwell CS, Beran GJO. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning. J Chem Theory Comput 2021;17:826-840. [DOI: 10.1021/acs.jctc.0c00979] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
10
Chandy SK, Thapa B, Raghavachari K. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Phys Chem Chem Phys 2020;22:27781-27799. [PMID: 33244526 DOI: 10.1039/d0cp05064d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Case DA. Using quantum chemistry to estimate chemical shifts in biomolecules. Biophys Chem 2020;267:106476. [PMID: 33035752 PMCID: PMC7686263 DOI: 10.1016/j.bpc.2020.106476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA