1
|
Hansra GK, Jayasena T, Hosoki S, Poljak A, Lam BCP, Rust R, Sagare A, Zlokovic B, Thalamuthu A, Sachdev PS. Fluid biomarkers of the neurovascular unit in cerebrovascular disease and vascular cognitive disorders: A systematic review and meta-analysis. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100216. [PMID: 38510579 PMCID: PMC10951911 DOI: 10.1016/j.cccb.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Background The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neurodegenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD). Methods A literature search was conducted in PubMed, EMBASE, Scopus and PsychINFO to identify blood biomarkers related to dysfunction of the NVU in disorders with vascular pathologies published until 20 November 2023. Studies that assayed one or more specific markers in human serum or plasma were included. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Effects were pooled and methodological heterogeneity examined using the random effects model. Results A total of 112 studies were included in this review. Where study numbers allowed, biomarkers were analysed using random effect meta-analysis for VCD (1 biomarker; 5 studies) and cerebrovascular disorders, including stroke and SVD (9 biomarkers; 29 studies) while all remaining biomarkers (n = 17 biomarkers; 78 studies) were examined through qualitative analysis. Results of the meta-analysis revealed that cerebrospinal fluid/serum albumin quotient (Q-Alb) reliably differentiates VCD patients from healthy controls (MD = 2.77; 95 % CI = 1.97-3.57; p < 0.0001) while commonly measured biomarkers of endothelial dysfunction (VEGF, VCAM-1, ICAM-1, vWF and E-selectin) and neuronal injury (NfL) were significantly elevated in vascular pathologies. A qualitative assessment of non-meta-analysed biomarkers revealed NSE, NfL, vWF, ICAM-1, VCAM-1, lipocalin-2, MMP-2 and MMP-9 levels to be upregulated in VCD, although these findings were not consistently replicated. Conclusions This review identifies several promising biomarkers of NVU dysfunction which require further validation. A panel of biomarkers representing multiple pathophysiological pathways may offer greater discriminative power in distinguishing possible disease mechanisms of VCD.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, National Cerebral and Cardiovascular Centre, Suita, Japan
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW, Australia
| | - Ben Chun Pan Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Su WS, Wu CH, Song WS, Chen SF, Yang FY. Low-intensity pulsed ultrasound ameliorates glia-mediated inflammation and neuronal damage in experimental intracerebral hemorrhage conditions. J Transl Med 2023; 21:565. [PMID: 37620888 PMCID: PMC10464049 DOI: 10.1186/s12967-023-04377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a condition associated with high morbidity and mortality, and glia-mediated inflammation is a major contributor to neurological deficits. However, there is currently no proven effective treatment for clinical ICH. Recently, low-intensity pulsed ultrasound (LIPUS), a non-invasive method, has shown potential for neuroprotection in neurodegenerative diseases. This study aimed to investigate the neuroprotective effects and potential mechanisms of LIPUS on glia-mediated inflammation in ICH. METHODS This study used 289 mice to investigate the effects of LIPUS on ICH. ICH was induced by injecting bacterial collagenase (type VII-S; 0.0375 U) into the striatum of the mice. LIPUS was applied noninvasively for 3 days, including a 2-h-delayed intervention to mimic clinical usage. The study evaluated neurological function, histology, brain water content, hemoglobin content, MRI, and protein expression of neurotrophic factors, inflammatory molecules, and apoptosis. In vitro studies investigated glia-mediated inflammation by adding thrombin (10 U/mL) or conditioned media to primary and cell line cultures. The PI3K inhibitor LY294002 was used to confirm the effects of PI3K/Akt signaling after LIPUS treatment. RESULTS LIPUS treatment improved neurological deficits and reduced tissue loss, edema, and neurodegeneration after ICH. The protective effects of LIPUS resulted from decreased glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling, which reduced cytokine expression and attenuated microglial activation-induced neuronal damage in vitro. CONCLUSIONS LIPUS treatment improved neurological outcomes and reduced glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling after ICH. LIPUS may provide a non-invasive potential management strategy for ICH.
Collapse
Affiliation(s)
- Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan
| | - Chun-Hu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Shin Song
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, No. 45, Cheng Hsin Street, Taipei, 11221, Taiwan.
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.
| |
Collapse
|
3
|
Laso-García F, Casado-Fernández L, Piniella D, Gómez-de Frutos MC, Arizaga-Echebarria JK, Pérez-Mato M, Alonso-López E, Otero-Ortega L, Bravo SB, Chantada-Vázquez MDP, Avendaño-Ortiz J, López-Collazo E, Lumbreras-Herrera MI, Gámez-Pozo A, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández M, Alonso de Leciñana M. Circulating extracellular vesicles promote recovery in a preclinical model of intracerebral hemorrhage. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:247-262. [PMID: 37090418 PMCID: PMC10113711 DOI: 10.1016/j.omtn.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.
Collapse
Affiliation(s)
- Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Laura Casado-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Universidad Autónoma de Madrid and IdiPAZ Health Research Institute, La Paz University Hospital, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Jone Karmele Arizaga-Echebarria
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - José Avendaño-Ortiz
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - Eduardo López-Collazo
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - María Isabel Lumbreras-Herrera
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Gutiérrez-Fernández, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Alonso de Leciñana, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| |
Collapse
|
4
|
Simani L, Ramezani M, Ahmadi N, Abazari F, Raminfard S, Shojaei M, Zoghi A, Karimialavijeh E, Hossein Aghamiri S, Pakdaman H. The effect of atorvastatin on the blood-brain barrier biomarkers in acute intracerebral hemorrhage, a pilot clinical trial. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Serrano VB, Montoya JL, Campbell LM, Sundermann EE, Iudicello J, Letendre S, Heaton RK, Moore DJ. The relationship between vascular endothelial growth factor (VEGF) and amnestic mild cognitive impairment among older adults living with HIV. J Neurovirol 2021; 27:885-894. [PMID: 34735690 PMCID: PMC8901513 DOI: 10.1007/s13365-021-01001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 10/27/2022]
Abstract
Older people with HIV (PWH) experience increased risk of age-related neurodegenerative disorders and cognitive decline, such as amnestic mild cognitive impairment (aMCI). The objective of this study was to examine the relationship between aMCI and plasma VEGF biomarkers among older PWH. Data were collected at a university-based research center from 2011 to 2013. Participants were 67 antiretroviral therapy-treated, virally suppressed PWH. Participants completed comprehensive neurobehavioral and neuromedical evaluations. aMCI status was determined using adapted Jak/Bondi criteria, classifying participants as aMCI + if their performance was > 1 SD below the normative mean on at least two of four memory assessments. VEGF family plasma biomarkers (i.e., VEGF, VEGF-C, VEGF-D, and PIGF) were measured by immunoassay. Logistic regression models were conducted to determine whether VEGF biomarkers were associated with aMCI status. Participants were mostly non-Hispanic white (79%) men (85%) with a mean age of 57.7 years. Eighteen (26.9%) participants met criteria for aMCI. Among potential covariates, only antidepressant drug use differed by aMCI status, and was included as a covariate. VEGF-D was significantly lower in the aMCI + group compared to the aMCI - group. No other VEGF levels (VEGF, VEGF-C, PIGF) differed by aMCI classification (ps > .05). In a sample of antiretroviral therapy-treated, virally suppressed PWH, lower levels of VEGF-D were associated with aMCI status. Longitudinal analyses in a larger and more diverse sample are needed to support VEGF-D as a putative biological marker of aMCI in HIV.
Collapse
Affiliation(s)
- Vanessa B Serrano
- Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, La Jolla, CA, USA
| | - Jessica L Montoya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Laura M Campbell
- Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, La Jolla, CA, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Iudicello
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Troiani Z, Ascanio L, Rossitto CP, Ali M, Mohammadi N, Majidi S, Mocco J, Kellner CP. Prognostic Utility of Serum Biomarkers in Intracerebral Hemorrhage: A Systematic Review. Neurorehabil Neural Repair 2021; 35:946-959. [PMID: 34541960 DOI: 10.1177/15459683211041314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. Intracerebral hemorrhage (ICH) accounts for 10-20% of all strokes and is associated with high morbidity and mortality. Recent studies have identified serum biomarkers as a means to improve outcome prognostication in poor grade ICH patients. Poor prognosis of ICH patients and complex pathophysiology of the disease necessitate prognostic serum biomarkers to help guide treatment recommendations. Objective. The objective is to systematically review all biomarkers used to predict long-term functional outcome in patients with spontaneous intracerebral hemorrhage. Results. We identified 36 studies investigating the predictive utility of 50 discrete biomarkers. Data from 4865 ICH patients were reviewed. Inflammatory biomarkers (11/50) were most often studied, followed by oxidative (8/50), then neuron and astrocyte-specific (7/50). S100 calcium binding protein B, white blood cell count, and copeptin were the most often studied individual biomarkers. The prognostic utility of 23 biomarkers was analyzed using receiver operating characteristic curves. Area under the curve (AUC) values for all available biomarkers except neutrophil/lymphocyte ratio were acceptable. Twenty of the 23 biomarkers were characterized by at least one excellent AUC value. Vascular endothelial growth factor, glial fibrillary astrocyte protein, and S100 calcium binding protein B were characterized by outstanding AUC. Conclusions. We identified the inflammatory and neuron and astrocyte-specific biomarker categories as having the greatest number of significant individual biomarker predictors of long-term outcome. Further investigation utilizing cross-validation of prediction models in a second independent group and blinded assessment of outcomes for the predictive utility of biomarkers in patients with ICH is warranted.
Collapse
Affiliation(s)
- Zachary Troiani
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Luis Ascanio
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Christina P Rossitto
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Muhammad Ali
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Nicki Mohammadi
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Shahram Majidi
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - J Mocco
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, 5925Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| |
Collapse
|
7
|
Zhang Y, Long H, Wang S, Xiao W, Xiong M, Liu J, Chen L, Chen R, Wei X, Shu Y, Zeng Y, Zhang L. Genome-Wide DNA Methylation Pattern in Whole Blood Associated With Primary Intracerebral Hemorrhage. Front Immunol 2021; 12:702244. [PMID: 34484198 PMCID: PMC8414634 DOI: 10.3389/fimmu.2021.702244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Primary intracerebral hemorrhage (ICH) is a significant cause of morbidity and mortality throughout the world. ICH is a multifactorial disease that emerges from interactions among multiple genetic and environmental factors. DNA methylation plays an important role in the etiology of complex traits and diseases. We used the Illumina Infinium Human Methylation 850k BeadChip to detect changes in DNA methylation in peripheral blood samples from patients with ICH and healthy controls to explore DNA methylation patterns in ICH. Here, we compared genomic DNA methylation patterns in whole blood from ICH patients (n = 30) and controls (n = 34). The ICH and control groups showed significantly different DNA methylation patterns at 1530 sites (p-value < 5.92E-08), with 1377 hypermethylated sites and 153 hypomethylated sites in ICH patients compared to the methylation status in healthy controls. A total of 371 hypermethylated sites and 35 hypomethylated sites were in promoters, while 738 hypermethylated sites and 67 hypomethylated sites were in coding regions. Furthermore, the differentially methylated genes between ICH patients and controls were largely related to inflammatory pathways. Abnormalities in the DNA methylation pattern identified in the peripheral blood of ICH patients may play an important role in the development of ICH and warranted further investigation.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Meishan Xiong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianyi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruijuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xueli Wei
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Expression and methylation status of vascular endothelial growth factor and thrombospondin-1 genes in congenital factor XIII-deficient patients with intracranial hemorrhage. Blood Coagul Fibrinolysis 2021; 32:317-322. [PMID: 34102652 DOI: 10.1097/mbc.0000000000001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital factor XIII (FXIII) deficiency is one of the rarest bleeding disorders, with an incidence of one per 2 million persons. Intracranial hemorrhage (ICH), a major cause of mortality in FXIII deficiency, is reported to be associated with vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1). Therefore, we investigated the association of VEGF and TSP-1 expression and methylation patterns with ICH in congenital FXIII deficiency patients. This study was conducted on 40 participants with FXIII, 20 of whom experienced ICH (cases), and 20 who did not (controls). Methylation pattern, gene expression, and plasma protein level were assessed using bisulfite sequencing PCR, quantitative real-time PCR, and ELISA. We found a partially methylated pattern for both VEGF and TSP-1 (P > 0.05). VEGF mRNA levels of the case group were significantly higher than those of the control group (P < 0.05), whereas TSP-1 mRNA levels did not show significant upregulation (P > 0.05). Plasma VEGF and TSP-1 concentrations in the case group were higher, but not statistically significant (P > 0.05). Our findings showed no obvious correlation between VEGF or TSP-1 methylation patterns and expression, suggesting that their expression in FXIII deficiency may not solely be controlled by gene methylation.
Collapse
|
9
|
Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Transl Stroke Res 2020; 12:754-777. [PMID: 33206327 PMCID: PMC8421315 DOI: 10.1007/s12975-020-00869-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.
Collapse
|