1
|
Chi L, Liu Y, Wang M, Xu Q. Vibronic Coupling and Multiple Electronic States Effect in ABS and ECD Spectra: Three [7]Helicene Derivatives. J Phys Chem A 2025; 129:1051-1059. [PMID: 39810631 DOI: 10.1021/acs.jpca.4c07468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations. The results indicate that the simulated vibrationally resolved spectra obtained by the VG model combined with the FC effect are more reliable, showing advantages in the rationality of spectral shapes, the accuracy of the relative heights of absorption peaks, and the correctness of positive and negative signals. Reliable predictions of the three [7]helicene derivatives allowed us to further explore the importance of the multiple electronic states effect in the vibrationally resolved spectra, demonstrating that the high-energy electronic excited states, particularly the fifth (S5) and sixth (S6) excited states, are essential for accurately capturing the fine structures observed in the experimental spectra. Our study predicts reliable theoretical reference spectra for the family of [7]helicene derivatives and provides a fundamental understanding of the vibronic coupling of chiral organic molecules with multiple electronic states.
Collapse
Affiliation(s)
- Lihan Chi
- Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Meishan Wang
- College of Integrated Circuits, Ludong University, Yantai, Shandong 264025, PR China
| | - Qiushuang Xu
- Department of Physics, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Martínez-Fernández L, Improta R. Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study. Molecules 2025; 30:298. [PMID: 39860168 PMCID: PMC11767852 DOI: 10.3390/molecules30020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance. In the latter, the spin density is localized on a single naphthalene molecule, and different minima or pseudo-minima are possible, the most stable one corresponding to a slipped parallel arrangement. According to B2PLYP-D3 calculations, excimer minima are the most stable, in line with the indications of ADC(2) studies. However, the relative stability of the minima is reverted when including thermal and vibrational effects. Excimer minima exhibit a very intense absorption spectrum, peaking above 500 nm. The computed absorption spectra of localized minima significantly depend on the stacking geometry and do not coincide with that of isolated naphthalene. Hybrid functionals provide very accurate vibronic absorption spectra for naphthalene monomer, both in the singlet and in the triplet state, but underestimate the stability of the excimer triplet.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC (Consejo Superior de Investigaciones Científicas), 28006 Madrid, Spain;
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
3
|
de Haas T, Smit R, Tebyani A, Bhattacharyya S, Watanabe K, Taniguchi T, Buda F, Orrit M. Charge Transfer-Induced Weakening of Vibronic Coupling for Single Terrylene Molecules Adsorbed onto Hexagonal Boron Nitride. J Phys Chem Lett 2025; 16:349-356. [PMID: 39780714 PMCID: PMC11726798 DOI: 10.1021/acs.jpclett.4c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules. We find an extreme case in which the Debye-Waller-Franck-Condon factor of the zero-phonon line exceeds 0.8. The vibronic intensity correlates with both the spectral position of the electronic transition and the frequency of the longitudinal stretch mode, which varies between 243 and 257 cm-1. Using density functional theory calculations, we show that these observations can be explained by terrylene chemisorption on charge-donating defect sites. The electronic states of molecules at such chemisorption sites would be very attractive for the efficient emission of single photons with narrow lines and for the generation of indistinguishable photons.
Collapse
Affiliation(s)
- Titus de Haas
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Robert Smit
- Huygens-Kamerlingh
Onnes Laboratory, Niels
Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Arash Tebyani
- Huygens-Kamerlingh
Onnes Laboratory, Niels
Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Semonti Bhattacharyya
- Huygens-Kamerlingh
Onnes Laboratory, Niels
Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Niels
Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
4
|
Xu Q, Wang M, Liu Y. Vibronic Effects Analysis of the Substituent Effect on the Spectral Properties of the EMI and CPL of Three [7]Helicene Derivatives. Molecules 2024; 30:44. [PMID: 39795102 PMCID: PMC11721410 DOI: 10.3390/molecules30010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
The substituent effect has a significant influence on the optical properties of spectral shape, width, and wavelength, and the intensities of the maximum peaks of emission (EMI) and circularly polarized luminescence (CPL). In this work, we conducted a systematic theoretical study to investigate how substituents alter the optical response in the EMI and CPL spectra of three [7]helicene derivatives at the vibronic level. To incorporate the vibronic effect, a state-of-the-art time-dependent (TD) method was used to achieve the fully converged spectra. In the meantime, a time-independent (TI) approach also provided a way to show the progression of the spectra, serving as a complementary strategy and creating reliable documentation for the experiment. The experimental spectra of EMI and CPL are nicely reproduced, which validates the reliability of the Adiabatic Hessian (AH) model in simulating experimental data. This allowed us to analyze in detail the effect of substituents, particularly on the optical responses. The introduction of cyano and methoxy groups is highlighted, as they altered the transition dipole moments and led to a 1000-fold increase in the intensity of EMI and CPL. Moreover, substituents can also rationally alter the spectral shape of EMI and CPL by affecting the responsible normal modes. The unique CN stretching and the MeO rotation in the substituted [7]helicene are highlighted as key factors contributing to the different behaviors of EMI and CPL. This sheds light on the design and synthesis of helicenes that can serve as ideal full-color EMI and CPL emitters.
Collapse
Affiliation(s)
- Qiushuang Xu
- Department of Physics, Yantai University, Yantai 264005, China
| | - Meishan Wang
- College of Integrated Circuits, Ludong University, Yantai 264005, China
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264005, China;
| |
Collapse
|
5
|
Fukuda H, Kobayashi M, Tsurumaki E, Yamashina M, Hasegawa M, Wakamatsu K, Toyota S. Structures, Chiroptical Properties, and Unexpectedly Facile Helical Inversion of Highly Elongated Anthracene-Fused Expanded Helicenes. Chemistry 2024:e202404348. [PMID: 39664000 DOI: 10.1002/chem.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Helical fused anthracenes were elongated by fusing additional aromatic units at both ends to yield novel expanded helicenes. Compounds [5]HA2N and [7]HA consisting of 19 and 21 benzene rings, respectively, were synthesized by fourfold cycloisomerization of the corresponding terminal alkyne precursors. The helical structures were confirmed by X-ray crystallographic analysis, where the aromatic frameworks stacked effectively with the helical turn numbers exceeding two. The enantiomers of the two compounds were resolved by chiral HPLC. Whereas [5]HA2N readily underwent enantiomerization at room temperature at the barrier to enantiomerization of 91 kJ mol-1, the barrier was enhanced to 99 kJ mol-1 for the long analog [7]HA. The enantiomers of [7]HA exhibited strong responses in the circular dichroism (CD) and circularly polarized luminescence (CPL) spectra, as scaled by dissymmetry factors |gabs|=0.034 and |glum|=0.012. Theoretical calculations by the r2SCAN-3c method suggested stepwise mechanisms for the enantiomerization via helical inversion with acceptable barrier heights. The unexpectedly flexible nature of the aromatic frameworks of [5]HA2N and [7]HA was discussed on the basis of the proposed mechanism.
Collapse
Affiliation(s)
- Hiroki Fukuda
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Moe Kobayashi
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
6
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
7
|
Wu X, Xie X, Troisi A. Calibration of several first excited state properties for organic molecules through systematic comparison of TDDFT with experimental spectra. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:18886-18892. [PMID: 39444434 PMCID: PMC11492815 DOI: 10.1039/d4tc03511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Time-dependent density functional theory (TDDFT) is a powerful computational tool for investigating excitation properties in organic electronics, and it holds significant potential for high-throughput virtual screening (HTVS) in this field. While most benchmarks focus on excitation energies, less attention has been paid to evaluating the accuracy of computed oscillator strengths and exciton reorganization energies against experimental data. In this work, we provide a systematic approach to evaluate in parallel the accuracy of these three quantities on the basis of a suitable fitting of the experimental absorption spectra of 71 molecules in solution. After considering 18 computational methodologies, the results from the M06-2X/def2-TZVP/PCM method demonstrate the strongest correlation with experimental data across the desired properties. For HTVS, the M06-2X/6-31G(d)/PCM method appears to be a particularly convenient choice among all methodologies due to its balance of computational efficiency and accuracy. Our results provide an additional benchmark needed before employing TDDFT methods for the discovery and design of organic electronic molecules.
Collapse
Affiliation(s)
- Xia Wu
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University Qingdao Shandong 266237 China
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
8
|
Schäfer A, Giannini S, Strelnikov D, Mohr T, Santoro F, Cerezo J, Kappes MM. Influence of symmetry breaking on the absorption spectrum of crystal violet: from isolated cations at 5 K to room temperature solutions. Phys Chem Chem Phys 2024; 26:28514-28524. [PMID: 39513230 DOI: 10.1039/d4cp03825h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We report the resolution of a long-standing puzzle in molecular spectroscopy: the origin of the shoulder in the room temperature solution absorption spectrum of crystal violet (CV) - an archetypal cationic triphenylmethane dye. This was achieved by comparing experimental and theoretical results for CV in solution at room temperature and as an isolated cation in gas-phase at 5 K. The two lowest energy electronically excited states involved in the visible region absorption are degenerate and coupled via a Jahn-Teller (JT) mechanism involving phenyl torsions, making CV particularly sensitive to environmental perturbations. The shoulder is absent in the low-temperature isolated cation spectrum, and vibronic simulations based on time dependent density functional theory (TD-DFT) indicate negligible JT effects under these conditions. Combining vibronic simulations with molecular dynamics, demonstrates that in water and toluene solution at room temperature the shoulder arises mainly from an intermolecular, Jahn-Teller-like symmetry-breaking effect induced by the fluctuating electrostatic potential of the disordered solvent environment, rather than from molecular distortions.
Collapse
Affiliation(s)
- Alexander Schäfer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.
| | - Samuele Giannini
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), I-56124 Pisa, Italy
| | - Dmitry Strelnikov
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.
| | - Theresa Mohr
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.
| | - Fabrizio Santoro
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), I-56124 Pisa, Italy
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76311 Karlsruhe, Germany
| |
Collapse
|
9
|
Landi A, Ricci G, Olivier Y, Capobianco A, Peluso A. Toward Efficient Modeling of Nonradiative Decay in Extended INVEST: Overcoming Computational Challenges in Quantum Dynamics Simulations. J Phys Chem Lett 2024; 15:11042-11050. [PMID: 39470168 DOI: 10.1021/acs.jpclett.4c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In recent years, an increasing number of fully organic molecules capable of thermally activated delayed fluorescence (TADF) have been reported, often with very small or even inverted singlet-triplet (INVEST) energy gaps. These molecules typically exhibit complex photophysics due to the close energy levels of multiple singlet and triplet states, which create various transition pathways toward emission. A predictive model for the rates of these transitions is thus essential for assessing the suitability of new materials for light-emitting devices. Quantum Dynamics (QD) calculations are ideal for this purpose, as they include quantum effects, without the limitations of first-order perturbative approaches, also allowing taking into account more than two electronic states at once. However, the huge computational demands of QD methodologies, especially for large molecules, currently limit their use as a standard tool. To address this problem, we here employ a strategy that allows us to include almost the whole set of the vibrational coordinates by selecting the key elements of the Hilbert space that significantly impact dynamics, thereby hugely reducing the computational burden. Application of this protocol to two relatively large INVEST molecules reveals that internal conversion in these systems is very fast, making indirect emissive pathways a possible channel for the population of the S1 state. More importantly, this study demonstrates that the dynamics can be accurately described even with a significantly reduced vibrational space, thus allowing quantum dynamics calculations that yield accurate transition rates in a few minutes of computational time.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Gaetano Ricci
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Universitè de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Universitè de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| |
Collapse
|
10
|
Liu Y, Xu Q, Wang L, Gao A, Li Q, Chen S, Zhao Y, Wang M, Jiang J, Jia C. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. J Phys Chem Lett 2024; 15:10818-10825. [PMID: 39435702 DOI: 10.1021/acs.jpclett.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Solvent polarity control as an efficient methodology to regulate the chiroptical properties, including spectral shape, width, intensity, wavelength, etc., has emerged as a novel frontier in optical materials design. However, the underling relationship connecting polarity to the optical property remains unclear. Herein, using state-of-the-art computations and the FC|VG model, the solvent effect on the chiroptical properties of bora[6]helicene was accurately and systematically computed to shed light on this issue. It is found that the vibronic coupling is crucial in explaining the spectral shape, width, and relative intensity of different peaks. Moreover, the intensity and position of the emission (EMI) and circularly polarized luminescence (CPL) are closely related to the polarity of the solvent. Intriguingly, we got a series of good linear relationships between polarity and EMI|CPL (|r| ≥ 0.95). Thus, this parameter can be used as a potential descriptor to estimate the intensity and position of EMI|CPL, leading to new strategies for designing fully colored fluorescent materials.
Collapse
Affiliation(s)
- Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Qiushuang Xu
- School of Physics and Electronic Information, Yantai University, 264005 Yantai, Shandong, People's Republic of China
| | - Li Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Aihua Gao
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Quanjiang Li
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Shenghui Chen
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Meishan Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| |
Collapse
|
11
|
Huang A, Xu H, Xia Z, Hao W, Wu D, He H. Study of the Energy Crossing Between Excited States Affected by the Electronegativity of Substituents for Three 4-Azido-1,8-naphthalimide Derivatives. J Phys Chem A 2024; 128:9353-9361. [PMID: 39422437 DOI: 10.1021/acs.jpca.4c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rapid detection of H2S is crucial for human physiological health and natural ecosystems. In this study, the fluorescent sensing mechanisms of three 4-azido-1,8-naphthalimide-based fluorescent probes to monitor H2S were theoretically investigated by density functional theory and time-dependent density functional theory. The potential energy curve of the charge transfer (CT) state has a crossover with that of the locally excited (LE) state proved by the constructed linear interpolating internal coordinate pathway. Thus, the transform takes place from the LE state to the CT state causing the fluorescence quenching of the probes from a nonradiative transition process of the CT state. The distance between the Franck-Condon point and the minimal energy conical intersection becomes larger with the increase of the electronegativity of substituents on the 1,8-naphthalimide fluorophore. In addition, the degree of charge separation is closely related to the energy difference between the CT and the LE states which are also essentially affected by the electronegativity of the substituents. Since the electronegativity of the substituents has proved important for the probes, our work lays a certain theoretical foundation for the design and synthesis of more sensitive 4-azido-1,8-naphthalimide-based fluorescent probes.
Collapse
Affiliation(s)
- Anran Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Honghong Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Zhicheng Xia
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Wenxuan Hao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Dongxia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Haixiang He
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
12
|
Zhang F, Brancaccio V, Saal F, Deori U, Radacki K, Braunschweig H, Rajamalli P, Ravat P. Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes. J Am Chem Soc 2024; 146:29782-29791. [PMID: 39435966 DOI: 10.1021/jacs.4c11404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this manuscript we present a strategy to achieve ultranarrowband circularly polarized luminescence (CPL) from multiple 1,4-azaborine-embedded helical nanographenes. The impact of number and position of boron and nitrogen atoms in the rigid core of the molecule on optical properties─including absorption and emission maxima, photoluminescence quantum yield, Stokes shift, excited singlet-triplet energy gap and full width at half-maximum (fwhm) for CPL and fluorescence─was investigated. The molecules reported here exhibits ultranarrowband fluorescence (fwhm 16-17.5 nm in toluene) and CPL (fwhm 18-19 nm in toluene). To the best of our knowledge, this is among the narrowest CPL for any organic molecule reported to date. Quantum chemical calculations, including computed CPL spectra involving vibronic contributions, provide valuable insights for future molecular design aimed at achieving narrowband CPL.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Vincenzo Brancaccio
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Fridolin Saal
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Upasana Deori
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Krzysztof Radacki
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prince Ravat
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| |
Collapse
|
13
|
Hollas D, Curchod BFE. AtmoSpec-A Tool to Calculate Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. J Phys Chem A 2024; 128:8580-8590. [PMID: 39359141 PMCID: PMC11457220 DOI: 10.1021/acs.jpca.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Characterizing the photolysis processes undergone by transient volatile organic compounds (VOCs) in the troposphere requires the knowledge of their photoabsorption cross-section-quantities often challenging to determine experimentally, particularly due to the reactivity of these molecules. We present a computational tool coined AtmoSpec, which can predict a quantitative photoabsorption cross-section for volatile organic compounds by using computational photochemistry. The user enters the molecule of interest as a SMILES code and, after selecting a level of theory for the electronic structure (and waiting for the calculations to take place), is presented with a photoabsorption cross-section for the low-energy conformers and an estimate of the photolysis rate coefficient for different standardized actinic fluxes. More specifically, AtmoSpec is an automated workflow for the nuclear ensemble approach, an efficient technique to approximate the absolute intensities and excitation wavelengths of a photoabsorption cross-section for a molecule in the gas phase of interest in atmospheric chemistry and astrochemistry. This work provides background information on the nuclear ensemble approach, a guided example of a typical AtmoSpec calculation, details about the architecture of the code, and the current limitations and future developments of this tool.
Collapse
Affiliation(s)
- Daniel Hollas
- Centre for Computational
Chemistry, School of Chemistry, University
of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - Basile F. E. Curchod
- Centre for Computational
Chemistry, School of Chemistry, University
of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
14
|
Böhmer T, Kleinschmidt M, Marian CM. Toward the improvement of vibronic spectra and non-radiative rate constants using the vertical Hessian method. J Chem Phys 2024; 161:094114. [PMID: 39234963 DOI: 10.1063/5.0220361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
For the computation of vibrationally resolved electronic spectra, various approaches can be employed. Adiabatic approaches simulate vibronic transitions using harmonic potentials of the initial and final states, while vertical approaches extrapolate the final state potential from the gradients and Hessian at the Franck-Condon point, avoiding a full exploration of the potential energy surface of the final state. Our implementation of the vertical Hessian (VH) method has been validated with a benchmark set of four small molecules, each presenting unique challenges, such as complex topologies, problematic low-frequency vibrations, or significant geometrical changes upon electronic excitation. We assess the quality of both adiabatic and vertical approaches for simulating vibronic transitions. For two types of donor-acceptor compounds with promising thermally activated delayed fluorescence properties, our computations confirm that the vertical approaches outperform the adiabatic ones. The VH method significantly reduces computational costs and yields meaningful emission spectra, where adiabatic models fail. More importantly, we pioneer the use of the VH method for the computation of rate constants for non-radiative processes, such as intersystem crossing and reverse intersystem crossing along a relaxed interpolated pathway of a donor-acceptor compound. This study highlights the potential of the VH method to advance computational vibronic spectroscopy by providing meaningful simulations of intricate decay pathway mechanisms in complex molecular systems.
Collapse
Affiliation(s)
- Tobias Böhmer
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Lizondo-Aranda P, Gustavsson T, Martínez-Fernández L, Improta R, Lhiaubet-Vallet V. The Excited State Dynamics of a Mutagenic Guanosine Etheno Adduct Investigated by Femtosecond Fluorescence Spectroscopy and Quantum Mechanical Calculations. Chemistry 2024; 30:e202401835. [PMID: 38869969 DOI: 10.1002/chem.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Femtosecond fluorescence upconversion experiments were combined with CASPT2 and time dependent DFT calculations to characterize the excited state dynamics of the mutagenic etheno adduct 1,N2-etheno-2'-deoxyguanosine (ϵdG). This endogenously formed lesion is attracting great interest because of its ubiquity in human tissues and its highly mutagenic properties. The ϵdG fluorescence is strongly modified with respect to that of the canonical nucleoside dG, notably by an about 6-fold increase in fluorescence lifetime and quantum yield at neutral pH. In addition, femtosecond fluorescence upconversion experiments reveal the presence of two emission bands with maxima at 335 nm for the shorter-lived and 425 nm for the longer-lived. Quantum mechanical calculations rationalize these findings and provide absorption and fluorescence spectral shapes similar to the experimental ones. Two different bright minima are located on the potential energy surface of the lowest energy singlet excited state. One planar minimum, slightly more stable, is associated with the emission at 335 nm, whereas the other one, with a bent etheno ring, is associated with the red-shifted emission.
Collapse
Affiliation(s)
- Paloma Lizondo-Aranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de Valencia, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, Valencia, 46022, Spain
| | | | - Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, IQF-CSIC, Calle Serrano 119, 28006, Madrid, Spain
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via De Amicis 95, I-80145, Napoli, Italy
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de Valencia, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, Valencia, 46022, Spain
| |
Collapse
|
16
|
Song S, Feng S, Wang L, Jun J, Milián-Medina B, Wannemacher R, Lee J, Kwon MS, Gierschner J. Rational Design of Color-Pure Blue Organic Emitters by Poly-Heteroaromatic Omni-Delocalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404388. [PMID: 39011790 DOI: 10.1002/adma.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Current research on organic light emitters which utilize multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials is gaining significant interest because of the materials' ability to efficiently generate color-pure blue emission. However, the underlying reasons for high color purity remain unclear. It is shown here that these emitters share a common electronic basis, which is deduced from resonance structure considerations following Clar's rule, and which is termed as "poly-heteroaromatic omni-delocalization" (PHOD). The simple and clear design rules derived from the PHOD concept allow extending the known chemical space by new structural motifs. Based on PHOD, a set of novel high-efficiency color-pure emitters with brilliant deep-blue hue is specifically designed.
Collapse
Affiliation(s)
- Sunwu Song
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Siyang Feng
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jinwon Jun
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Reinhold Wannemacher
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Jaesang Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
17
|
Ma Y, Feng X, Yu W, Shen C. Theoretical Study on Vibrationally Resolved Electronic Spectra of Chiral Nanographenes. Molecules 2024; 29:3999. [PMID: 39274847 PMCID: PMC11396777 DOI: 10.3390/molecules29173999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Nanographenes are of increasing importance owing to their potential applications in the photoelectronic field. Meanwhile, recent studies have primarily focused on the pure electronic spectra of nanographenes, which have been found to be inadequate for describing the experimental spectra that contain vibronic progressions. In this study, we focused on the vibronic effect on the electronic transition of a range of chiral nanographenes, especially in the low-energy regions with distinct vibronic progressions, using theoretical calculations. All the calculations were performed at the PBE0-D3(BJ)/def2-TZVP level of theory, adopting both time-dependent and time-independent approaches with Franck-Condon approximation. The resulting calculated curves exhibited good alignment with the experimental data. Notably, for the nanographenes incorporating helicene units, owing to the increasing π-extension, the major vibronic modes in the vibrationally resolved spectra differed significantly from those of the primitive helicenes. This investigation suggests that calculations that account for the vibronic effect could have better reproducibility compared with calculations based solely on pure electronic transitions. We anticipate that this study could pave the way for further investigations into optical and chiroptical properties, with a deeper understanding of the vibronic effect, thereby providing theoretical explanations with higher precision on more sophisticated nanographenes.
Collapse
Affiliation(s)
- Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China
| | - Xian Feng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China
| | - Wenxiong Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China
| |
Collapse
|
18
|
Cerezo J, Gierschner J, Santoro F, Prampolini G. Explicit Modelling of Spectral Bandshapes by a Mixed Quantum-Classical Approach: Solvent Order and Temperature Effects in the Optical Spectra of Distyrylbenzene. Chemphyschem 2024; 25:e202400307. [PMID: 38728539 DOI: 10.1002/cphc.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The absorption and emission spectral shapes of a flexible organic probe, the distyrylbenzene (DSB) dye, are simulated accounting for the effect of different environments of increasing complexity, ranging from a homogeneous, low-molecular- weight solvent, to a long-chain alkane, and, eventually, a channel-forming organic matrix. Each embedding is treated explicitly, adopting a mixed quantum-classical approach, the Adiabatic Molecular Dynamics - generalized vertical Hessian (Ad-MD|gVH) model, which allows a direct simulation of the environment-induced constraining effects on the vibronic spectral shapes. In such a theoretical framework, the stiff modes of the dye are described at a quantum level within the harmonic approximation, including Duschinsky mixing effects, while flexible degrees of freedom of the solute (e. g. torsions) and those of the solvent are treated classically by means of molecular dynamics sampling. Such a setup is shown to reproduce the distinct effects exerted by the different environments in varied thermodynamic conditions. Besides allowing for a first-principles rationale on the supramolecular mechanism leading to the experimental spectral features, this result represents the first successful application of the Ad-MD|gVH method to complex embeddings and supports its potential application to other heterogeneous environments, such as for instance, pigment-protein complexes or organic dyes adsorbed into metal-organic frameworks.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| |
Collapse
|
19
|
Dall'Osto G, Corni S. Time-dependent surface-enhanced Raman scattering: A theoretical approach. J Chem Phys 2024; 161:044103. [PMID: 39037131 DOI: 10.1063/5.0214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
A new procedure for computing the time-dependent Raman scattering of molecules in the proximity of plasmonic nanoparticles (NPs) is proposed, drawing inspiration from the pioneering Lee and Heller's theory. This strategy is based on a preliminary simulation of the molecular vibronic wavefunction in the presence of a plasmonic nanostructure and an incident light pulse. Subsequently, the Raman signal is evaluated through an inverse Fourier Transform of the coefficients' dynamics. Employing a multiscale approach, the system is treated by coupling the quantum mechanical description of the molecule with the polarizable continuum model for the NP. This method offers a unique advantage by providing insights into the time evolution of the plasmon-enhanced Raman signal, tracking the dynamics of the incident electric field. It not only provides for the total Raman signal at the process's conclusion but also gives transient information. Importantly, the flexibility of this approach allows for the simulation of various incident electric field profiles, enabling a closer alignment with experimental setups. This adaptability ensures that the method is relevant and applicable to diverse real-world scenarios.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena 41100, Italy
| |
Collapse
|
20
|
Wu L, Zhang X, Moos M, Krummenacher I, Dietz M, Jayaraman A, Bertermann R, Ye Q, Finze M, Wenzel M, Mitric R, Lambert C, Braunschweig H, Ji L. Full Electron Delocalization across the Cluster in 1,12-bisBMes 2- p-carborane Radical Anion. J Am Chem Soc 2024; 146:17956-17963. [PMID: 38850552 DOI: 10.1021/jacs.4c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Conjugation between three-dimensional (3D) carboranes and the attached substituents is commonly believed to be very weak. In this paper, we report that reducing 1,12-bis(BMes2)-p-carborane (B2pCab) with one electron gives a radical anion with a centrosymmetric semiquinoidal structure. This radical anion shows extensive electron delocalization between the two boron centers over the p-carborane bridge due to the overlap of carborane lowest unoccupied molecular orbital (LUMO) and the BMes2 LUMO. Unlike dianions of other C2B10H12 carboranes, which rearrange to a nido-form, two-electron reduction of B2pCab leads to a rearrangement into a basket-shaped intermediate.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xinning Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Arumugam Jayaraman
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Qing Ye
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
21
|
Cui X, Yuan H, Chen X, Meng Q, Zhang C. Newly Designed Quasi-intrinsic Photosensitizers for Fluorescence Image-Guided Two-Photon Photodynamic Therapy with Type I/II Photoreactions. J Med Chem 2024; 67:8902-8912. [PMID: 38815214 DOI: 10.1021/acs.jmedchem.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this work, a set of quasi-intrinsic photosensitizers are theoretically proposed based on the 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-α]-1,3,5-triazin-4(8H)-one (P), which could pair with the 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and keep the essential structural characters of nucleic acid. It is revealed that the ring expansion and electron-donating/electron-withdrawing substitution bring enhanced two-photon absorption and bright photoluminescence of these monomers, thereby facilitating the selective excitation and tumor localization through fluorescence imaging. However, instead of undergoing radiative transition (S1 → S0), the base pairing induced fluorescence quenching and rapid intersystem crossing (S1 → Tn) are observed and characterized by the reduced singlet-triplet energy gaps and large spin-orbit coupling values. To ensure the phototherapeutic properties of the considered base pairs in long-lived T1 state, we examined the vertical electron affinity as well as vertical ionization potential for production of superoxide anions via Type I photoreaction, and their required T1 energy (0.98 eV) to generate singlet oxygen 1O2 via Type II mechanism.
Collapse
Affiliation(s)
- Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongxiu Yuan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaolin Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
22
|
Watanabe K, Tsurumaki E, Hasegawa M, Toyota S. Structure and Chiroptical Properties of Anthra[1,2-a]anthracene-1-yl Dimers as New Biaryls. Chemistry 2024; 30:e202400929. [PMID: 38554080 DOI: 10.1002/chem.202400929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/01/2024]
Abstract
Dimers of anthra[1,2-a]anthracene-1-yl units and its mesityl derivative were synthesized by Ni(0)-mediated coupling of the corresponding chloro derivatives as new biaryls. The X-ray analysis and DFT calculations revealed that two polycyclic aromatic units with nonplanar deformations took a twisted conformation about the single bond as a chiral axis. Enantiomers of the nonsubstituted compound were resolved by chiral HPLC, and the enantiopure samples showed intense Cotton effects at 321 nm in the circular dichroism (CD) spectra and emission bands at 449 nm in the circularly polarized luminescence (CPL) spectra with dissymmetry factor of |glum| 3.6×10-3. The absolute stereochemistry of this biaryl was determined by the theoretical calculation of CD spectrum by the time-dependent DFT method. The barrier to enantiomerization was determined to be 108 kJ mol-1 at 298 K. The dynamic process proceeded via a stepwise mechanism involving the helical inversion of each aromatic unit and the rotation about the biaryl axis as analyzed by the DFT calculations.
Collapse
Affiliation(s)
- Kota Watanabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
23
|
Holland DMP, Suchan J, Janoš J, Bacellar C, Leroy L, Barillot TR, Longetti L, Coreno M, de Simone M, Grazioli C, Chergui M, Muchová E, Ingle RA. Deconvolution of the X-ray absorption spectrum of trans-1,3-butadiene with resonant Auger spectroscopy. Phys Chem Chem Phys 2024; 26:15130-15142. [PMID: 38525924 DOI: 10.1039/d4cp00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.
Collapse
Affiliation(s)
- David M P Holland
- STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, UK
| | - Jiří Suchan
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-5250, USA
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Ludmila Leroy
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Thomas R Barillot
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Luca Longetti
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Marcello Coreno
- ISM-CNR, Istituto di Struttura dei Materiali, LD2 Unit, 34149 Trieste, Italy
| | | | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali, 34149 Trieste, Italy
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163,5 in Area Science Park, I-34012 Basovizza, Trieste, Italy
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Rebecca A Ingle
- Department of Chemistry, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
24
|
García-González F, Otero JC, Ávila Ferrer FJ, Santoro F, Aranda D. Linear Vibronic Coupling Approach for Surface-Enhanced Raman Scattering: Quantifying the Charge-Transfer Enhancement Mechanism. J Chem Theory Comput 2024; 20:3850-3863. [PMID: 38687961 PMCID: PMC11099975 DOI: 10.1021/acs.jctc.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The outstanding amplification observed in surface-enhanced Raman scattering (SERS) is due to several enhancement mechanisms, and standing out among them are the plasmonic (PL) and charge-transfer (CT) mechanisms. The theoretical estimation of the enhancement factors of the CT mechanism is challenging because the excited-state coupling between bright plasmons and dark CT states must be properly introduced into the model to obtain reliable intensities. In this work, we aim at simulating electrochemical SERS spectra, considering models of pyridine on silver clusters subjected to an external electric field E⃗ that represents the effect of an electrode potential Vel. The method adopts quantum dynamical propagations of nuclear wavepackets on the coupled PL and CT states described with linear vibronic coupling models parametrized for each E⃗ through a fragment-based maximum-overlap diabatization. By presenting results at different values of E⃗, we show that indeed there is a relation between the population transferred to the CT states and the total scattered intensity. The tuning and detuning processes of the CT states with the bright PLs as a function of the electric field are in good agreement with those observed in experiments. Finally, our estimations for the CT enhancement factors predict values in the order of 105 to 106, meaning that when the CT and PL states are both in resonance with the excitation wavelength, the CT and PL enhancements are comparable, and vibrational bands whose intensity is amplified by different mechanisms can be observed together, in agreement with what was measured by typical experiments on silver electrodes.
Collapse
Affiliation(s)
- Francisco García-González
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Carlos Otero
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Ávila Ferrer
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca
del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Daniel Aranda
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
25
|
Pham TC, Cho M, Nguyen VN, Nguyen VKT, Kim G, Lee S, Dehaen W, Yoon J, Lee S. Charge Transfer-Promoted Excited State of a Heavy-Atom-Free Photosensitizer for Efficient Application of Mitochondria-Targeted Fluorescence Imaging and Hypoxia Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21699-21708. [PMID: 38634764 DOI: 10.1021/acsami.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van Kieu Thuy Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Seongman Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
26
|
Petrusevich EF, Reis H, Ośmiałowski B, Jacquemin D, Luis JM, Zaleśny R. One- and two-photon absorption spectra of organoboron complexes: vibronic and environmental effects. Phys Chem Chem Phys 2024; 26:13239-13250. [PMID: 38634828 DOI: 10.1039/d4cp01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We synthesized a series of four parent aza-β-ketoiminate organoboron complexes and performed spectroscopic studies using both experimental and computational techniques. We studied how benzannulation influences the vibronic structure of the UV/Vis absorption bands with a focus on the bright lowest-energy π → π* electronic excitation. Theoretical simulations, accounting for inhomogeneous broadening effects using different embedding schemes, allowed gaining in-depth insights into the observed differences in band shapes induced by structural modifications. We observed huge variations in the distributions of vibronic transitions depending on the position of benzannulation. By and large, the harmonic approximation combined with the adiabatic hessian model delivers qualitatively correct band shapes for the one-photon absorption spectra, except in one case. We also assessed the importance of non-Condon effects (accounted for by the linear term in Herzberg-Teller expansion of the dipole moment) for S0 → S1 band shapes. It turned out that non-Condon contributions have no effect on the band shape in one-photon absorption spectra. In contrast, these effects significantly change the Franck-Condon band shapes of the two-photon absorption spectra. For one of the studied organoboron complexes we also performed a preliminary exploration of mechanical anharmonicity, resulting in an increase of the intensity of the 0-0 transition, which improves the agreement with the experimental data compared to the harmonic model.
Collapse
Affiliation(s)
- Elizaveta F Petrusevich
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Heribert Reis
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Vassileos Constantinou Ave 48th, 116 35 Athens, Greece
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
27
|
Yu Q, Li X, Shen C, Yu Z, Guan J, Zheng J. Blue-Shifted and Broadened Fluorescence Enhancement by Visible and Mode-Selective Infrared Double Excitations. J Phys Chem A 2024; 128:2912-2922. [PMID: 38572812 DOI: 10.1021/acs.jpca.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.
Collapse
Affiliation(s)
- Qirui Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chengzhen Shen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Xie M, Zhou Y, Zhou H, Ma C, Sun Q, Zhang ST, Zhang Y, Yang W, Xue S. Efficient near-infrared emission benefits from slowing down the internal conversion process. Chem Sci 2024; 15:5589-5595. [PMID: 38638218 PMCID: PMC11023042 DOI: 10.1039/d4sc00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Organic deep-red (DR) and near-infrared (NIR) emitters with high photoluminescence quantum yield (PLQY) are rare due to the strong non-radiative (knr) decay. Here, we report two DR/NIR emitters with high PLQY, TPANZPyPI and TPANZ3PI. Interestingly, the TPANZPyPI film exhibits 46.5% PLQY at 699 nm. Theoretical calculations indicate that TPANZPyPI can achieve this high PLQY in the near-infrared emission region due to its small S1 to S0 internal conversion (IC) rate. Meanwhile, research has found that, compared to TPANZ3PI, TPANZPyPI with a more rigid structure can effectively suppress the T2 to T1 IC process, which is conducive to higher exciton utilization efficiency (EUE). TPANZPyPI's non-doped OLED shows NIR emission with 4.6% @ 684 nm maximum external quantum efficiency (EQEmax). Its doped OLEDs radiate DR with an EQEmax of 6.9% @ 666 nm. These EQEs are among the highest values for hybridized local charge transfer state materials emitting more than 640 nm. This work demonstrates for the first time, based on a combination of theory and experiment, that increasing the molecular rigidity can inhibit the excited state IC process in addition to the S1 to S0 IC, realizing efficient electroluminescence.
Collapse
Affiliation(s)
- Mingliang Xie
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Huayi Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Chengling Ma
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yujian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Yingbin Road No. 688 Jinhua 321004 P. R. China
| | - Wenjun Yang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
29
|
Mori T. Significance of Vibronic Coupling that Shapes Circularly Polarized Luminescence of Double Helicenes. Angew Chem Int Ed Engl 2024; 63:e202319702. [PMID: 38317539 DOI: 10.1002/anie.202319702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The circularly polarized luminescence (CPL) spectra of S- and X-shaped double helicenes exhibit distinct vibrational structures and overall shape variations. In this study, we conducted an in-depth investigation into the vibronic effects influencing the CPL spectra of two double helicenes, namely DPC and DNH. Employing state-of-the-art computations utilizing the FC-HT1|VH model at the CAM-B3LYP/def2-TZVP level, we unveiled the paramount impact of Franck-Condon (FC), Herzberg-Teller (HT), and Duschinsky effects on their chiroptical responses. Our research underscores the pivotal role of structural deformations associated with the S1-to-S0 electronic transition in molding CPL spectra and wavelength-dependent dissymmetry (g) factor values, as well as the significance of HT effects in shaping and enhancing CPL responses. This extensive investigation not only advances our comprehension of the vibronic characteristics in configurationally distinct double helicenes but also offers valuable insights for the design of chiral molecules featuring controllable or finely-tunable CPL responses.
Collapse
Affiliation(s)
- Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Pompetti N, Smyser KE, Feingold B, Owens R, Lama B, Sharma S, Damrauer NH, Johnson JC. Tetracene Diacid Aggregates for Directing Energy Flow toward Triplet Pairs. J Am Chem Soc 2024; 146. [PMID: 38606884 PMCID: PMC11046478 DOI: 10.1021/jacs.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.
Collapse
Affiliation(s)
- Nicholas
F. Pompetti
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Kori E. Smyser
- University
of Colorado, Boulder, Colorado 80401, United States
| | | | - Raythe Owens
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Bimala Lama
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Sandeep Sharma
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Niels H. Damrauer
- University
of Colorado, Boulder, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| |
Collapse
|
31
|
Miao X, Diemer K, Mitrić R. A CASSCF/MRCI trajectory surface hopping simulation of the photochemical dynamics and the gas phase ultrafast electron diffraction patterns of cyclobutanone. J Chem Phys 2024; 160:124309. [PMID: 38526800 DOI: 10.1063/5.0197768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
We present the simulation of the photochemical dynamics of cyclobutanone induced by the excitation of the 3 s Rydberg state. For this purpose, we apply the complete active space self-consistent field method together with the spin-orbit multireference configuration interaction singles treatment, combined with the trajectory surface hopping for the inclusion of nonadiabatic effects. The simulations were performed in the spin-adiabatic representation, including nine electronic states derived from three singlet and two triplet spin-diabatic states. Our simulations reproduce the two previously observed primary dissociation channels: the C2 pathway yielding C2H4 + CH2CO and the C3 pathway producing c-C3H6 + CO. In addition, two secondary products, CH2 + CO from the C2 pathway and C3H6 from the C3 pathway, both of them previously reported, are also observed in our simulation. We determine the ratio of the C3:C2 products to be about 2.8. Our findings show that most of the trajectories reach their electronic ground state within 200 fs, with dissociation events finished after 300 fs. We also identify the minimum energy conical intersections that are responsible for the relaxation and provide an analysis of the photochemical reaction mechanism based on multidimensional scaling. Furthermore, we demonstrate a minimal impact of triplet states on the photodissociation mechanism within the observed timescale. In order to provide a direct link to experiments, we simulate the gas phase ultrafast electron diffraction patterns and connect their features to the underlying structural dynamics.
Collapse
Affiliation(s)
- Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Kira Diemer
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| |
Collapse
|
32
|
Hicguet M, Verrieux L, Mongin O, Roisnel T, Berrée F, Fihey A, Le Guennic B, Trolez Y. Threading a Linear Molecule Through a Macrocycle Thanks to Boron: Optical Properties of the Threaded Species and Synthesis of a Rotaxane. Angew Chem Int Ed Engl 2024; 63:e202318297. [PMID: 38270341 DOI: 10.1002/anie.202318297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Two BODIPYs and two boron β-diketonates were threaded through a macrocycle bearing a 2,2'-biphenol unit, showing thus the ability of boron to act as a gathering atom. The new threaded species were characterized by 1D and 2D NMR spectroscopy as well as by X-ray crystallography for one of them and their properties rationalized with quantum chemistry to unravel the vibronic contributions. The BODIPYs exhibited interesting fluorescence features with quantum yields up to 91 % and enhanced photostability compared to their non-threaded homologues. A rotaxane was synthesized using this threading strategy after stoppering and removing the boron with potassium hydroxide.
Collapse
Affiliation(s)
- Matthieu Hicguet
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Ludmilla Verrieux
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Olivier Mongin
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Thierry Roisnel
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Fabienne Berrée
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Arnaud Fihey
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Yann Trolez
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| |
Collapse
|
33
|
Zhang S, Zhou Z, Qu Z. Diradical-Based Strategy in Designing Narrowband Thermally Activated Delayed Fluorescence Molecules with Tunable Emission Wavelengths. J Phys Chem Lett 2024:2723-2731. [PMID: 38437846 DOI: 10.1021/acs.jpclett.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In the design of thermally activated delayed fluorescence (TADF) materials, narrow-band emission is of particular importance for the development of organic light-emitting diodes (OLEDs). In this work, we proposed a new strategy for designing TADF molecules utilizing degenerate nonbonding (NB) orbitals of diradical parent molecules, and these designed molecules are termed NB-TADF molecules. Based on this strategy, a series of NB-TADF molecules is finely designed and systematically studied by theoretical calculations. Taking advantage of the nonbonding properties, these NB-TADF molecules exhibit desirable narrowband emissions and high quantum yields. More importantly, the emission bands can be easily tuned from blue to near-infrared by changing the conjugate length of the parent group in the NB-TADF molecules. We hope that this new strategy can open a new door for the design of novel TADF materials.
Collapse
Affiliation(s)
- Shaoqin Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhongjun Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
34
|
Sturm F, Philipp LN, Flock M, Fischer I, Mitric R. The Electronic Structures of Azaphenanthrenes and Their Dimers. J Phys Chem A 2024; 128:1250-1259. [PMID: 38345912 DOI: 10.1021/acs.jpca.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Insertion of a nitrogen atom modifies the electronic structures and photochemistry of polycyclic aromatic hydrocarbons by introducing nπ* states into the molecules. To better understand the electronic structures of isolated polycyclic aromatic nitrogen-containing hydrocarbons (PANHs) and their dimers as well as the influence of the position of the nitrogen atom in the molecule, we investigate three different azaphenanthrenes, benzo[f]quinoline, benzo[h]quinoline, and phenanthridine, in a joint experimental and computational study. Experimentally, resonance-enhanced multiphoton ionization (REMPI) spectroscopy is applied to characterize the excited electronic states. The REMPI spectra of the azaphenanthrene monomers have a rather similar appearance, with origins between 3.645 and 3.670 eV for the 1ππ* ← S0 transition. In contrast to the phenanthrene parent, 2ππ* ← S0 is broad and unstructured even at the band origin. The experiments are accompanied by density functional theory computation, and vibrationally resolved spectra are simulated using a time-independent approach. The differences between phenanthrene and the azaphenanthrenes are assigned to perturbations due to the low-lying 1(nπ*) state, which accelerates nonradiative deactivation. For the dimers, it is found that two π-stacked isomers with two electronic transitions each contribute to the electronic spectrum, leading to overlapping bands that are difficult to assign.
Collapse
Affiliation(s)
- F Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - L N Philipp
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - M Flock
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - I Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - R Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| |
Collapse
|
35
|
Karak P, Moitra T, Banerjee A, Ruud K, Chakrabarti S. Accidental triplet harvesting in donor-acceptor dyads with low spin-orbit coupling. Phys Chem Chem Phys 2024; 26:5344-5355. [PMID: 38268441 DOI: 10.1039/d3cp04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present an accidental mechanism for efficient intersystem crossing (ISC) between singlet and triplet states with low spin-orbit coupling (SOC) in molecules having donor-acceptor (D-A) moieties separated by a Sigma bond. Our study shows that SOC between the lowest singlet excited state and the higher-lying triplet states, together with nuclear motion-driven coupling of this triplet state with lower-lying triplet states during the free rotation about a Sigma bond, is one of the possible ways to achieve the experimentally observed ISC rate for a class of D-A type photoredox catalysts. This mechanism is found to be the dominant contributor to the ISC process with the corresponding rate reaching a maximum at a dihedral angle in the range of 72°-78° between the D-A moieties of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine and other molecules included in the study. We have further demonstrated that the same mechanism is operative in a specific spirobis[anthracene]dione molecule, where the D and A moieties are interlocked near to the optimal dihedral angle, indicating the plausible effectiveness of the proposed mechanism. The present finding is expected to have implications in strategies for the synthesis of new generations of triplet-harvesting organic molecules.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| | - Torsha Moitra
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Ambar Banerjee
- Department of Physics and Astronomy, X-ray Photon Science, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
- Norwegian Defence Research Establishment, P.O.Box 25, 2027 Kjeller, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| |
Collapse
|
36
|
Valiev RR, Merzlikin BS, Nasibullin RT, Cherepanov VN, Sundholm D, Kurtén T. Intramolecular rate-constant calculations based on the correlation function using temperature dependent quantum Green's functions. Phys Chem Chem Phys 2024; 26:4151-4158. [PMID: 38230411 DOI: 10.1039/d3cp05205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A theoretical method for calculating rate constants for internal conversion (IC), intersystem crossing (ISC) and radiative (R) electronic transitions is presented. The employed method uses temperature-dependent quantum Green's functions, which give the opportunity to consider almost any nth-order polynomial perturbation operator and the influence of external electromagnetic fields on the rate constants. The rate constants of the IC, ISC and R processes are calculated for two important indocyanine molecules namely indocyanine green (ICG) and heptamethine cyanine (IR808) at the Franck-Condon level using the temperature-dependent quantum Green's function approach. Calculations at the time-dependent density functional theory level with the MN15 functional show that ICG and IR808 have only one triplet state below the S1 state. The main deactivation channel of the S1 state is the IC process with a large (kIC(S1 → S0)) rate constant of ∼109-1011 s-1. The estimated quantum yield of fluorescence (φfl) is ∼0.001-0.24 for the two studied molecules, which agrees rather well with experimental values. Thus, the present approach enables calculations of the three kinds of rate constants and the quantum yield of fluorescence using the same computational methodology.
Collapse
Affiliation(s)
- R R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - B S Merzlikin
- Tomsk State University, 36 Lenin Avenue, Tomsk, Russia
- Department of Mathematics and Mathematical Physics, Tomsk Polytechnic University, 634050, Tomsk, Russia
| | | | | | - D Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - T Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| |
Collapse
|
37
|
Veys K, Bousquet MHE, Jacquemin D, Escudero D. Modeling the Fluorescence Quantum Yields of Aromatic Compounds: Benchmarking the Machinery to Compute Intersystem Crossing Rates. J Chem Theory Comput 2023; 19:9344-9357. [PMID: 38079612 DOI: 10.1021/acs.jctc.3c00931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The from-first-principles calculation of fluorescence quantum yields (FQYs) and lifetimes of organic dyes remains very challenging. In this article, we extensively test the machinery to calculate FQYs. Specifically, we perform an extensive analysis on the parameters influencing the intersystem crossing (ISC), internal conversion (IC), and fluorescence rate constants calculations. The impact of (i) the electronic structure (chosen exchange-correlation functional and spin-orbit Hamiltonian), (ii) the vibronic parameters (coordinate system, broadening function, and dipole expansion), and (iii) the excited-state kinetic models are systematically assessed for a series of seven rigid aromatic molecules. Our studies provide more insights into the choice of parameters and the expected accuracy for the computational protocols aiming to deliver FQY values. Some challenges are highlighted, such as, on the one hand, the difficulty to benchmark against the experimental nonradiative rate constants, for which the separation between the IC and ISC contributions is often not provided in the literature and, on the other hand, the need to go beyond the harmonic approximation for the calculation of the IC rates.
Collapse
Affiliation(s)
- Koen Veys
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | | | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | | |
Collapse
|
38
|
Wenzel M, Mitric R. Prediction of fluorescence quantum yields using the extended thawed Gaussian approximation. J Chem Phys 2023; 159:234113. [PMID: 38108487 DOI: 10.1063/5.0178106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023] Open
Abstract
Spontaneous emission and internal conversion rates are calculated within harmonic approximations and compared to the results obtained within the semi-classical extended thawed Gaussian approximation (ETGA). This is the first application of the ETGA in the calculation of internal conversion and emission rates for real molecular systems, namely, formaldehyde, fluorobenzene, azulene, and a dicyano-squaraine dye. The viability of the models as black-box tools for prediction of spontaneous emission and internal conversion rates is assessed. All calculations were done using a consistent protocol in order to investigate how different methods perform without previous experimental knowledge using density functional theory (DFT) and time-dependent DFT (TD-DFT) with B3LYP, PBE0, ωB97XD, and CAM-B3LYP functionals. Contrasting the results with experimental data shows that there are further improvements required before theoretical predictions of emission and internal conversion rates can be used as reliable indicators for the photo-luminescence properties of molecules. We find that the ETGA performs rather similar to the vertical harmonical model. Including anharmonicities in the calculation of internal conversion rates has a moderate effect on the quantitative results in the studied systems. The emission rates are fairly stable with respect to computational parameters, but the internal conversion rate reveals itself to be highly dependent on the choice of the spectral line shape function, particularly the width of the Lorentzian function, associated with homogeneous broadening.
Collapse
Affiliation(s)
- Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer Str. 42, 97074 Würzburg, Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
39
|
do Casal MT, Veys K, Bousquet MHE, Escudero D, Jacquemin D. First-Principles Calculations of Excited-State Decay Rate Constants in Organic Fluorophores. J Phys Chem A 2023; 127:10033-10053. [PMID: 37988002 DOI: 10.1021/acs.jpca.3c06191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this Perspective, we discuss recent advances made to evaluate from first-principles the excited-state decay rate constants of organic fluorophores, focusing on the so-called static strategy. In this strategy, one essentially takes advantage of Fermi's golden rule (FGR) to evaluate rate constants at key points of the potential energy surfaces, a procedure that can be refined in a variety of ways. In this way, the radiative rate constant can be straightforwardly obtained by integrating the fluorescence line shape, itself determined from vibronic calculations. Likewise, FGR allows for a consistent calculation of the internal conversion (related to the non-adiabatic couplings) in the weak-coupling regime and intersystem crossing rates, therefore giving access to estimates of the emission yields when no complex photophysical phenomenon is at play. Beyond outlining the underlying theories, we summarize here the results of benchmarks performed for various types of rates, highlighting that both the quality of the vibronic calculations and the accuracy of the relative energies are crucial to reaching semiquantitative estimates. Finally, we illustrate the successes and challenges in determining the fluorescence quantum yields using a series of organic fluorophores.
Collapse
Affiliation(s)
- Mariana T do Casal
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Koen Veys
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | | | - Daniel Escudero
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), FR-75005 Paris, France
| |
Collapse
|
40
|
Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Gold-Catalyzed 1,2-Aryl Shift and Double Alkyne Benzannulation. Angew Chem Int Ed Engl 2023; 62:e202311123. [PMID: 37823245 DOI: 10.1002/anie.202311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
41
|
Inai N, Yamaguchi S, Yanai T. Theoretical Insight into the Effect of Phosphorus Oxygenation on Nonradiative Decays: Comparative Analysis of P-Bridged Stilbene Analogs. ACS PHYSICAL CHEMISTRY AU 2023; 3:540-552. [PMID: 38034034 PMCID: PMC10683489 DOI: 10.1021/acsphyschemau.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Incorporation of the phosphorus element into a π-conjugated skeleton offers valuable prospects for adjusting the electronic structure of the resulting functional π-electron systems. Trivalent phosphorus has the potential to decrease the LUMO level through σ*-π* interaction, which is further enhanced by its oxygenation to the pentavalent P center. This study shows that utilizing our computational analysis to examine excited-state dynamics based on radiative/nonradiative rate constants and fluorescence quantum yield (ΦF) is effective for analyzing the photophysical properties of P-containing organic dyes. We theoretically investigate how the trivalent phosphanyl group and pentavalent phosphine oxide moieties affect radiative and nonradiative decay processes. We evaluate four variations of P-bridged stilbene analogs. Our analysis reveals that the primary decay pathway for photoexcited bis-phosphanyl-bridged stilbene is the intersystem crossing (ISC) to the triplet state and nonradiative. The oxidation of the phosphine moiety, however, suppresses the ISC due to the relative destabilization of the triplet states. The calculated rate constants match an increase in experimental ΦF from 0.07 to 0.98, as simulated from 0.23 to 0.94. The reduced HOMO-LUMO gap supports a red shift in the fluorescence spectra relative to the phosphine analog. The thiophene-fused variant with the nonoxidized trivalent P center exhibits intense emission with a high ΦF, 0.95. Our prediction indicates that the ISC transfer is obstructed owing to the relatively destabilized triplet state induced by the thiophene substitution. Conversely, the thiophene-fused analog with the phosphine oxide moieties triggers a high-rate internal conversion mediated by conical intersection, leading to a decreased ΦF.
Collapse
Affiliation(s)
- Naoto Inai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
42
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
43
|
Fu L, Huang H, Zuo Z, Peng Y. A Single Organic Fluorescent Probe for the Discrimination of Dual Spontaneous ROS in Living Organisms: Theoretical Approach. Molecules 2023; 28:6983. [PMID: 37836826 PMCID: PMC10574373 DOI: 10.3390/molecules28196983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Single-organic-molecule fluorescent probes with double-lock or even multi-lock response modes have attracted the attention of a wide range of researchers. The number of corresponding reports has rapidly increased in recent years. The effective application of the multi-lock response mode single-molecule fluorescent probe has improved the comprehensive understanding of the related targets' functions or influences in pathologic processes. Building a highly efficient functional single-molecule fluorescent probe would benefit the diagnosis and treatment of corresponding diseases. Here, we conducted a theoretical analysis of the synthesizing and sensing mechanism of this kind of functional single-molecule fluorescent probe, thereby guiding the design and building of new efficient probes. In this work, we discuss in detail the electronic structure, electron excitation, and fluorescent character of a recently developed single-molecule fluorescent probe, which could achieve the discrimination and profiling of spontaneous reactive oxygen species (ROS, •OH, and HClO) simultaneously. The theoretical results provide insights that will help develop new tools for fluorescent diagnosis in biological and medical fields.
Collapse
Affiliation(s)
| | | | | | - Yongjin Peng
- Modern Industry School of Health Management, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
44
|
Aarabi M, Aranda D, Gholami S, Meena SK, Lerouge F, Bretonniere Y, Gürol I, Baldeck P, Parola S, Dumoulin F, Cerezo J, Garavelli M, Santoro F, Rivalta I. Quantum-Classical Protocol for Efficient Characterization of Absorption Lineshape and Fluorescence Quenching upon Aggregation: The Case of Zinc Phthalocyanine Dyes. J Chem Theory Comput 2023; 19:5938-5957. [PMID: 37641958 PMCID: PMC10500990 DOI: 10.1021/acs.jctc.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/31/2023]
Abstract
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Daniel Aranda
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático
J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Samira Gholami
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Santosh Kumar Meena
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Frederic Lerouge
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Yann Bretonniere
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Ilke Gürol
- TÜBITAK
Marmara Research Center, Materials Technologies, Gebze, 41470 Kocaeli, Türkiye
| | - Patrice Baldeck
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Stephane Parola
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Fabienne Dumoulin
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Javier Cerezo
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Departamento
de Química and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| |
Collapse
|
45
|
Ramírez-Barroso S, Romeo-Gella F, Fernández-García JM, Feng S, Martínez-Fernández L, García-Fresnadillo D, Corral I, Martín N, Wannemacher R. Curved Nanographenes: Multiple Emission, Thermally Activated Delayed Fluorescence, and Non-Radiative Decay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212064. [PMID: 37094332 DOI: 10.1002/adma.202212064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The intriguing and rich photophysical properties of three curved nanographenes (CNG 6, 7, and 8) are investigated by time-resolved and temperature-dependent photoluminescence (PL) spectroscopy. CNG 7 and 8 exhibit dual fluorescence, as well as dual phosphorescence at low temperature in the main PL bands. In addition, hot bands are detected in fluorescence as well as phosphorescence, and, in the narrow temperature range of 100-140 K, thermally activated delayed fluorescence (TADF) with lifetimes on the millisecond time-scale is observed. These findings are rationalized by quantum-chemical simulations, which predict a single minimum of the S1 potential of CNG 6, but two S1 minima for CNG 7 and CNG 8, with considerable geometric reorganization between them, in agreement with the experimental findings. Additionally, a higher-lying S2 minimum close to S1 is optimized for the three CNG, from where emission is also possible due to thermal activation and, hence, non-Kasha behavior. The presence of higher-lying dark triplet states close to the S1 minima provides mechanistic evidence for the TADF phenomena observed. Non-radiative decay of the T1 state appears to be thermally activated with activation energies of roughly 100 meV and leads to disappearance of phosphorescence and TADF at T > 140 K.
Collapse
Affiliation(s)
- Sergio Ramírez-Barroso
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | | | - Jesús M Fernández-García
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Siyang Feng
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | - Lara Martínez-Fernández
- Department of Chemistry, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - David García-Fresnadillo
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Inés Corral
- Department of Chemistry, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | | |
Collapse
|
46
|
Bousquet MHE, Papineau TV, Veys K, Escudero D, Jacquemin D. Extensive Analysis of the Parameters Influencing Radiative Rates Obtained through Vibronic Calculations. J Chem Theory Comput 2023; 19:5525-5547. [PMID: 37494031 DOI: 10.1021/acs.jctc.3c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Defining a theoretical model systematically delivering accurate ab initio predictions of the fluorescence quantum yields of organic dyes is highly desirable for designing improved fluorophores in a systematic rather than trial-and-error way. To this end, the first required step is to obtain reliable radiative rates (kr), as low kr typically precludes effective emission. In the present contribution, using a series of 10 substituted phenyls with known experimental kr, we analyze the impact of the computational protocol on the kr determined through the thermal vibration correlation function (TVCF) approach on the basis of time-dependent density functional theory (TD-DFT) calculations of the energies, structures, and vibrational parameters. Both the electronic structure (selected exchange-correlation functional, application or not of the Tamm-Dancoff approximation) and the vibronic parameters (line-shape formalism, coordinate system, potential energy surface model, and dipole expansion) are tackled. Considering all possible combinations yields more than 3500 cases, allowing to extract statistically-relevant information regarding the impact of each computational parameter on the magnitude of the estimated kr. It turns out that the selected vibronic model can have a significant impact on the computed kr, especially the potential energy surface model. This effect is of the same order of magnitude as the difference noted between B3LYP and CAM-B3LYP estimates. For the treated compounds, all evaluated functionals do deliver reasonable trends, fitting the experimental values.
Collapse
Affiliation(s)
| | | | - Koen Veys
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | | | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
47
|
Hernández F, Cox JM, Li J, Crespo-Otero R, Lopez SA. Multiconfigurational Calculations and Photodynamics Describe Norbornadiene Photochemistry. J Org Chem 2023; 88:5311-5320. [PMID: 37022327 PMCID: PMC10629221 DOI: 10.1021/acs.joc.2c02758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 04/07/2023]
Abstract
Storing solar energy is a vital component of using renewable energy sources to meet the growing demands of the global energy economy. Molecular solar thermal (MOST) energy storage is a promising means to store solar energy with on-demand energy release. The light-induced isomerization reaction of norbornadiene (NBD) to quadricyclane (QC) is of great interest because of the generally high energy storage density (0.97 MJ kg-1) and long thermal reversion lifetime (t1/2,300K = 8346 years). However, the mechanistic details of the ultrafast excited-state [2 + 2]-cycloaddition are largely unknown due to the limitations of experimental techniques in resolving accurate excited-state molecular structures. We now present a full computational study on the excited-state deactivation mechanism of NBD and its dimethyl dicyano derivative (DMDCNBD) in the gas phase. Our multiconfigurational calculations and nonadiabatic molecular dynamics simulations have enumerated the possible pathways with 557 S2 trajectories of NBD for 500 fs and 492 S1 trajectories of DMDCNBD for 800 fs. The simulations predicted the S2 and S1 lifetimes of NBD (62 and 221 fs, respectively) and the S1 lifetime of DMDCNBD (190 fs). The predicted quantum yields of QC and DCQC are 10 and 43%, respectively. Our simulations also show the mechanisms of forming other possible reaction products and their quantum yields.
Collapse
Affiliation(s)
- Federico
J. Hernández
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jordan M. Cox
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jingbai Li
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People’s
Republic of China
| | - Rachel Crespo-Otero
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Steven A. Lopez
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
48
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
49
|
Li J, Li X, Wang G, Wang X, Wu M, Liu J, Zhang K. A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system. Nat Commun 2023; 14:1987. [PMID: 37031245 PMCID: PMC10082826 DOI: 10.1038/s41467-023-37662-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
It is common sense that emission maxima of phosphorescence spectra (λP) are longer than those of fluorescence spectra (λF). Here we report a serendipitous finding of up-converted room-temperature phosphorescence (RTP) with λP < λF and phosphorescence lifetime > 0.1 s upon doping benzophenone-containing difluoroboron β-diketonate (BPBF2) into phenyl benzoate matrices. The up-converted RTP is originated from BPBF2's Tn (n ≥ 2) states which show typical 3n-π* characters from benzophenone moieties. Detailed studies reveal that, upon intersystem crossing from BPBF2's S1 states of charge transfer characters, the resultant T1 and Tn states build T1-to-Tn equilibrium. Because of their 3n-π* characters, the Tn states possess large phosphorescence rates that can strongly compete RTP(T1) to directly emit RTP(Tn) which violates Kasha's rule. The direct observation of up-converted RTP provides deep understanding of triplet excited state dynamics and opens an intriguing pathway to devise visible-light-excitable deep-blue afterglow emitters, as well as stimuli-responsive afterglow materials.
Collapse
Affiliation(s)
- Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Jiahui Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Petrusevich EF, Bousquet MHE, Ośmiałowski B, Jacquemin D, Luis JM, Zaleśny R. Cost-Effective Simulations of Vibrationally-Resolved Absorption Spectra of Fluorophores with Machine-Learning-Based Inhomogeneous Broadening. J Chem Theory Comput 2023; 19:2304-2315. [PMID: 37096370 PMCID: PMC10134414 DOI: 10.1021/acs.jctc.2c01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The results of electronic and vibrational structure simulations are an invaluable support for interpreting experimental absorption/emission spectra, which stimulates the development of reliable and cost-effective computational protocols. In this work, we contribute to these efforts and propose an efficient first-principle protocol for simulating vibrationally-resolved absorption spectra, including nonempirical estimations of the inhomogeneous broadening. To this end, we analyze three key aspects: (i) a metric-based selection of density functional approximation (DFA) so to benefit from the computational efficiency of time-dependent density function theory (TD-DFT) while safeguarding the accuracy of the vibrationally-resolved spectra, (ii) an assessment of two vibrational structure schemes (vertical gradient and adiabatic Hessian) to compute the Franck-Condon factors, and (iii) the use of machine learning to speed up nonempirical estimations of the inhomogeneous broadening. In more detail, we predict the absorption band shapes for a set of 20 medium-sized fluorescent dyes, focusing on the bright ππ★ S0 → S1 transition and using experimental results as references. We demonstrate that, for the studied 20-dye set which includes structures with large structural variability, the preselection of DFAs based on an easily accessible metric ensures accurate band shapes with respect to the reference approach and that range-separated functionals show the best performance when combined with the vertical gradient model. As far as band widths are concerned, we propose a new machine-learning-based approach for determining the inhomogeneous broadening induced by the solvent microenvironment. This approach is shown to be very robust offering inhomogeneous broadenings with errors as small as 2 cm-1 with respect to genuine electronic-structure calculations, with a total CPU time reduced by 98%.
Collapse
Affiliation(s)
- Elizaveta F. Petrusevich
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | | | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, PL-87-100 Toruń, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Josep M. Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|