1
|
Tang X, Feng J, Peng Z, Hou X, Zuo W, Chen L, Wang L, Zhu L. Different properties between spontaneous and volume-activated chloride currents in human nasopharyngeal carcinoma and its normal counterpart cells. Cell Biochem Funct 2019; 37:486-493. [PMID: 31368181 DOI: 10.1002/cbf.3419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Although the spontaneous chloride currents (SCC) have been well studied in the normal cells, its properties and roles in neoplasms cells are still unknown. Here, we found that the SCC was manifested in the poorly differentiated human nasopharyngeal carcinoma CNE-2Z cells, with some differences such as lower occurrence and bigger current density than those of the volume-activated chloride currents (VACC). NPPB, a chloride channel blocker, inhibited the SCC much stronger than the VACC. Down-regulation of chloride channel -3 (ClC-3), a volume and mechanically dependent ion channel, could significantly decrease the VACC, but not in SCC. The occurrence, latency, and mean density of the SCC were much lower in the normal nasopharyngeal NP69-SV40T cells than those in CNE-2Z cells. Our results demonstrated that the spontaneous electrical reactivity of neoplasm cells is higher than that of normal cells, which probably relates to their high physiological activity of neoplasm cells. SIGNIFICANCE OF THE STUDY: Spontaneous chloride currents (SCC) are well known in excitable tissues and regulate a variety of physiological and pathophysiological processes. During our researching on the volume-activated chloride currents (VACC) in human nasopharyngeal carcinoma CNE-2Z cells, SCC could be also observed with different properties from VACC. Meanwhile, the occurrence, latency, and mean density of the SCC were much higher in CNE-2Z cells than those in normal nasopharyngeal NP69-SV40T cells. Our results revealed the expression and characteristics of SCC in carcinoma cells and provided a preliminary experimental basis for further exploring the function of SCC in tumour cell biology.
Collapse
Affiliation(s)
- Xinwei Tang
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Jiezhu Feng
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Zihan Peng
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Li AQ, Sun ZP, Liu X, Yang JS, Jin F, Zhu L, Jia WH, De Vos S, Van Stappen G, Bossier P, Yang WJ. The chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) controls cellular quiescence by hyperpolarizing the cell membrane during diapause in the crustacean Artemia. J Biol Chem 2019; 294:6598-6611. [PMID: 30765604 DOI: 10.1074/jbc.ra118.005900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/10/2019] [Indexed: 01/10/2023] Open
Abstract
Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (V mem) and quiescence. We found that V mem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas V mem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high V mem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and V mem in the Artemia model.
Collapse
Affiliation(s)
- An-Qi Li
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhan-Peng Sun
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xu Liu
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Shu Yang
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Jin
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lin Zhu
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen-Huan Jia
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Stephanie De Vos
- the Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, B-9000 Ghent, Belgium, and
| | - Gilbert Van Stappen
- the Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, B-9000 Ghent, Belgium, and
| | - Peter Bossier
- the Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, B-9000 Ghent, Belgium, and
| | - Wei-Jun Yang
- From the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China, .,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
3
|
Involvement of AMP-activated Protein Kinase (AMPK) in Regulation of Cell Membrane Potential in a Gastric Cancer Cell Line. Sci Rep 2018; 8:6028. [PMID: 29662080 PMCID: PMC5902619 DOI: 10.1038/s41598-018-24460-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Membrane potential (Vmem) is a key bioelectric property of non-excitable cells that plays important roles in regulating cell proliferation. However, the regulation of Vmem itself remains largely unexplored. We found that, under nutrient starvation, during which cell division is inhibited, MKN45 gastric cancer cells were in a hyperpolarized state associated with a high intracellular chloride concentration. AMP-activated protein kinase (AMPK) activity increased, and expression of cystic fibrosis transmembrane conductance regulator (CFTR) decreased, in nutrient-starved cells. Furthermore, the increase in intracellular chloride concentration level and Vmem hyperpolarization in nutrient-starved cells was suppressed by inhibition of AMPK activity. Intracellular chloride concentrations and hyperpolarization increased after over-activation of AMPK using the specific activator AICAR or suppression of CFTR activity using specific inhibitor GlyH-101. Under these conditions, proliferation of MKN45 cells was inhibited. These results reveal that AMPK controls the dynamic change in Vmem by regulating CFTR and influencing the intracellular chloride concentration, which in turn influences cell-cycle progression. These findings offer new insights into the mechanisms underlying cell-cycle arrest regulated by AMPK and CFTR.
Collapse
|
4
|
Sun L, Dong Y, Zhao J, Yin Y, Tong B, Zheng Y, Xin H. NPPB modulates apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling. Int J Mol Med 2017; 41:1331-1338. [PMID: 29286070 PMCID: PMC5819927 DOI: 10.3892/ijmm.2017.3323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
When treating glaucoma, excessive scar tissue reactions reduce the postoperative survival rate of the filtering bleb. Accumulating evidence has demonstrated that the proliferation, migration and extracellular matrix (ECM) synthesis of fibroblasts are important molecular mechanisms underlying scar formation. Recent evidence has demonstrated that chloride channels play an important role in controlling cell proliferation, apoptosis, migration and the cell cycle process in several cell types, but the effects of chloride channels on conjunctival fibroblasts have not be studied. The aim of the present study was to investigate the effects of the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) on cell proliferation, apoptosis, migration, cell cycle progression and ECM synthesis in human conjunctival fibroblasts (HConFs), and to further investigate the mechanism of resistance to scar formation following glaucoma filtration surgery. HConFs were exposed to NPPB or lubiprostone. Cell proliferation and viability was evaluated using the Cell Counting Kit-8. Cell migration was measured using Transwell migration and scratch‑wound assays. Flow cytometry was used to study apoptosis and cell cycle progression. Quantitative polymerase chain reaction and western blot analyses were performed to determine mRNA and protein expression levels, respectively. Following NPPB treatment, HConFs exhibited reduced proliferation and migration, along with increased apoptosis. NPPB also inhibited cell cycle progression by arresting cells in the G0̸G1 phase and reducing collagen I and fibronectin expression, as well as the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT). However, lubiprostone treatment exerted the opposite effects on HConFs. Therefore, NPPB treatment inhibited proliferation, migration, cell cycle progression and synthesis of the ECM, while promoting apoptosis in HConFs, by inhibiting the PI3K̸AKT signaling pathway.
Collapse
Affiliation(s)
- Lixia Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yaru Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bainan Tong
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hua Xin
- China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
5
|
Zhao J, Zhong W, Sun L, Yin Y, Zheng Y. Effect of chloride channel activity on retinal pigment cell proliferation and migration. Mol Med Rep 2017; 15:1771-1776. [PMID: 28259964 DOI: 10.3892/mmr.2017.6202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
|
6
|
Cai S, Zhang T, Zhang D, Qiu G, Liu Y. Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol Med Rep 2014; 11:2465-70. [PMID: 25503821 PMCID: PMC4337627 DOI: 10.3892/mmr.2014.3068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/14/2014] [Indexed: 01/23/2023] Open
Abstract
Chemotherapy is the most common therapeutic strategy used to treat osteosarcoma. The present study aimed to investigate the effects of functionally activated chloride channels on cisplatin-induced apoptosis of MG-63 human osteosarcoma cells. An MTT assay and flow cytometry were used to detect proliferation and apoptosis of the cells, respectively. Live cell imaging was used to detect volume changes in response to treatment with cisplatin and/or chloride channel blockers. The effects of these treatments on chloride currents were also assayed using the patch-clamp technique. The results of the present study indicate that chloride channel blockers may suppress cisplatin-induced apoptosis. The MG-63 cells cultured with cisplatin demonstrated an apoptotic volume decrease, as well as suppression of cell proliferation; which were reversed by co-treatment with chloride channel blockers. These results suggest that cisplatin may activate chloride channels, and that channel activation is an early signal in the pathways that lead to cisplatin-induced apoptosis and inhibition of proliferation in MG-63 cells. In conclusion, these results indicate that chloride channels have an important role in cisplatin treatment of osteosarcoma.
Collapse
Affiliation(s)
- Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Tao Zhang
- Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dandan Zhang
- Department of Histology and Embryology, Medical College of Jinan University; Guangzhou, Guangdong 510632, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Yong Liu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| |
Collapse
|
7
|
Zhang H, Zhu L, Zuo W, Luo H, Mao J, Ye D, Li Y, Liu S, Wei Y, Ye W, Chen L, Wang L. The ClC-3 chloride channel protein is a downstream target of cyclin D1 in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2013; 45:672-83. [DOI: 10.1016/j.biocel.2012.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/16/2012] [Indexed: 12/26/2022]
|
8
|
Zhang J, Chan YC, Ho JCY, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 2012; 303:C115-25. [DOI: 10.1152/ajpcell.00326.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K+, Na+, Ca2+, and Cl− was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca2+-activated K+ current (BKCa), delayed rectifier K+ current ( IKDR), inwardly rectifying K+ current ( IKir), Ca2+-activated K+ current ( IKCa), and chloride current ( ICl)] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BKCa, IKDR, IKir, and IKCa) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IKDR with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Jenny Chung-Yee Ho
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| |
Collapse
|
9
|
Shlyonsky V, Ben Soussia I, Naeije R, Mies F. Opposing Effects of Bone Morphogenetic Protein-2 and Endothelin-1 on Lung Fibroblast Chloride Currents. Am J Respir Cell Mol Biol 2011; 45:1154-60. [DOI: 10.1165/rcmb.2010-0443oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
10
|
Effects of ion channels on proliferation in cultured human cardiac fibroblasts. J Mol Cell Cardiol 2011; 51:198-206. [DOI: 10.1016/j.yjmcc.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/24/2011] [Accepted: 05/11/2011] [Indexed: 01/01/2023]
|
11
|
Tang YB, Zhou JG, Guan YY. Volume-regulated chloride channels and cerebral vascular remodelling. Clin Exp Pharmacol Physiol 2010; 37:238-42. [DOI: 10.1111/j.1440-1681.2008.05137.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Abstract
Although most brain cells are postmitotic, small populations of progenitor or stem cells can divide throughout life. These cells are believed to be the most likely source for primary brain malignancies including gliomas. Such tumors share many common features with nonmalignant glial cells but, because of their insidious growth, form cancers that are typically incurable. In studying the growth regulation of these tumors, we recently discovered that glioma cell division is preceded by a cytoplasmic condensation that we called premitotic condensation (PMC). PMC represents an obligatory step in cell replication and is linked to chromatin condensation. If perturbed, the time required to complete a division is significantly prolonged. We now show that PMC is a feature shared more commonly among normal and malignant cells and that the reduction of cell volume is accomplished by Cl(-) efflux through ClC3 Cl(-) channels. Patch-clamp electrophysiology demonstrated a significant upregulation of chloride currents at M phase of the cell cycle. Colocalization studies and coimmunoprecipitation experiments showed the channel on the plasma membrane and at the mitotic spindle. To demonstrate a mechanistic role for ClC3 in PMC, we knocked down ClC3 expression using short hairpin RNA constructs. This resulted in a significant reduction of chloride currents at M phase that was associated with a decrease in the rate of PMC and a similar impairment of DNA condensation. These data suggest that PMC is an integral part of cell division and is dependent on ClC3 channel function.
Collapse
|
13
|
Tao R, Lau CP, Tse HF, Li GR. Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol 2008; 295:C1409-16. [PMID: 18815226 DOI: 10.1152/ajpcell.00268.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine; however, their cellular physiology is not fully understood. The present study aimed at exploring the potential roles of the two dominant functional ion channels, intermediate-conductance Ca(2+)-activated potassium (IK(Ca)) and volume-sensitive chloride (I(Cl.vol)) channels, in regulating proliferation of mouse MSCs. We found that inhibition of IK(Ca) with clotrimazole and I(Cl.vol) with 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) reduced cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific short interference (si)RNAs significantly reduced IK(Ca) or I(Cl.vol) density and channel protein and produced a remarkable suppression of cell proliferation (by 24.4 +/- 9.6% and 29.5 +/- 7.2%, respectively, P < 0.05 vs. controls). Flow cytometry analysis showed that mouse MSCs retained at G(0)/G(1) phase (control: 51.65 +/- 3.43%) by inhibiting IK(Ca) or I(Cl.vol) using clotrimazole (2 microM: 64.45 +/- 2.20%, P < 0.05) or NPPB (200 microM: 82.89 +/- 2.49%, P < 0.05) or the specific siRNAs, meanwhile distribution of cells in S phase was decreased. Western blot analysis revealed a reduced expression of the cell cycle regulatory proteins cyclin D1 and cyclin E. Collectively, our results have demonstrated that IK(Ca) and I(Cl.vol) channels regulate cell cycle progression and proliferation of mouse MSCs by modulating cyclin D1 and cyclin E expression.
Collapse
Affiliation(s)
- Rong Tao
- Dept. of Medicine, L8-01, Laboratory Block, FMB, The Univ. of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR China
| | | | | | | |
Collapse
|
14
|
Hou J, Situ Z, Duan X. ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells. Arch Oral Biol 2008; 53:874-8. [PMID: 18466876 DOI: 10.1016/j.archoralbio.2008.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/12/2008] [Accepted: 03/21/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To detect expression of ClC chloride channel mRNA in tooth germ and odontoblasts, and explore the affect of chloride channel function on cell proliferation and cell cycle. DESIGN We extracted total RNA of tooth germ from newborn C57BL mice and mouse odontoblast-like cells (MDPC-23), then detected mRNA expression of chloride channel genes Clcn1-7 with RT-PCR. We used chloride channel blocker 5-nitro-2-(3- phenylpropylamino)benzoic acid (NPPB) to interfere with chloride channel function of MDPC-23 cells. Cell proliferation rate and cell cycle were detected with MTT assay and flow cytometry, respectively. Student's t-test was used to determine statistical significance between control and treatment groups. RESULTS The mRNA of Clcn1-7 chloride channel genes was expressed in tooth germ of newborn mice. Clcn3, Clcn5 and Clcn7 mRNAs were expressed in MDPC-23 cells. NPPB slowed down the proliferation rate of MDPC-23 cells from day 2 to day 4 (P<0.01), and also changed the proportion of cell cycle phase. Comparing to the control, the proportion of G2/M phase cells reduced from 3.93+/-2.62% to 0.54+/-0.25% (P<0.05). The ratio of G1/G2 increased from 1.86+/-0.01 to 1.95+/-0.02 (P<0.05). CONCLUSIONS There is abundant chloride channel gene expression in tooth germ. Some of these chloride channels may regulate tooth development through effects on cell proliferation and cell cycle signal pathway.
Collapse
Affiliation(s)
- Jin Hou
- Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, Shaanxi 710032, PR China
| | | | | |
Collapse
|
15
|
Tao R, Lau CP, Tse HF, Li GR. Functional ion channels in mouse bone marrow mesenchymal stem cells. Am J Physiol Cell Physiol 2007; 293:C1561-7. [PMID: 17699636 DOI: 10.1152/ajpcell.00240.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current ( IKCa), an inwardly rectifying K+ current ( IKir), and a chloride current ( ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs.
Collapse
Affiliation(s)
- Rong Tao
- Department of Medicine and Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
16
|
Belsey MJ, Davies ARL, Witchel HJ, Kozlowski RZ. Inhibition of ERK and JNK Decreases Both Osmosensitive Taurine Release and Cell Proliferation in Glioma Cells. Neurochem Res 2007; 32:1940-9. [PMID: 17562164 DOI: 10.1007/s11064-007-9389-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Cell swelling is associated with the activation of an increase in the osmosensitive taurine release (OTR) rate, which serves to decrease cell volume as part of a process known as regulatory volume decrease. OTR, which is sensitive to many pharmacological agents including anion channel blockers and signalling pathway modulators, has also been suggested to play a role in cell cycle progression. At non-cytotoxic concentrations, the anion channel blocker NPPB (25 microM), the extra-cellular signal-regulated kinase inhibitor PD98059 (50 microM), and the c-Jun NH2-terminal kinase inhibitor SP 600125 (5 microM) each decreased the OTR rate by > or =50%, decreased cell proliferation, and increased G0/G1 cell cycle arrest.
Collapse
Affiliation(s)
- Mark J Belsey
- Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | |
Collapse
|
17
|
Chen LX, Zhu LY, Jacob TJC, Wang LW. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 2007; 40:253-67. [PMID: 17472731 PMCID: PMC6496325 DOI: 10.1111/j.1365-2184.2007.00432.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/31/2006] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.
Collapse
Affiliation(s)
- L X Chen
- Medical College, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
18
|
Renaudo A, L'Hoste S, Guizouarn H, Borgèse F, Soriani O. Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels. J Biol Chem 2007; 282:2259-67. [PMID: 17121836 DOI: 10.1074/jbc.m607915200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma-1 receptor is an intracellular protein characterized as a tumor biomarker whose function remains mysterious. We demonstrate herein for the first time that highly selective sigma ligands inhibit volume-regulated chloride channels (VRCC) in small cell lung cancer and T-leukemia cells. Sigma ligands and VRCC blockers provoked a cell cycle arrest underlined by p27 accumulation. In stably sigma-1 receptor-transfected HEK cells, the proliferation rate was significantly lowered by sigma ligands when compared with control cells. Sigma ligands produced a strong inhibition of VRCC in HEK-transfected cells but not in control HEK. Surprisingly, the activation rate of VRCC was dramatically delayed in HEK-transfected cells in the absence of ligands, indicating that sigma-1 receptors per se modulate cell regulating volume processes in physiological conditions. Volume measurements in hypotonic conditions revealed indeed that the regulatory volume decrease was delayed in HEK-transfected cells and virtually abolished in the presence of igmesine in both HEK-transfected and T-leukemic cells. Moreover, HEK-transfected cells showed a significant resistance to staurosporine-induced apoptosis volume decrease, indicating that sigma-1 receptors protect cancer cells from apoptosis. Altogether, our results show for the first time that sigma-1 receptors modulate "cell destiny" through VRCC and cell volume regulation.
Collapse
Affiliation(s)
- Adrien Renaudo
- UNSA CNRS UMR 6548, Laboratoire de Physiologie Cellulaire & Moléculaire des Systèmes Intégrés, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
19
|
Bader P, Weingart R. Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels. Pflugers Arch 2006; 452:396-406. [PMID: 16604368 DOI: 10.1007/s00424-006-0046-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/05/2006] [Indexed: 11/26/2022]
Abstract
Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.
Collapse
Affiliation(s)
- Patrick Bader
- Department of Physiology, University of Bern, Bühlplatz 5, CH-3012, Bern, Switzerland
| | | |
Collapse
|
20
|
Jiang B, Hattori N, Liu B, Nakayama Y, Kitagawa K, Sumita K, Inagaki C. Expression and roles of Cl- channel ClC-5 in cell cycles of myeloid cells. Biochem Biophys Res Commun 2004; 317:192-7. [PMID: 15047167 DOI: 10.1016/j.bbrc.2004.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Indexed: 12/20/2022]
Abstract
ClC-5 is a chloride channel known to be expressed in the kidney. We previously reported that ClC-5 mRNA was also strongly expressed in immature human myeloid cell line (HL-60), but weakly expressed in mature neutrophils. To clarify the underlying mechanisms, we examined the relationship between ClC-5 expression and cell cycle. Dimethyl sulfoxide treatment of HL-60 that causes differentiation with G0/G1 cell cycle arrest decreased the expression of ClC-5 mRNA. Cell sorting and synchronization experiments revealed that ClC-5 mRNA expression was high in S and G2/M phases and low in G0/G1 phase. ClC-5 antisense oligonucleotide suppressed proliferation of HL-60 cells with a decrease in ClC-5 protein expression, probably due to G2 arrest. These results suggest that cell cycle-dependent expression of ClC-5 has a role in cell cycle progression in myeloid cells.
Collapse
Affiliation(s)
- Baohong Jiang
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cellular functions of Cl- channels are poorly understood, in contrast to well-established roles of cation channels. Recently, important achievements in Cl- channel research have been sequentially reported, including cloning of many Cl- channel cDNAs, linkage of gene abnormalities to human inherited disorders, analysis of knock-out mouse phenotype, analysis of crystal structure, and regulation by protein-protein interaction. Intracellular membrane Cl- channels are important for acidification of intracellular vesicles: ClC-5 functions for re-absorption of low-molecular-weight proteins in renal proximal tubule, and ClC-7 for absorption of bone matrix by osteoclasts. Abnormal functions of these channels result in Dent's disease characterized by proteinuria and kidney stones and by osteopetrosis, respectively. Plasma membrane Cl- channels, ClC-K1, ClC-K2, and ClC-3B, are expressed predominantly in epithelial cells and are important for uni-directional Cl- transport across the epithelia. Abnormalities of these channels are also related to human diseases: abnormal ClC-K1 to diabetes insipidus and abnormal ClC-K2 to Bartter's syndrome.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| |
Collapse
|
22
|
Mori Y, Inagaki C, Kuno M, Inoue R, Okada Y, Imaizumi Y. [Ionic mechanisms underlying the regulation of cell proliferation, differentiation and death]. Nihon Yakurigaku Zasshi 2003; 122:201-14. [PMID: 12939538 DOI: 10.1254/fpj.122.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ion channels and transporters act as major components that regulate membrane excitability in neurons, muscles, and some secretory glands, but may also contribute to the regulation of proliferation, differentiation, and death in a greater variety of cells including non-excitable ones. The molecular basis of ionic mechanisms underlying the later regulation has been partly identified in the last several years and is a hot issue now. In this short review, some of the molecular mechanisms underlying these regulations and novel compounds acting on the mechanisms were introduced as exciting topics in this area. Several types of transient receptor potential (TRP), identified as Ca(2+)-permeable, non-selective cation channels, may play obligatory roles in functional complexes, which regulate multiple signal transduction pathways triggering proliferation, differentiation, or death of many cell types. In addition, the relation between Cl(-) pump activity and the induction of beta-amyloid protein toxicity for neuronal cell death in Alzheimer disease was described. Unique functions of H(+) channel and pump in osteoclasts in bone mineral homeostasis and remodeling were also discussed. Finally, topics about activation of specific types of Cl(-) channels and K(+) channels, which are responsible for the induction of apoptosis or proliferation in several types of cells, were introduced.
Collapse
Affiliation(s)
- Yasuo Mori
- Ctr. Integ. Biosci., Okazaki Natl. Res. Inst., Japan
| | | | | | | | | | | |
Collapse
|