1
|
Ventura E, Belfiore A, Iozzo RV, Giordano A, Morrione A. Progranulin and EGFR modulate receptor-like tyrosine kinase sorting and stability in mesothelioma cells. Am J Physiol Cell Physiol 2023; 325:C391-C405. [PMID: 37399497 PMCID: PMC10393324 DOI: 10.1152/ajpcell.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
- Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Navarro-Pérez M, Estadella I, Benavente-Garcia A, Orellana-Fernández R, Petit A, Ferreres JC, Felipe A. The Phosphorylation of Kv1.3: A Modulatory Mechanism for a Multifunctional Ion Channel. Cancers (Basel) 2023; 15:2716. [PMID: 37345053 DOI: 10.3390/cancers15102716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
The voltage-gated potassium channel Kv1.3 plays a pivotal role in a myriad of biological processes, including cell proliferation, differentiation, and apoptosis. Kv1.3 undergoes fine-tuned regulation, and its altered expression or function correlates with tumorigenesis and cancer progression. Moreover, posttranslational modifications (PTMs), such as phosphorylation, have evolved as rapid switch-like moieties that tightly modulate channel activity. In addition, kinases are promising targets in anticancer therapies. The diverse serine/threonine and tyrosine kinases function on Kv1.3 and the effects of its phosphorylation vary depending on multiple factors. For instance, Kv1.3 regulatory subunits (KCNE4 and Kvβ) can be phosphorylated, increasing the complexity of channel modulation. Scaffold proteins allow the Kv1.3 channelosome and kinase to form protein complexes, thereby favoring the attachment of phosphate groups. This review compiles the network triggers and signaling pathways that culminate in Kv1.3 phosphorylation. Alterations to Kv1.3 expression and its phosphorylation are detailed, emphasizing the importance of this channel as an anticancer target. Overall, further research on Kv1.3 kinase-dependent effects should be addressed to develop effective antineoplastic drugs while minimizing side effects. This promising field encourages basic cancer research while inspiring new therapy development.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | - Anna Petit
- Departament de Patologia, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Joan Carles Ferreres
- Servei d'Anatomia Patològica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), 08208 Sabadell, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Peng H, Zhang K, Miao J, Yang Y, Xu S, Wu T, Tao C, Wang Y, Yang S. SnRNA-Seq of Pancreas Revealed the Dysfunction of Endocrine and Exocrine Cells in Transgenic Pigs with Prediabetes. Int J Mol Sci 2023; 24:ijms24097701. [PMID: 37175407 PMCID: PMC10178631 DOI: 10.3390/ijms24097701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes poses a significant threat to human health. Exocrine pancreatic dysfunction is related to diabetes, but the exact mechanism is not fully understood. This study aimed to describe the pathological phenotype and pathological mechanisms of the pancreas of transgenic pigs (PIGinH11) that was constructed in our laboratory and to compare it with humans. We established diabetes-susceptible transgenic pigs and subjected them to high-fat and high-sucrose dietary interventions. The damage to the pancreatic endocrine and exocrine was evaluated using histopathology and the involved molecular mechanisms were analyzed using single-nucleus RNA-sequencing (SnRNA-seq). Compared to wild-type (WT) pigs, PIGinH11 pigs showed similar pathological manifestations to type 2 diabetes patients, such as insulin deficiency, fatty deposition, inflammatory infiltration, fibrosis tissue necrosis, double positive cells, endoplasmic reticulum (ER) and mitochondria damage. SnRNA-seq analysis revealed 16 clusters and cell-type-specific gene expression characterization in the pig pancreas. Notably, clusters of Ainar-M and Endocrine-U were observed at the intermediate state between the exocrine and endocrine pancreas. Beta cells of the PIGinH11 group demonstrated the dysfunction with insulin produced and secret decreased and ER stress. Moreover, like clinic patients, acinar cells expressed fewer digestive enzymes and showed organelle damage. We hypothesize that TXNIP that is upregulated by high glucose might play an important role in the dysfunction of endocrine to exocrine cells in PIGinH11 pigs.
Collapse
Affiliation(s)
- Huanqi Peng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
5
|
Deng YJ, Ren EH, Yuan WH, Zhang GZ, Wu ZL, Xie QQ. GRB10 and E2F3 as Diagnostic Markers of Osteoarthritis and Their Correlation with Immune Infiltration. Diagnostics (Basel) 2020; 10:diagnostics10030171. [PMID: 32235747 PMCID: PMC7151213 DOI: 10.3390/diagnostics10030171] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to find potential diagnostic markers for osteoarthritis (OA) and analyze the role of immune cells infiltration in this pathology. We used OA datasets from the Gene Expression Omnibus database. First, R software was used to identify differentially expressed genes (DEGs) and perform functional correlation analysis. Then least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination algorithms were used to screen and verify the diagnostic markers of OA. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in OA tissues, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. A total of 458 DEGs were screened in this study. GRB10 and E2F3 (AUC = 0.962) were identified as diagnostic markers of OA. Immune cell infiltration analysis found that resting mast cells, T regulatory cells, CD4 memory resting T cells, activated NK cells, and eosinophils may be involved in the OA process. In addition, GRB10 was correlated with NK resting cells, naive CD4 + T cells, and M1 macrophages, while E2F3 was correlated with resting mast cells. In conclusion, GRB10 and E2F3 can be used as diagnostic markers of osteoarthritis, and immune cell infiltration plays an important role in the occurrence and progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi-Qi Xie
- Correspondence: ; Tel.: +86-15719612948
| |
Collapse
|
6
|
Buraschi S, Morcavallo A, Neill T, Stefanello M, Palladino C, Xu SQ, Belfiore A, Iozzo RV, Morrione A. Discoidin Domain Receptor 1 functionally interacts with the IGF-I system in bladder cancer. Matrix Biol Plus 2020; 6-7:100022. [PMID: 33543020 PMCID: PMC7852334 DOI: 10.1016/j.mbplus.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance. We discovered that the collagen receptor DDR1 cross-talks with insulin growth factor I (IGF-I) signaling in bladder cancer DDR1 co-precipitates with the IGF-IR and the insulin receptor (IR), and is phosphorylated upon stimulation with IGF ligands This collagen receptor modulates IGF-I-evoked motility and anchorage-independent growth DDR1 complexes with Pyk2, myosin IIA, IGF-IR and/or IR and regulates actin dynamics
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alaide Morcavallo
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manuela Stefanello
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shi-Qiong Xu
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Vella V, Malaguarnera R, Nicolosi ML, Morrione A, Belfiore A. Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118522. [PMID: 31394114 DOI: 10.1016/j.bbamcr.2019.118522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
The insulin/insulin-like growth factor system (IIGFs) plays a fundamental role in the regulation of prenatal and postnatal growth, metabolism and homeostasis. As a consequence, dysregulation of this axis is associated with growth disturbance, type 2 diabetes, chronic inflammation and tumor progression. A functional crosstalk between IIGFs and discoidin domain receptors (DDRs) has been recently discovered. DDRs are non-integrin collagen receptors that canonically undergo slow and long-lasting autophosphorylation after binding to fibrillar collagen. While both DDR1 and DDR2 functionally interact with IIGFs, the crosstalk with DDR1 is so far better characterized. Notably, the IIGFs-DDR1 crosstalk presents a feed-forward mechanism, which does not require collagen binding, thus identifying novel non-canonical action of DDR1. Further studies are needed to fully explore the role of this IIGFs-DDRs functional loop as potential target in the treatment of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | | | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.
| |
Collapse
|
8
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
9
|
Tanimoto R, Palladino C, Xu SQ, Buraschi S, Neill T, Gomella LG, Peiper SC, Belfiore A, Iozzo RV, Morrione A. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin. Matrix Biol 2017; 64:27-39. [PMID: 28433812 DOI: 10.1016/j.matbio.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Shi-Qiong Xu
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Leonard G Gomella
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen C Peiper
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
10
|
Longoni M, High FA, Qi H, Joy MP, Hila R, Coletti CM, Wynn J, Loscertales M, Shan L, Bult CJ, Wilson JM, Shen Y, Chung WK, Donahoe PK. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet 2017; 136:679-691. [PMID: 28303347 DOI: 10.1007/s00439-017-1774-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a common and often lethal birth defect characterized by diaphragmatic structural defects and pulmonary hypoplasia. CDH is isolated in 60% of newborns, but may also be part of a complex phenotype with additional anomalies. We performed whole exome sequencing (WES) on 87 individuals with isolated or complex CDH and on their unaffected parents, to assess the contribution of de novo mutations in the etiology of diaphragmatic and pulmonary defects and to identify new candidate genes. A combined analysis with 39 additional trios with complex CDH, previously published, revealed a significant genome-wide burden of de novo variants compared to background mutation rate and 900 control trios. We identified an increased burden of likely gene-disrupting (LGD, i.e. nonsense, frameshift, and canonical splice site) and predicted deleterious missense (D-mis) variants in complex and isolated CDH patients. Overall, an excess of predicted damaging de novo LGD and D-mis variants relative to the expected frequency contributed to 21% of complex cases and 12% of isolated CDH cases. The burden of de novo variants was higher in genes expressed in the developing mouse diaphragm and heart. Some overlap with genes responsible for congenital heart defects and neurodevelopmental disorders was observed in CDH patients within our cohorts. We propose that de novo variants contribute significantly to the development of CDH.
Collapse
Affiliation(s)
- Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Frances A High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Hongjian Qi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA
| | - Maliackal P Joy
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Regis Hila
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline M Coletti
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Maria Loscertales
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Linshan Shan
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | | | - Jay M Wilson
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Aravindan S, Ramraj S, Kandasamy K, Thirugnanasambandan SS, Somasundaram DB, Herman TS, Aravindan N. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells. Oncotarget 2017; 8:5717-5734. [PMID: 27974694 PMCID: PMC5351584 DOI: 10.18632/oncotarget.13900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
- Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathiresan Kandasamy
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
| | | | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence S. Herman
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Yuan H, Huang L, Hu X, Li Q, Sun X, Xie Y, Kong S, Wang X. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset. Orphanet J Rare Dis 2016; 11:89. [PMID: 27370225 PMCID: PMC4930580 DOI: 10.1186/s13023-016-0465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. Result A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. Conclusions We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, 510330, Guangdong, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong, 510080, China
| | - Xizi Hu
- Fairmont Preparatory Academy, Anaheim, CA, 92801, USA
| | - Qian Li
- Affymetrix Biotech Shanghai Ltd., Shanghai, 200020, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China.
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| |
Collapse
|
13
|
Dai D, Wang Y, Zhou X, Tao J, Jiang D, Zhou H, Jiang Y, Pan G, Ru P, Ji H, Li J, Zhang Y, Yin H, Xu M, Duan S. Meta-analyses of seven GIGYF2 polymorphisms with Parkinson's disease. Biomed Rep 2014; 2:886-892. [PMID: 25279164 DOI: 10.3892/br.2014.324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects ~2% of the global population aged ≥65 years. Grb10-interacting GYF protein-2 (GIGYF2) can influence the development of PD through the regulation of insulin-like growth factor-1. The aim of the present meta-analysis study was to establish the contribution of GIGYF2 polymorphisms to PD. The study was conducted based on nine eligible studies consisting of 7,246 PD patients and 7,544 healthy controls. The results indicated that the GIGYF2 C.3630A>G polymorphism increased the risk of PD by 37% [P=0.008; odds ratio (OR), 1.37; 95% confidence interval (CI), 1.08-1.73] and that the GIGYF2 C.167G>A polymorphism was significantly associated with PD (P=0.003; OR, 3.67; 95% CI, 1.56-8.68). The meta-analyses of the other five GIGYF2 polymorphisms (C.1378C>A, C.1554G>A, C.2940A>G, C.1370C>A and C.3651G>A) did not reveal any significant associations. The present meta-analyses of the GIGYF2 genetic polymorphisms may provide a comprehensive overview of this PD candidate gene for future studies.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jianmin Tao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hanlin Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yi Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guanghui Pan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ping Ru
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinfeng Li
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Yuzheng Zhang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Honglei Yin
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Xuhui, Shanghai 200240, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
14
|
Morcavallo A, Stefanello M, Iozzo RV, Belfiore A, Morrione A. Ligand-mediated endocytosis and trafficking of the insulin-like growth factor receptor I and insulin receptor modulate receptor function. Front Endocrinol (Lausanne) 2014; 5:220. [PMID: 25566192 PMCID: PMC4269189 DOI: 10.3389/fendo.2014.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR) and IR, plays a central role in a variety of physiological cellular processes including growth, differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumorigenesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the regulation of metabolic effects has been known for several years, more recent evidence suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in modulating the duration and intensity of receptors action but while the signaling pathways induced by the IGF-IR and IR are quite characterized, very little is still known about the mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and trafficking. In addition, how these processes affect receptor downstream signaling has not been fully characterized. Here, we discuss the current understanding of the mechanisms and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in modulating ligand-induced biological responses.
Collapse
Affiliation(s)
- Alaide Morcavallo
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Manuela Stefanello
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Cell Biology and Signaling Program, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health Sciences and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Morrione
- Departments of Urology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Biology of Prostate Cancer Program, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- *Correspondence: Andrea Morrione, Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB Room 620, Philadelphia, PA 19107, USA e-mail:
| |
Collapse
|
15
|
Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact 2013; 205:198-211. [PMID: 23911876 DOI: 10.1016/j.cbi.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
In this study the role of PI3K/Akt signaling pathway in arsenic trioxide (ATO)-treated parental Jurkat cells and also in derived ATO-resistant clones grown in the presence of given ATO concentration was investigated. ATO-resistant clones (cultured for 8-12weeks in the presence of 1, 2.5 and 5μM ATO) were characterized by high viability in the presence of ATO but slower growth rate compared to the parental cells. Morphological and functional characterization of derived ATO-resistant clones revealed that they did not differ fundamentally from parental Jurkat cells in terms of cell size, level of GSH, the lysosomal fluorescence or CD95/Fas surface antigen expression. However, a slight increase in the mitochondrial potential (JC-1 staining) was detected in the clones compared to parental Jurkat cells. Side population analysis (Vybrant DyeCycle Violet™ staining) in ATO resistant clones did not indicate any enrichment withcancer stem cells. Akt1/2, AktV or wortmannin inhibitors decreased viability of ATO-resistant clones grown in the presence of ATO, with no effect on ATO-treated parental cells. Flow cytometry analysis showed that ATO decreased the level of p-Akt in ATO-treated parental cells, while the resistant clones exhibited higher levels of p-Akt immunostaining than parental Jurkat cells. Expression analysis of 84 genes involved in the PI3K/Akt pathway revealed that this pathway was predominantly active in ATO-resistant clones. c-JUN seems to play a key role in the induction of cell death in ATO-treated parental Jurkat cells, as dose-dependent strong up-regulation of JUN was specific for the ATO-treated parental Jurkat cells. On the other hand, changes in expression of cyclin D1 (CCND1), insulin receptor substrate 1 (IRS1) and protein kinase C isoforms (PRKCZ,PRKCB and PRKCA) may be responsible for the induction of resistance to ATO. The changes in expression of growth factor receptor-bound protein 10 (GRB10) observed in ATO-resistant clones suggest a possibility of induction of different mechanisms in development of resistance to ATO depending on the drug concentration and thus involvement of different signaling mediators.
Collapse
|
16
|
Lucas-Fernández E, García-Palmero I, Villalobo A. Genomic organization and control of the grb7 gene family. Curr Genomics 2011; 9:60-8. [PMID: 19424485 PMCID: PMC2674303 DOI: 10.2174/138920208783884847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/22/2022] Open
Abstract
Grb7 and their related family members Grb10 and Grb14 are adaptor proteins, which participate in the functionality of multiple signal transduction pathways under the control of a variety of activated tyrosine kinase receptors and other tyrosine-phosphorylated proteins. They are involved in the modulation of important cellular and organismal functions such as cell migration, cell proliferation, apoptosis, gene expression, protein degradation, protein phosphorylation, angiogenesis, embryonic development and metabolic control. In this short review we shall describe the organization of the genes encoding the Grb7 protein family, their transcriptional products and the regulatory mechanisms implicated in the control of their expression. Finally, the alterations found in these genes and the mechanisms affecting their expression under pathological conditions such as cancer, diabetes and some congenital disorders will be highlighted.
Collapse
Affiliation(s)
- E Lucas-Fernández
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid. Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | |
Collapse
|
17
|
Huang Q, Szebenyi DME. Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4. J Biol Chem 2010; 285:42130-9. [PMID: 20980250 PMCID: PMC3009938 DOI: 10.1074/jbc.m110.143412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/11/2010] [Indexed: 01/28/2023] Open
Abstract
In addition to inhibiting insulin receptor and IGF1R kinase activity by directly binding to the receptors, GRB10 can also negatively regulate insulin and IGF1 signaling by mediating insulin receptor and IGF1R degradation through ubiquitination. It has been shown that GRB10 can interact with the C2 domain of the E3 ubiquitin ligase NEDD4 through its Src homology 2 (SH2) domain. Therefore, GRB10 might act as a connector, bringing NEDD4 close to IGF1R to facilitate the ubiquitination of IGF1R by NEDD4. This is the first case in which it has been found that an SH2 domain could colocalize a ubiquitin ligase and its substrate. Here we report the crystal structure of the NEDD4 C2-GRB10 SH2 complex at 2.0 Å. The structure shows that there are three interaction interfaces between NEDD4 C2 and GRB10 SH2. The main interface centers on an antiparallel β-sheet composed of the F β-strand of GRB10 SH2 and the C β-strand of NEDD4 C2. NEDD4 C2 binds at nonclassical sites on the SH2 domain surface, far from the classical phosphotyrosine-binding pocket. Hence, this interaction is phosphotyrosine-independent, and GRB10 SH2 can bind the C2 domain of NEDD4 and the kinase domain of IGF1R simultaneously. Based on these results, a model of how NEDD4 interacts with IGF1R through GRB10 has been proposed. This report provides further evidence that SH2 domains can participate in important signaling interactions beyond the classical recognition of phosphotyrosine.
Collapse
Affiliation(s)
- Qingqiu Huang
- MacCHESS, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
18
|
Grb10 interacts with Bim L and inhibits apoptosis. Mol Biol Rep 2010; 37:3547-52. [DOI: 10.1007/s11033-010-0002-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
|
19
|
Colley BS, Cavallin MA, Biju K, Marks DR, Fadool DA. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc. BMC Neurosci 2009; 10:8. [PMID: 19166614 PMCID: PMC2656512 DOI: 10.1186/1471-2202-10-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/23/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF) activation of neurotrophin receptor tyrosine kinase B (TrkB) suppresses the Shaker voltage-gated potassium channel (Kv1.3) via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. RESULTS We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc) and growth factor receptor-binding protein 10 (Grb10), with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB) neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293). nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2) domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111-113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein, channel co-expression reciprocally down-regulated expression and tyrosine phosphorylation of TrkB kinase and related insulin receptor kinase. Finally, through patch-clamp electrophysiology, we found that the BDNF-induced current suppression of the channel was prevented by both nShc and Grb10. CONCLUSION We report that adaptor protein alteration of kinase-induced Kv1.3 channel modulation is related to the degree of direct protein-protein association and that the channel itself can reciprocally modulate receptor-linked tyrosine kinase expression and activity.
Collapse
Affiliation(s)
- Beverly S Colley
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State University, Tallahassee, Florida, USA.
| | | | | | | | | |
Collapse
|
20
|
Deng Y, Zhang M, Riedel H. Mitogenic roles of Gab1 and Grb10 as direct cellular partners in the regulation of MAP kinase signaling. J Cell Biochem 2008; 105:1172-82. [DOI: 10.1002/jcb.21829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Tezuka N, Brown AMC, Yanagawa SI. GRB10 binds to LRP6, the Wnt co-receptor and inhibits canonical Wnt signaling pathway. Biochem Biophys Res Commun 2007; 356:648-54. [PMID: 17376403 DOI: 10.1016/j.bbrc.2007.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/02/2007] [Indexed: 11/24/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a component of cell-surface receptors for Wnt proteins and Wnt is known to promote recruitment of Axin by LRP6 thereby inhibiting beta-catenin's degradation. We show here that growth factor receptor-bound protein10 (GRB10), a multi-modular adaptor protein that is known to associate with several transmembrane tyrosine kinase receptors, binds to the intracellular portion of LRP6 and negatively regulates Wnt signaling. GRB10 overexpression suppressed Wnt3a-, and LRP6-induced but not beta-catenin-induced TCF-dependent-reporter activities in HEK293T cells, suggesting that GRB10 functions upstream of beta-catenin. Actually, GRB10 overexpression attenuated the Wnt3a-induced accumulation of beta-catenin. In addition, RNAi-mediated down-regulation of endogenous GRB10 stimulated Wnt3a-induced reporter activities, indicating that GRB10 is indeed a novel negative regulator of the Wnt signaling pathway. The finding that GRB10 interferes with the binding of Axin to LRP6 indicated a possible molecular mechanism by which the overexpression of GRB10 suppresses Wnt signaling.
Collapse
Affiliation(s)
- Norio Tezuka
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
22
|
Dufresne AM, Smith RJ. The adapter protein GRB10 is an endogenous negative regulator of insulin-like growth factor signaling. Endocrinology 2005; 146:4399-409. [PMID: 16037382 DOI: 10.1210/en.2005-0150] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth factor IGF-I is critical for normal human somatic growth and development. Growth factor receptor-bound protein (Grb)10 is a protein that interacts with the IGF-I receptor and may thus regulate IGF-I-stimulated growth. However, the role of endogenous Grb10 in regulating IGF-I action is not known. The objective of this study was to determine the function of endogenous Grb10 in IGF signaling responses. Using small interfering RNA, we demonstrate that knockdown of Grb10 enhances IGF-I-mediated phosphorylation of insulin receptor substrate proteins, Akt/protein kinase B, and ERK1/2 and leads to a corresponding increase in DNA synthesis. Although IGF-I receptor autophosphorylation normally correlates with receptor signaling, we demonstrate a decrease in IGF-I-stimulated receptor phosphorylation in Grb10 knockdown cells. Pretreatment of cells with the protein-tyrosine phosphatase inhibitor pervanadate partially reverses this effect of Grb10 knockdown on receptor phosphorylation, indicating that endogenous Grb10 may block phosphatase access to the activated IGF-I receptor. Marked small interfering RNA knockdown of Grb10 does not result in increased or decreased expression of the related proteins Grb7 or Grb14. As further evidence for Grb10 functional specificity, the recently identified Grb10 interacting GYF proteins are shown to interact specifically with Grb10 and not with Grb7 or Grb14, using yeast two-hybrid assays. We conclude that Grb10 functions as a specific endogenous suppressor of IGF-I-stimulated cell signaling and DNA synthesis. Modulation of the Grb10-IGF-I receptor pathway may represent a mechanism that regulates IGF-I-responsive cell and tissue growth.
Collapse
Affiliation(s)
- Aimee M Dufresne
- Endocrinology Division and The Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, One Hoppin Street, Suite 200, Providence, Rhode Island 02903, USA
| | | |
Collapse
|
23
|
Li H, Sánchez-Torres J, del Carpio AF, Nogales-González A, Molina-Ortiz P, Moreno MJ, Török K, Villalobo A. The adaptor Grb7 is a novel calmodulin-binding protein: functional implications of the interaction of calmodulin with Grb7. Oncogene 2005; 24:4206-19. [PMID: 15806159 DOI: 10.1038/sj.onc.1208591] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate using Ca2+-dependent calmodulin (CaM)-affinity chromatography and overlay with biotinylated CaM that the adaptor proteins growth factor receptor bound (Grb)7 and Grb7V (a naturally occurring variant lacking the Src homology 2 (SH2) domain) are CaM-binding proteins. Deletion of an amphiphilic basic amino-acid sequence (residues 243-256) predicted to form an alpha-helix located in the proximal region of its pleckstrin homology (PH) domain demonstrates the location of the CaM-binding domain. This site is identical in human and rodents Grb7, and shares great homology with similar regions of Grb10 and Grb14, and the Mig10 protein from Caenorhabditis elegans. We show that Grb7 and Grb7V are present in the cytosol and bound to membranes, while the deletion mutants (Grb7Delta and Grb7VDelta) have less capacity to be associated to membranes. Grb7Delta maintains in part the capacity to bind phosphoinositides, and CaM competes for phosphoinositide binding. Activation of ErbB2 by heregulin beta1 decreases the pool of Grb7 associated to membranes. The cell-permeable CaM antagonist W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), but not the CaM-dependent protein kinase II inhibitor KN93, prevents this effect. Highly specific cell-permeable CaM inhibitory peptides decrease the association of Grb7 to membranes. This suggests that CaM regulates the intracellular mobilization of Grb7 in living cells. Direct interaction between enhanced yellow fluorescent protein (EYFP)-Grb7 and enhanced cyan fluorescent protein (ECFP)-CaM chimeras at the plasma membrane of living cells was demonstrated by fluorescence resonance energy transfer (FRET). The FRET signal dramatically decreased in cells loaded with a cell-permeable Ca2+ chelator, and was significantly attenuated when enhanced yellow fluorescent protein-Grb7 chimera (EYFP-Grb7)Delta instead of EYFP-Grb7 was used. Finally, we show that conditioned media from cells transiently transfected with Grb7Delta and Grb7VDelta lost its angiogenic activity, in contrast to those from cells transiently transfected with their wild-type counterparts.
Collapse
Affiliation(s)
- Hongbing Li
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, Madrid E-28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shiura H, Miyoshi N, Konishi A, Wakisaka-Saito N, Suzuki R, Muguruma K, Kohda T, Wakana S, Yokoyama M, Ishino F, Kaneko-Ishino T. Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem Biophys Res Commun 2005; 329:909-16. [PMID: 15752742 DOI: 10.1016/j.bbrc.2005.02.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/25/2022]
Abstract
The Meg1/Grb10 protein has been implicated as an adapter protein in the signaling pathways from insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) in vitro. To elucidate its in vivo function, four independent Meg1/Grb10 transgenic mouse lines were established, and the effects of excess Meg1/Grb10 on both postnatal growth and glucose metabolism were examined. All of the Meg1/Grb10 transgenic mice showed growth retardation after weaning (3-4 weeks), which indicates that ectopic overexpression of Meg1/Grb10 inhibits postnatal growth that is mediated by IGF1 via IGF1R. In addition, the mice became hyperinsulinemic owing to high levels of insulin resistance, which demonstrates that Meg1/Grb10 also modulates the insulin receptor cascade negatively in vivo. Type II diabetes arose frequently in the two transgenic lines, which also showed impaired glucose tolerance. In these mice, severe atrophy of the pancreatic acinus cells was associated with high-level production of Meg1/Grb10 in the pancreas. These results suggest that Meg1/Grb10 inhibits the function of both insulin and IGF1 receptors in these cells, since a similar phenotype has been reported for Ir and Igf1r double knockout mice. Taken together, these results indicate that Meg1/Grb10 interacts with both insulin and IGF1 receptors in vivo, and negatively regulates the IGF growth pathways via these receptors.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mirmohammadsadegh A, Baer A, Nambiar S, Bardenheuer W, Hengge UR. Rapid identification of dysregulated genes in cutaneous malignant melanoma metastases using cDNA technology. Cells Tissues Organs 2005; 177:119-23. [PMID: 15388985 DOI: 10.1159/000079985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One important application of DNA microarray technology is the simultaneous analysis of gene expression of different mRNAs. Comparison of mRNA patterns of diseased and healthy tissue may help to understand the pathogenesis of a given disorder. In cancer tissue, identified dysregulated genes may serve as new molecular markers for diagnosis or prognosis or may ideally serve as new targets for therapy. Using membrane cDNA array technology, we analyzed gene expression in human melanomas, one of the most aggressive types of cancer with a high metastatic potential and with markedly increased incidence worldwide. To account for the heterogeneity of tumors, we compared total RNA from cutaneous melanoma metastases of 10 different patients with primary human melanocytes. An abundance of genes was dysregulated (up-/downregulated), which involved for example the apoptosis gene growth factor receptor-bound protein 10, Bcl2-associated X membrane protein, Bcl2 antagonist of cell death, glutathione S-transferase theta(1) and glutathione reductase. Ultimately, the identification of melanoma-associated genes may provide a potential therapeutic strategy for identifying and targeting malignant melanoma.
Collapse
|