1
|
Miller SR, Zhang X, Hau RK, Jilek JL, Jennings EQ, Galligan JJ, Foil DH, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling. Mol Pharmacol 2020; 99:147-162. [PMID: 33262250 DOI: 10.1124/molpharm.120.000169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Joseph L Jilek
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Daniel H Foil
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Sean Ekins
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| |
Collapse
|
2
|
Miller SR, Hau RK, Jilek JL, Morales MN, Wright SH, Cherrington NJ. Nucleoside Reverse Transcriptase Inhibitor Interaction with Human Equilibrative Nucleoside Transporters 1 and 2. Drug Metab Dispos 2020; 48:603-612. [PMID: 32393653 DOI: 10.1124/dmd.120.090720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 μM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 μM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Raymond K Hau
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Joseph L Jilek
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Mark N Morales
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| |
Collapse
|
3
|
Abstract
The transition from liquid to solid feed during weaning results in morphological, histological and microbial changes in the young animal's intestinal tract and often is associated with diarrhoea. The ban of in-feed antibiotics in pig production in the European Union has led to increasing interest in alternatives to overcome weaning-associated problems. Among others, nucleotides may have the potential to alleviate health impairments due to weaning. Nucleotides are natural components of the non-protein fraction of milk and have important effects on the maintenance of health in young animals. Nucleotides and their related metabolic products play key roles in many biological processes and become essential dietary components when endogenous supply is insufficient for normal function. The present review summarises nucleotide composition of milk from different species, the biology of nucleotides and possible effects of dietary nucleotides on intestinal morphology and function, intestinal microbiota, immune function, nutrient metabolism, hepatic morphology and function as well as growth performance. Special attention is given to data available for pigs, and suggestions are made for inclusion of nucleotides in the diet to benefit piglets' health and reduce the consequences accompanying early weaning.
Collapse
|
4
|
Rubin H. Central roles of Mg2+ and MgATP2- in the regulation of protein synthesis and cell proliferation: significance for neoplastic transformation. Adv Cancer Res 2005; 93:1-58. [PMID: 15797443 DOI: 10.1016/s0065-230x(05)93001-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Growth factors are polypeptides that combine with specific membrane receptors on animal cells to stimulate proliferation, but they also stimulate glucose transport, uridine phosphorylation, intermediary metabolism, protein synthesis, and other processes of the coordinate response. There are a variety of nonspecific surface action treatments which stimulate the same set of reactions as the growth factors do, of which protein synthesis is most directly related to the onset of DNA synthesis. Mg(2+) is required for a very wide range of cellular reactions, including all phosphoryl transfers, and its deprivation inhibits all components of the coordinate response that have so far been tested. Growth factors raise the level of free Mg(2+) closer to the optimum for the initiation of protein synthesis. The resulting increase in protein synthesis accelerates progression through G1 to the onset of DNA synthesis and mitosis. None of the other 3 major cellular cations are similarly involved in growth regulation, although internal pH may play an auxiliary role. Almost 10(5) externally bound divalent cations are displaced from membranes for every attached insulin molecule, implying a conformational membrane change that releases enough Mg(2+) from the internal surface of the plasma membrane to account for the increase in free cytosolic Mg(2+). It is proposed that mTOR, the central control point for protein synthesis of the PI 3-K kinase cascade stimulated by insulin, is regulated by MgATP(2-) which varies directly with cytosolic Mg(2+). Other elements of the coordinate response to growth factors such as the increased transport of glucose and phosphorylation of uridine are also dependent upon an increase of Mg(2+). Deprivation of Mg(2+) in neoplastically transformed cultures normalizes their appearance and growth behavior and raises their abnormally low Ca(2+) concentration. Tight packing of the transformed cells at very high saturation density confers the same normalizing effects, which are retained for a few days after subculture at low density. The results suggest that the activity of Mg(2+) within the cell is a central regulator of normal cell growth, and the loss of its membrane-mediated control can account for the neoplastic phenotype.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California Berkeley, 94720-3200, USA
| |
Collapse
|
5
|
Vidair C, Rubin H. Mg2+ as activator of uridine phosphorylation in coordination with other cellular responses to growth factors. Proc Natl Acad Sci U S A 2005; 102:662-6. [PMID: 15647355 PMCID: PMC545559 DOI: 10.1073/pnas.0409082102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The divalent cation ionophore A23187 facilitates the manipulation of intracellular Mg2+ without increasing the general permeability of the cell. The uptake of uridine into cells is limited by its rate of intracellular phosphorylation that increases within minutes after the addition of growth factors. In the experiments described here, the rate of uridine uptake in ionophore-treated cells stimulated by either serum or insulin depended on the extracellular and intracellular concentrations of Mg2+ and was independent of the extracellular Ca2+ concentration. In very high concentrations of Mg2+ (50 mM), ionophore-treated cells take up uridine as fast, in the absence of growth factors as in their presence, demonstrating that Mg2+ can replace the growth factor requirement for the stimulation of uridine uptake. In contrast, thymidine uptake, which also is limited by its rate of intracellular phosphorylation, showed no early response to either growth factors or Mg2+ concentration, which is consistent with the 10-fold lower Mg2+ requirement of thymidine kinase compared with uridine kinase. The feedback inhibition of uridine kinase by UTP and CTP in cell-free extracts was alleviated by increased Mg2+ concentration. The results support the thesis that the increased uptake of uridine in cells treated with growth factors is determined by a membrane-induced increase in intracellular free Mg2+. Such increase would also accelerate the rate of translation-initiation and other coordinate responses that, unlike increased uridine uptake, are essential for cell proliferation. The rate of uridine uptake is suggested as a direct indicator of free cytosolic Mg2+ that drives the shift from quiescence to proliferation.
Collapse
Affiliation(s)
- Charles Vidair
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
6
|
Seguin E, Tillequin F. Relations structure, activité et mécanisme d’action des antitumoraux de série benzo[b]acronycine. ANNALES PHARMACEUTIQUES FRANÇAISES 2005; 63:44-52. [PMID: 15803100 DOI: 10.1016/s0003-4509(05)82250-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The acridone alkaloid acronycine, isolated from several Sarcomelicope species (Rutaceae) was shown to exhibit a promising activity against a broad spectrum of solid tumors. Nevertheless, subsequent clinical trials only gave poor results, probably due to the moderate potency of this drug. The isolation of the unstable acronycine epoxide from several New-Caledonian Sarcomelicope led to a hypothesis of bioactivation of acronycine by transformation of the 1.2-double bond into the corresponding oxirane in vivo. This hypothesis and the demonstration that acronycine should interact with DNA guided the development of a series of 1.2-dihydroxy-1.2-dihydrobenzo[b]acronycine esters and diesters as novel anticancer drug candidates. In vivo, cis-1.2-diacetoxy-1,2-dihydrobenzo[b]acronycine, selected for further development under the code S 23906-1, demonstated a marked antitumor activity in human orthotopic models of lung, ovarian and colon cancers xenografted in nude mice. The cytotoxic and antitumor activities of these compounds were strongly correlated with their ability to give covalent adducts with purified as well as genomic DNA. Such adducts involve reaction between the exocyclic N-2 amino group of guanines exposed in the minor groove of double helical DNA and the leaving ester group at the benzylic position 1 of the drug.
Collapse
Affiliation(s)
- E Seguin
- Laboratoire de pharmacognosie de l'université de Rouen-Haute Normandie, Faculté de Pharmacie, 22, boulevard Gambetta, F76183 Rouen Cedex 1, France
| | | |
Collapse
|
7
|
Vyas S, Ahmadi B, Hammond JR. Complex effects of sulfhydryl reagents on ligand interactions with nucleoside transporters: evidence for multiple populations of ENT1 transporters with differential sensitivities to N-ethylmaleimide. Arch Biochem Biophys 2002; 403:92-102. [PMID: 12061806 DOI: 10.1016/s0003-9861(02)00210-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional studies have implicated cysteines in the interaction of ligands with the ENT1 nucleoside transporter. To better define these interactions, N-ethylmaleimide (NEM) and p-chloromercuribenzylsulfonate (pCMBS) were tested for their effects on ligand interactions with the [(3)H] nitrobenzylthioinosine (NBMPR) binding site of the ENT1 transporters of mouse Ehrlich ascites cells and human erythrocytes. NEM had biphasic, concentration-dependent effects on NBMPR binding to intact Ehrlich cells, plasma membranes, and detergent-solubilized membranes, with about 35% of the binding activity being relatively insensitive to NEM inhibition. NBMPR binding to human erythrocyte membranes also displayed heterogeneity in that about 33% of the NBMPR binding sites remained, albeit with lower affinity for NBMPR, even after treatment with NEM at concentrations in excess of 1 mM. However, unlike that seen for Ehrlich cells, no "reversal" in NBMPR binding to human erythrocyte membranes was observed at the higher concentrations of NEM. pCMBS inhibited 100% of the NBMPR binding to both Ehrlich cell and human erythrocyte membranes, but had no effect on the binding of NBMPR to intact cells. The effects of NEM on NBMPR binding could be prevented by coincubation of membranes with nonradiolabeled NBMPR, adenosine, or uridine. Treatment with NEM and pCMBS also decreased the affinity of other nucleoside transport inhibitors for the NBMPR binding site, but enhanced the affinities of nucleoside substrates. These data support the existence of at least two populations of ENT1 in both erythrocyte and Ehrlich cell membranes with differential sensitivities to NEM. The interaction of NEM with the mouse ENT1 protein may also involve additional sulphydryl groups not present in the human ENT1.
Collapse
Affiliation(s)
- Satyen Vyas
- Department of Pharmacology and Toxicology, M275 Medical Sciences Building, University of Western Ontario, London, Ont., Canada N6A 5C1
| | | | | |
Collapse
|
8
|
Acronycine-Type Alkaloids : Chemistry and Biology. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0735-8210(98)80003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Wylie JL, Wang LL, Tipples G, McClarty G. A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine. J Biol Chem 1996; 271:15393-400. [PMID: 8663065 DOI: 10.1074/jbc.271.26.15393] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A Chlamydia trachomatis strain (L2/CPEC) resistant to the cytotoxic effects of cyclopentenyl cytosine (CPEC) was isolated by a stepwise selection procedure. This strain showed an approximate 350-fold increase in resistance to CPEC. Sequencing of the gene encoding CTP synthetase from this resistant strain revealed a single point mutation, resulting in a change of amino acid 149 from Asp to Glu. This appeared to be the only mutation in L2/CPEC, because no changes in CTP transport, CTP synthetase expression, or incorporation of CPEC into DNA or RNA could be detected. The mutation in the chlamydial CTP synthetase resulted in a loss of CTP feedback inhibition. This was demonstrated both in vivo using Escherichia coli cells carrying the cloned gene, and an in vitro assay using partially purified preparations of CTP synthetase. As a result of the loss of feedback inhibition, E. coli cells carrying the CPECR CTP synthetase showed a 22-fold increase in their CTP pools. However, examination of the CTP pools of L2/CPEC revealed no change in CTP levels when compared with wild type C. trachomatis.
Collapse
Affiliation(s)
- J L Wylie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E OW3 Canada
| | | | | | | |
Collapse
|
10
|
Lee CW, Goh LB, Tu Y. Sensitivity to inhibition by N-ethylmaleimide: a property of nitrobenzylthioinosine-sensitive equilibrative nucleoside transporter of murine myeloma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:200-8. [PMID: 7662709 DOI: 10.1016/0167-4889(95)00081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Murine myeloma SP2/0-Ag14 cells possess both nitrobenzylthioinosine (NBMPR)-sensitive and NBMPR-insensitive equilibrative uridine transport systems. No Na(+)-dependent uridine transport system was detected. The NBMPR-insensitive transport system is similarly insensitive to inhibition by dilazep and dipyridamole. Dose-response curve for the inhibition of equilibrative uridine transport by N-ethylmaleimide (NEM), a sulfhydryl reagent, in these cells was biphasic. About 30-40% of the uridine transport was inhibited by NEM at IC50 value of 0.15 mM. The other 60-70% of the transport activity remained insensitive to NEM at concentration as high as 3 mM. The decrease in NBMPR-sensitive uridine transport in the presence of 0.3 mM NEM was due to a 3-fold decrease in transport affinity. Apparent Km values of 500 and 1600 microM and Vmax values of 13 and 12 microM/s were obtained for untreated and NEM-treated cells, respectively. NEM (0.3 mM) has little effect on the Km of NBMPR-insensitive transporter, with apparent Km values of 100 and 110 microM and Vmax values of 3.0 and 2.5 microM/s for untreated and NEM-treated cells, respectively. High sensitivity of NBMPR-sensitive transporter to NEM inhibition was also observed in HL-60 and MCF-7 cells. Decrease in specific 3H-NBMPR equilibrium binding affinity in myeloma cells was observed after treatment with 0.3 mM NEM. Apparent Kd values of 0.32 and 2.3 nM with Bmax values of 48,000 and 44,000 sites/cell were obtained for untreated and NEM-treated cells, respectively. NBMPR, dilazep and dipyridamole at 30 microM, and uridine at 10 mM failed to protect the NBMPR-sensitive transporter against NEM inhibition. It is possible that a critical sulfhydryl residue is closed to substrate binding/transporting site of the NBMPR-sensitive transporter. NEM, a sulfhydryl reagent containing an activated double bond, hinders the affinity of this transporter by forming a stable thiol ether bond with the reactive residue.
Collapse
Affiliation(s)
- C W Lee
- Department of Physiology, National University of Singapore
| | | | | |
Collapse
|
11
|
Domin BA, Mahony WB, Zimmerman TP. Transport of 5-fluorouracil and uracil into human erythrocytes. Biochem Pharmacol 1993; 46:503-10. [PMID: 8347174 DOI: 10.1016/0006-2952(93)90527-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The transport of 5-fluorouracil (5-FU) and uracil into human erythrocytes has been investigated under initial velocity conditions with an "inhibitor-stop" assay using a cold papaverine solution to terminate influx. At 37 degrees and pH 7.3, 5-FU influx was nonconcentrative; was partially inhibited by adenine, hypoxanthine, thymine, and uracil; and was insensitive to inhibition by nucleosides or inhibitors of nucleoside transport. Inhibition of the influx of 5-FU or uracil by adenine (3.0 mM) did not increase when other pyrimidines or inhibitors of nucleoside transport were combined with adenine. 5-FU and uracil exhibited similar saturable (Km approximately 4 mM, Vmax approximately 500 pmol/sec/5 microL cells) and nonsaturable (rate constant approximately 80 pmol/sec/mM/5 microL cells) components of influx. 5-FU, uracil, adenine, and hypoxanthine were competitive inhibitors of each other's influx with Ki values matching their respective Km values for influx. We conclude that 5-FU and uracil enter human erythrocytes at similar rates via both nonfacilitated diffusion and the same carrier that transports adenine and hypoxanthine.
Collapse
Affiliation(s)
- B A Domin
- Division of Experimental Therapy, Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | | | |
Collapse
|
12
|
Tipples G, McClarty G. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol Microbiol 1993; 8:1105-14. [PMID: 8361355 DOI: 10.1111/j.1365-2958.1993.tb01655.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using well-characterized mutant host cell lines, deficient in specific enzymes of energy and nucleotide metabolism, we addressed numerous questions regarding nucleotide metabolism in the obligate intracellular bacterium Chlamydia trachomatis. The results presented indicate that C. trachomatis: (i) does not absolutely depend on mitochondrial generated ATP for survival; (ii) does have a significant draw on host-cell NTP pools but does not have a detrimental effect on the ability of the host cell to maintain its energy charge; (iii) lacks the ability to synthesize purine and pyrimidine nucleotides de novo; (iv) is not capable of interconverting purine nucleotides; and (v) possesses the pyrimidine metabolic-pathway enzymes CTP synthetase and deoxycytidine nucleotide deaminase. In total our results indicate that C. trachomatis is auxotrophic for host-cell ATP, GTP and UTP. In contrast, CTP can be obtained from the host cell or it can be synthesized from UTP by the parasite.
Collapse
Affiliation(s)
- G Tipples
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
13
|
Shieh HL, Pezzuto JM, Cordell GA. Evaluation of the cytotoxic mechanisms mediated by the broad-spectrum antitumor alkaloid acronycine and selected semisynthetic derivatives. Chem Biol Interact 1992; 81:35-55. [PMID: 1730147 DOI: 10.1016/0009-2797(92)90025-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acronycine (I) is a broad-spectrum antitumor agent whose development as a clinically useful agent has been hindered, in part, due to its poor solubility characteristics. With the goal of acquiring information that may prove of value in the development of structurally related compounds of greater clinical utility, mechanistic studies were performed with acronycine (I) and two semisynthetic derivatives, 2-nitroacronycine (II) and acronycine azine (III). These three substances demonstrated cytotoxic activity with several human tumor cell lines (breast, colon, lung, melanoma, KB-3, and drug-resistant KB-V1). Compounds II and III demonstrated greater activity than I, and more detailed studies were performed with cultured human breast cancer cells (UISO-BCA-1). Acronycine azine (III) induced the cells to accumulate in the G0/G1 phase of the cell cycle. It effectively inhibited the in vitro catalytic activities of partially purified DNA and RNA polymerases in a manner that was competitive with respect to DNA substrate. As judged by spectrophotometric titration, compound III interacted with calf thymus DNA, calf liver RNA, and a variety of single- and double-stranded (deoxy)ribonucleotides. Although no nucleic acid base specificity was discernable, this interaction appeared to be related to the cytotoxic mechanism of this dimeric substance. Monomeric compounds I and II did not interact with nucleic acids, but were effective inhibitors of DNA and RNA synthesis as judged by in vitro systems comprised of cultured UISO-BCA-1 cells or homogenates derived from these cells. The relative inhibitory activities of compounds I and II correlated with their cytotoxic activities suggesting a causal relationship. In addition, these two compounds induced cultured cells to accumulate in the phase of the cell cycle wherein the DNA content ranged from 2n-4n (S + G2/M), and inhibited in vitro DNA and RNA synthesis in a manner that was competitive with respect to nucleotide (TTP or UTP) substrate. Compounds I and II demonstrated greater cytotoxic activity with drug-resistant KB-V1 cells as compared with the parent (drug-sensitive) cell line, whereas this was not the case with compound III. Based on these results and previous literature reports, compounds I, II and III are likely to function by multiple mechanisms of action. However, it appears that alteration of nucleic acid metabolism is key to the activity of each of the substances.
Collapse
Affiliation(s)
- H L Shieh
- Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago
| | | | | |
Collapse
|
14
|
Casper ES, Baselga J, Smart TB, Magill GB, Markman M, Ranhosky A. A phase II trial of PALA + dipyridamole in patients with advanced soft-tissue sarcoma. Cancer Chemother Pharmacol 1991; 28:51-4. [PMID: 2040033 DOI: 10.1007/bf00684956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A total of 21 patients with advanced soft tissue sarcoma enrolled in a phase II trial of 3.5 g/m2 N-phosphonacetyl-L-aspartate (PALA) given intravenously every 3 weeks plus 50 mg/m2 dipyridamole (Persantine) given orally every 6 h. Dipyridamole administration was initiated 1 week before the first dose of PALA. Peak and trough plasma concentrations of dipyridamole were measured before and after the first dose of PALA in 14 patients. In all, 19 patients were evaluable for therapeutic response. One subject experienced partial regression of a pulmonary metastasis; no other major response was observed. Diarrhea was the most prominent toxicity; in one patient it was life-threatening and was associated with a severe rash. On the day preceding PALA administration, the median peak plasma concentration of dipyridamole was 2,208 ng/ml and the median trough value was 904 ng/ml. Similar values were obtained on the day of PALA administration. Although the levels achieved were similar to those required to modulate the activity of PALA in preclinical systems, the therapeutic results obtained in the present study were not superior to those reported for PALA alone in previously treated patients with soft-tissue sarcoma.
Collapse
Affiliation(s)
- E S Casper
- Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | | | |
Collapse
|
15
|
Weckbecker G. Biochemical pharmacology and analysis of fluoropyrimidines alone and in combination with modulators. Pharmacol Ther 1991; 50:367-424. [PMID: 1721719 DOI: 10.1016/0163-7258(91)90051-m] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
After more than three decades since their introduction, fluoropyrimidines, especially FUra, are still a mainstay in the treatment of various solid malignancies. The antitumor effects of fluoropyrimidines are dependent upon metabolic activation. FdUMP, FUTP and FdUTP were identified as the key cytotoxic metabolites that interfere with the proper function of thymidylate synthase and nucleic acids. The relevance of these metabolites is cell-type specific. Recently, fluorouridine diphospho sugars have been detected, but the precise function of this class of metabolites is currently unknown. In mammalian systems fluoropyrimidines and their natural counterparts share the same metabolic pathways since the substrate properties in enzyme-catalyzed reactions are frequently comparable. Ongoing studies indicate that the metabolism and action of fluoropyrimidines exhibit circadian rhythms, which appear to be due to variations in the activity of metabolizing enzymes. Essential for the expanding knowledge of the pathways and effects of fluoropyrimidines has been the constant improvement of analytical methods. These include ligand binding techniques, numerous dedicated HPLC systems and 19F-NMR. Because the overall response rates achieved with fluoropyrimidines are modest, strategies based on biochemical modulation have been devised to enhance their therapeutic index. Biochemical modulators include a wide range of various compounds with different modes of action. In recently completed clinical trials, combinations of FUra with leucovorin, a precursor for 5,10-methylene tetrahydrofolate, or with levamisole, an anthelminthic with immunomodulatory activity, appeared to be superior to FUra alone. At the preclinical level combinations of fluoropyrimidines with, e.g. interferons or L-histidinol were demonstrated to be interesting candidates for further testing. The future therapeutic utility of fluoropyrimidines will depend on both the improvement of combination regimens currently used in the treatment of cancer patients and the judicious clinical implementation of promising experimental modulation strategies. Moreover, novel fluoropyrimidines with superior pharmacological properties may become important as part of or instead of modulation approaches.
Collapse
Affiliation(s)
- G Weckbecker
- Preclinical Research Sandoz Pharma Ltd, Basel, Switzerland
| |
Collapse
|
16
|
Gendimenico GJ, Haugaard N. Adverse effects of hyperbaric oxygen on [3H]uridine incorporation and uridine kinase activity in B104 rat neuroblastoma cells. Mol Cell Biochem 1990; 95:71-6. [PMID: 2164139 DOI: 10.1007/bf00219532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of hyperbaric oxygen on uracil nucleotide metabolism in B104 rat neuroblastoma cells were investigated. Cells exposed to 10 atm O2 for 4 h incorporated markedly less [3H]uridine into the acid-soluble fraction and RNA compared to cells kept in ambient air. The acid-soluble fraction of the oxygen-treated cells contained less total [3H]uridine phosphates ([3H]UMP + [3H]UDP + [3H]UTP) than air-treated cells. Uridine kinase activity, assayed in cytosolic extracts from cells exposed to 10 atm O2 for 4 h, was decreased by 46% compared to the air controls. The reduced enzyme activity which appears to account for the depressed [3H]uridine incorporation, may contribute to the lethal effects of oxygen in these cells.
Collapse
Affiliation(s)
- G J Gendimenico
- Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6084
| | | |
Collapse
|
17
|
Plagemann PG, Woffendin C. Dideoxycytidine permeation and salvage by mouse leukemia cells and human erythrocytes. Biochem Pharmacol 1989; 38:3469-75. [PMID: 2554924 DOI: 10.1016/0006-2952(89)90116-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transmembrane equilibration of dideoxycytidine (ddCyd) in P388 mouse leukemia cells and human erythrocytes was only 1% as rapid as that of uridine and 2'-deoxycytidine which is mediated by the facilitated nucleoside transporter of these cells. ddCyd entry was nonsaturable up to a concentration of 1 mM but was partially inhibited by dipyridamole, nitrobenzylthioinosine and nucleosides, but not by nucleobases. Thus, entry was partly (70-80%) mediated, though very inefficiently, by the nucleoside carrier. Intracellular phosphorylation of ddCyd in P388 cells was also very inefficient compared to that of 2'-deoxycytidine and uridine and not rate limited by its slow entry into the cells.
Collapse
Affiliation(s)
- P G Plagemann
- Department of Microbiology, University of Minnesota, Medical School, Minneapolis 55455
| | | |
Collapse
|
18
|
Plagemann PG, Woffendin C. Na+-dependent and -independent transport of uridine and its phosphorylation in mouse spleen cells. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 981:315-25. [PMID: 2730909 DOI: 10.1016/0005-2736(89)90043-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rapid kinetic techniques were used to study the transport and salvage of uridine and other nucleosides in mouse spleen cells. Spleen cells express two nucleoside transport systems: (1) the non-concentrative, symmetrical, Na+-independent transporter with broad substrate specificity, which has been found in all mammalian cells and is sensitive to inhibition by dipyridamole and nitrobenzylthioinosine; and (2) a Na+-dependent nucleoside transport, which is specific for uridine and purine nucleosides and resistant to inhibition by dipyridamole and nitrobenzylthioinosine. The kinetic properties of the two transporters were determined by measuring uridine influx in ATP-depleted cells and dipyridamole-treated cells, respectively. The Michaelis-Menten constants for Na+-independent and -dependent transport were about 40 and 200 microM, respectively, but the first-order rate constants were about the same for both transport systems. Nitrobenzylthioinosine-sensitivity of the facilitated nucleoside transporter correlated with the presence of about 10,000 high-affinity (Kd = 0.6 nM) nitrobenzylthioinosine-binding sites per cell. The turnover number of the nitrobenzylthioinosine-sensitive nucleoside transporter was comparable to that of mouse P388 leukemia cells. The activation energy of this transporter was 20 kcal/mol. Entry of uridine via either of the transport routes was rapidly followed by its phosphorylation and conversion to UTP. The Michaelis-Menten constant for the in situ phosphorylation of uridine was about 50 microM and the first-order rate constants for phosphorylation and transport were about the same. The spleen cells also efficiently salvaged adenosine, adenine, and hypoxanthine, but not thymidine.
Collapse
Affiliation(s)
- P G Plagemann
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
19
|
Avramis VI. Pharmacodynamics and proposed mechanism of therapeutic action and host toxicity of 9-beta-D-arabinofuranosyl-2-fluoroadenine monophosphate (F-araAMP) in P388 murine leukemia-bearing mice. Cancer Invest 1989; 7:129-37. [PMID: 2477118 DOI: 10.3109/07357908909038280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cellular metabolism of 9-beta-D-arabinofuranosyl-2-fluoroadenine 5'monophosphate (F-araAMP), a soluble nucleoside analog with proven antileukemic activity in animal and human tumors, has been studied in mice bearing P388 leukemia. Earlier studies showed markedly less in vivo accumulation of F-ara ATP the principal active metabolite, in gastrointestinal mucosa (GI) and bone marrow (BM) compared with P388 after F-araA or F-araAMP administration. To elucidate the mechanism of toxicity this work has examined the pharmacodynamics of F-araAMP anabolites, F-araATP and F-ATP, in P388 cells, BM and GI mucosa tissues after nontoxic (LD1) and toxic (LD50) doses of F-araAMP. F-araATP was the major triphosphate metabolite in acid-soluble extracts from P388 cells, BM, and GI mucosa tissues. F-araATP accumulated to approximately 1 mM in P388 cells after either LD1 or LD50 treatment of F-araAMP and was eliminated with a t1/2,el of approximately 5 h. The ratio of the area under the concentration-time curve (AUC 0----infinity) of F-araATP was 1.01 after the LD50 over the LD1 doses of F-araAMP. BM and GI mucosa tissues accumulated 40-fold less F-araATP than the concentration in P388 cells. 2-Fluoro-ATP, a second toxic anabolite, accumulated in P388 cells to 156 +/- 39 microM and 447 +/- 79 microM after the two doses of the drug, respectively. The ratio of area under the curve (AUC) of F-ATP in P388 cells after the two doses of F-araAMP was 38.77, which approaches the ratio of % lethality (LD50/LD1 = 50). F-ATP was also quantitated in BM and GI mucosa reaching one-fifth to one-half the concentration of F-araATP after the LD50 dose of F-araAMP. The AUC values of F-ATP (0----24 h) were 9.5- to 12.5-fold higher after the LD50 than after the LD1 dose of F-araAMP. These results suggest that there is a selective therapeutic action of F-araAMP against P388 and that the increased cellular concentration of F-ATP in both the tumor cells and the host tissues (BM and GI mucosa) could explain the mode of toxicity of F-araAMP.
Collapse
Affiliation(s)
- V I Avramis
- University of Southern California, School of Medicine, Department of Pediatrics
| |
Collapse
|
20
|
|
21
|
Belt JA, Noel LD. Isolation and characterization of a mutant of L1210 murine leukemia deficient in nitrobenzylthioinosine-insensitive nucleoside transport. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68317-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Plagemann PG, Woffendin C. Species differences in sensitivity of nucleoside transport in erythrocytes and cultured cells to inhibition by nitrobenzylthioinosine, dipyridamole, dilazep and lidoflazine. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 969:1-8. [PMID: 3349106 DOI: 10.1016/0167-4889(88)90081-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differences in sensitivity of uridine transport in erythrocytes and cultured cells to inhibition by dipyridamole, dilazep and lidoflazine were largely species-specific; uridine transport in human cells, and probably in pig and rabbit cells, was 2-3- and 10-times more sensitive to inhibition by dipyridamole (IC50 approx. 50 nM) and about 10- and 20-times more sensitive to dilazep inhibition (IC50 approx. 5 nM) than transport in mouse and rat cells, respectively. Uridine transport in human erythrocytes and HeLa cells was strongly inhibited by lidoflazine (IC50 10-140 nM), whereas that in both mouse and rat cells was highly resistant (IC50 greater than 10 microM). Superimposed on species-specific differences were some cell type specific differences in sensitivity of nucleoside transport to these inhibitors. Uridine transport in Walker 256 rat carcinoma cells was more resistant to dipyridamole and dilazep than that of other rat cells. Transport in human Hep-2 cells was more resistant to lidoflazine (IC50 2000 nM) than that of human erythrocytes and HeLa cells, whereas it showed similar sensitivity to dilazep and dipyridamole. Uridine transport in Chinese hamster cells was also more resistant to dilazep than that of baby hamster kidney cells. In addition HeLa cells and clones thereof expressed uridine transporters (about 50% each) with difference of about 1000-fold in sensitivity to inhibition by dilazep (IC50 approx. 5 nM and 5 microM, respectively).
Collapse
Affiliation(s)
- P G Plagemann
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
23
|
Abstract
This article summarizes recent studies characterizing nucleoside transport in mammalian cells and discusses evidence for a role of membrane transport in the pharmacologic action of nucleoside analogues. Some of these studies have also addressed the controversy concerning the multiplicity in transport routes. It seems clear that erythrocytes and, perhaps, some other mammalian cells possess a single, broadly specific system for transporting nucleosides. However, substantial evidence from valid studies discriminating between transport and intracellular metabolism suggests that at least some mammalian cells, including some tumor cells, possess more than a single system. Evidence now exists for a determining role of membrane transport of nucleoside analogues in their cytotoxicity and, in the case of one pyrimidine nucleoside (AraC), in therapeutic responsiveness in leukemic patients. There are also numerous examples of transport-related resistance to nucleoside analogues. Included in this article are the results of studies from the authors' laboratory pertaining to the therapeutic activity of the purine nucleoside, FAraA, in murine tumor models. These studies provide evidence for a determining role of both membrane transport and intracellular phosphorylation in the selective antitumor action of this agent against murine leukemia. Substantially increased transport inward of FAraA occurs at pharmacologically achievable concentrations of this agent in tumor cells as compared to drug-limiting, normal proliferative epithelium of the small intestine. The basis for this differential appears to be the kinetic duality of FAraA and adenosine transport inward found in tumor cells, but not in proliferative intestinal epithelial cells. Tumor cells have highly saturable (low influx Km) and poorly saturable (high influx Km) systems for adenosine transport, both of which are shared by FAraA. In contrast, proliferative epithelial cells have only a poorly saturable system for these substrates. If a similar kinetic duality of nucleoside transport is found in other tumor cells certain implications arise concerning the significance of the duality to neoplastic transformation.
Collapse
Affiliation(s)
- F M Sirotnak
- Laboratory for Molecular Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021
| | | |
Collapse
|
24
|
Plagemann PG, Woffendin C. Effects of Ca2+-channel antagonists on nucleoside and nucleobase transport in human erythrocytes and cultured mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 928:243-50. [PMID: 3567229 DOI: 10.1016/0167-4889(87)90182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lidoflazine strongly inhibited the equilibrium exchange of uridine in human erythrocytes (Ki approximately 16 nM). Uridine zero-trans influx was similarly inhibited by lidoflazine in cultured HeLa cells (IC50 approximately to 80 nM), whereas P388 mouse leukemia and Novikoff rat hepatoma cells were three orders of magnitude more resistant (IC50 greater than 50 microM). Uridine transport was also inhibited by nifedipine, verapamil, diltiazem, prenylamine and trifluoperazine, but only at similarly high concentrations in both human erythrocytes and the cell lines. IC50 values ranged from about 10 microM for nifedipine and about 20 microM for verapamil to more than 100 microM for diltiazem, prenylamine and trifluoperazine. The concentrations required for inhibition of nucleoside transport are several orders higher than those blocking Ca2+ channels. Lidoflazine competitively inhibited the binding of nitrobenzylthioinosine to high-affinity sites in human erythrocytes, but did not inhibit the dissociation of nitrobenzylthioinosine from these sites on the transporter as is observed with dipyridamole and dilazep.
Collapse
|
25
|
Markman M, Chan TC, Cleary S, Howell SB. Phase I trial of combination therapy of cancer with N-phosphonacetyl-L-aspartic acid and dipyridamole. Cancer Chemother Pharmacol 1987; 19:80-3. [PMID: 3815730 DOI: 10.1007/bf00296262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While N-phosphonacetyl-L-aspartic acid (PALA), an inhibitor of de novo pyrimidine biosynthesis, demonstrated a unique spectrum of activity during preclinical drug evaluation, multiple clinical trials have shown it to possess minimal clinical activity. One explanation for the disappointing results is the possibility that tumor cells are able to utilize circulating uridine in the synthesis of pyrimidines (salvage pathway). Dipyridamole, an inhibitor of nucleoside transport, has been demonstrated experimentally to potentiate the cytotoxicity of PALA significantly. In addition, this agent has a long safety record when used clinically in man. A phase I trial of this two-drug combination was therefore conducted, with a fixed oral dose of dipyridamole (50 mg/m2 every 6 h) and an escalating i.v. dose of PALA administered every 3 weeks. The dose-limiting toxicity with this schedule was diarrhea and abdominal cramping pain at a PALA dose of 3900-4200 mg/m2. Among the 65 patients participating in this trial 4 objective responses (2 partial, 2 minimal) were observed. Because of the potential for unique clinical synergy between PALA and dipyridamole further investigation should be considered.
Collapse
|
26
|
Plagemann PG, Kraupp M. Inhibition of nucleoside and nucleobase transport and nitrobenzylthioinosine binding by dilazep and hexobendine. Biochem Pharmacol 1986; 35:2559-67. [PMID: 3741459 DOI: 10.1016/0006-2952(86)90054-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transport of 500 microM uridine by human erythrocytes and S49, P388 and L1210 mouse leukemia cells, Chinese hamster ovary (CHO) cells and Novikoff rat hepatoma cells was inhibited strongly by dilazep and hexobendine with similar concentration dependence, but the sensitivity of transport in the various cell types varied greatly; IC50 values ranged from 5-30 nM for human erythrocytes and S49 and P388 cells to greater than 1 microM for CHO and Novikoff cells. The binding of nitrobenzylthioinosine (NBTI) to high-affinity sites on these cells (Kd approximately equal to 0.5 nM) was inhibited by hexobendine and dilazep in a similar pattern. Furthermore, these drugs, just as dipyridamole and papaverine, inhibited the dissociation of NBTI from high-affinity binding sites but only at concentrations 10-100 times higher than those inhibiting uridine transport. In contrast, high uridine concentrations (greater than 2 mM) accelerated the dissociation of NBTI. Dilazep also inhibited the transport of hypoxanthine, but only in those cell lines whose transporter is sensitive to inhibition by uridine and dipyridamole. Adenine transport was not inhibited significantly by dilazep in any of the cell lines tested, except for a slight inhibition in Novikoff cells. [14C]Hexobendine equilibrated across the plasma membrane in human erythrocytes within 2 sec of incubation at 25 degrees, but accumulated to 6-10 times the extracellular concentration in cells of the various cultured lines. Uptake was not affected by high concentrations of uridine, NBTI or dipyridamole. Hexobendine inhibited the growth of various cell lines to a lesser extent (IC50 = greater than or equal to 100 microM) than dipyridamole (IC50 = 15-40 microM). At 40 microM, however, it completely inhibited the growth of S49 cells that had been made nucleoside dependent by treatment with methotrexate or pyrazofurin.
Collapse
|
27
|
Belt JA, Noel LD. Nucleoside transport in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. Differences in sensitivity to nitrobenzylthioinosine and thiol reagents. Biochem J 1985; 232:681-8. [PMID: 3004414 PMCID: PMC1152939 DOI: 10.1042/bj2320681] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The characteristics of nucleoside transport were examined in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. In Walker 256 cells the initial rates of uridine, thymidine and adenosine uptake were insensitive to the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR) (1 microM), but were partially inhibited by dipyridamole (10 microM), another inhibitor of nucleoside transport. In contrast, the transport of these nucleosides in S49 cells was completely blocked by both inhibitors. Nucleoside transport in Walker 256 and S49 cells also differed in its sensitivity to the thiol reagent p-chloromercuribenzenesulphonate (pCMBS). Uridine transport in Walker 256 cells was inhibited by pCMBS with an IC50 (concentration producing 50% inhibition) of less than 25 microM, and inhibition was readily reversed by beta-mercaptoethanol. In S49 cells uridine transport was only inhibited at much higher concentrations of pCMBS (IC50 approximately equal to 300 microM). In other respects nucleoside transport in Walker 256 and S49 cells were quite similar. The Km and Vmax. values for uridine transport were nearly identical, and the transporters of both cell lines appeared to accept a broad range of nucleosides as substrates. Uridine transport in Walker 256 cells was non-concentrative and did not require an energy source. These studies demonstrate that nucleoside uptake in Walker 256 cells is mediated by a facilitated-diffusion mechanism which differs markedly from that of S49 cells in its sensitivity to the transport inhibitor NBMPR and the thiol reagent pCMBS.
Collapse
|
28
|
Fernandez-Rivera-Rio L, Gonzalez-Garcia MR. The human erythrocyte ghost: a new experimental model for studying adenosine transport. Arch Biochem Biophys 1985; 240:246-56. [PMID: 4015103 DOI: 10.1016/0003-9861(85)90030-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous work on adenosine transport has always had problems with the interference of adenosine metabolism, due to its high metabolic rate and because the enzymes involved are consistently present in most tissues. A new experimental model for studying adenosine transport in human erythrocyte ghosts is presented in this work: Human erythrocyte ghosts were sealed in the presence of erythro-3(2-hydroxynonyl)adenine and P1-P5-di(adenosine)5'-pentaphosphate, inhibitors of adenosine deaminase and adenosine kinase, respectively. These ghosts proved to lack adenosine metabolism when incubated in [U-14C]adenosine at 10 microM concentration at lack 37 degrees C for 60 min. Ghosts were 99.4% sealed in the correct orientation and had constant intracellular water volume. With these characteristics, the erythrocyte ghost preparation has many advantages for studying adenosine transport without adenosine metabolism interference. Adenosine transport was studied following the technique of W. R. Lieb and W. D. Stein [(1974) Biochim. Biophys. Acta 373, 165-177, 178-196.] Experiments to study Zero-trans influx and efflux, equilibrium exchange, and infinite-trans influx and efflux are presented. Adenosine transport did not behave linearly in any of these experimental procedures. Adenosine basic kinetic constants, calculated according to the procedure of Lieb and Stein, were R1----2 = 4.1 X 10(-4), R2----1 = 3.97 X 10(-4), Ree = 1.94 X 10(-4), Roo = 6.08 X 10(-4), K1----2 = 125.67 microM, and K2----1 = 84.36 microM. Lieb and Stein rejection criteria were used to distinguish a simple pore from a simple carrier. The data accumulated indicate that adenosine transport is carried out by a system that satisfies the criteria used for the simple carrier model. Asymmetric behavior was observed indicating lower affinity of the carrier for adenosine influx, although Vmax values for influx and efflux were similar.
Collapse
|
29
|
Paterson AR, Harley ER, Cass CE. Inward fluxes of adenosine in erythrocytes and cultured cells measured by a quenched-flow method. Biochem J 1984; 224:1001-8. [PMID: 6525168 PMCID: PMC1144539 DOI: 10.1042/bj2241001] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dilazep, a vasodilator previously recognized as an inhibitor of adenosine permeation, very rapidly blocked the uptake of adenosine by cultured L5178Y cells, and accordingly was used as a quencher in a simple quenched-flow system for measuring cellular uptake of nucleosides during very short intervals. Time courses of cellular uptake of adenosine, assayed during intervals between 0.05 and 0.5s with the quenched-flow system, were linear and defined initial rates of adenosine uptake. The latter are rates of inward transport of adenosine. Kinetic constants for that process in cultured S49 cells determined with the quenched-flow procedure were similar to those determined with an assay dependent on manual timing. In studies of adenosine uptake kinetics in human erythrocytes at 22 degrees C and 37 degrees C in which the quenched-flow procedure was used, time courses of adenosine uptake were linear at both temperatures and defined initial uptake rates; kinetic constants (means +/- S.E.M.) at 22 degrees C (n = 8) were Km 25 +/- 14 microM and Vmax. 15 +/- 5 pmol/s per microliter of cell water and at 37 degrees C (n = 3) were Km 98 +/- 17 microM and Vmax. 80 +/- 9 pmol/s per microliter of cell water.
Collapse
|
30
|
Plagemann PG, Wohlhueter RM. Effect of sulfhydryl reagents on nucleoside transport in cultured mammalian cells. Arch Biochem Biophys 1984; 233:489-500. [PMID: 6541460 DOI: 10.1016/0003-9861(84)90472-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Incubation of Novikoff rat hepatoma cells; mouse L929, P388 and L1210 cells; and Chinese hamster ovary cells with sulfhydryl reagents, such as p-hydroxymercuribenzoate or p-hydroxymercuribenzenesulfonate, reduced the zero-trans influx of uridine in a concentration-dependent manner. The sensitivity of uridine transport to inhibition varied somewhat for the cell lines, Chinese hamster ovary cells being the most sensitive. Maximum inhibition by p-hydroxymercuribenzoate occurred in 10-20 min of incubation at 37 degrees C, and was associated with a decrease in maximum transport velocity without significant change in substrate affinity of the carrier. The development of inhibition of uridine influx correlated with binding of [14C]p-hydroxymercuribenzoate to the cells. Inhibition of transport also roughly correlated with a decreased binding of 6-nitrobenzylthioinosine to high-affinity binding sites on the cells (presumably representing the nucleoside transporter) without affecting binding affinity. Treatment of cells with p-hydroxymercuribenzenesulfonate reduced uridine influx and efflux to a similar extent. Inhibition of uridine transport and binding of [14C]p-hydroxymercuribenzoate were readily reversed by incubation of the cells with dithiothreitol. The results indicate that sulfhydryl groups are essential for the functioning of the nucleoside transporter, perhaps for the binding of substrate. Blockage of the sulfhydryl groups results in a reversible inactivation of the carrier. Treatment of the cells with the sulfhydryl reagents also caused a concentration-dependent increase in cell volume, which was readily reversed by incubation of the cells with dithiothreitol but seemed unrelated to the inhibition of nucleoside transport.
Collapse
|
31
|
Plagemann PG, Wohlhueter RM. Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 773:39-52. [PMID: 6733097 DOI: 10.1016/0005-2736(84)90548-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The zero-trans influx of 500 microM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine ( NBTI ) in a biphasic manner; 60-70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3-10 nM) and is designated NBTI -sensitive transport. The residual transport activity, designated NBTI -resistant transport, was inhibited by NBTI only at concentrations above 1 microM (ID50 = 10-50 microM). S49 cells exhibited only NBTI -sensitive uridine transport, whereas Novikoff cells exhibited only NBTI -resistant uridine transport. In all instances NBTI -sensitive transport correlated with the presence of between 7 7 X 10(4) and 7 X 10(5) high-affinity NBTI binding sites/cell (Kd = 0.3-1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI -resistant and NBTI -sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI -sensitive and an NBTI -resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI . The latter site seems to be unavailable in NBTI -resistant transporters. The proportion of NBTI -resistant and sensitive uridine transport was constant during proportion of NBTI -resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.
Collapse
|
32
|
Plagemann PG, Wohlhueter RM. Inhibition of the transport of adenosine, other nucleosides and hypoxanthine in novikoff rat hepatoma cells by methylxanthines, papaverine, N6-cyclohexyladenosine and N6-phenylisopropyladenosine. Biochem Pharmacol 1984; 33:1783-8. [PMID: 6203540 DOI: 10.1016/0006-2952(84)90350-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Theophylline, caffeine, isobutylmethylxanthine, papaverine, N6-cyclohexyladenosine, N6-allyl-N6-cyclohexyladenosine ( ACHA ) and N6-L-phenylisopropyladenosine (L-PIA) inhibited the transport of adenosine, uridine and hypoxanthine in Novikoff rat hepatoma cells. The IC50 values for the inhibition of uridine transport ranged from 5 microM for ACHA to 3200 microM for caffeine and were inversely proportional to the lipid solubility of the inhibitors. L-PIA and papaverine inhibited uridine influx in a non-competitive manner, having a greater influence on the Michaelis-Menten constant than on maximum velocity, just as observed previously for the inhibition of nucleoside transport by dipyridamole and hypoxanthine. [3H]L-PIA rapidly accumulated in Novikoff cells at 25 degrees to about five times higher levels than present extracellularly. The initial rates of L-PIA uptake were directly proportional to its extracellular concentration between 0.01 and 240 microM and not affected by structurally related analogs, methylxanthines, papaverine, dipyridamole, or 2 mM uridine, but were dependent on temperature. We conclude that L-PIA inhibits nucleoside transport in these cells without being significantly transported by the carrier, that it equilibrates rapidly across the plasma membrane without carrier mediation consistent with its lipophilicity, and that it accumulates concentratively in cells due to partitioning into membrane lipids and binding to intracellular components.
Collapse
|
33
|
Uddin M, Altmann GG, Leblond CP. Radioautographic visualization of differences in the pattern of [3H]uridine and [3H]orotic acid incorporation into the RNA of migrating columnar cells in the rat small intestine. J Cell Biol 1984; 98:1619-29. [PMID: 6202697 PMCID: PMC2113200 DOI: 10.1083/jcb.98.5.1619] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after [3H]uridine injection or by the de novo pathway as shown after [3H]orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium--that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either [5-3H]uridine or [5-3H]orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloracetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after [3H]uridine and 72% after [3H]orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A+ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after [3H] uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant. After [3H]-orotic acid injection, the number of silver grains over the nucleolus was negligible at all levels, whereas over the nucleoplasm the number was low in crypt cells, but high in villus cells with a peak in mid villus. The interpretation is that, except for a small amount of label incorporated into DNA from either precursor by crypt cells, the bulk of the label is incorporated into RNA as follows. In the crypts, cells make almost exclusive use of uridine, that is, of the salvage pathway, for the synthesis of ribosomal RNA in the nucleolus and of messenger and transfer RNA in the nucleoplasm. However, when cells pass from crypt to villus, they mainly utilize orotic acid--i.e., the de novo pathway--for the synthesis of messenger and transfer RNA within the nucleoplasm.
Collapse
|
34
|
Abstract
The hypothesis that inhibition of adenosine uptake may play an important role in the central actions of the benzodiazepines is presented. The evidence supporting this hypothesis is discussed. Brain concentrations of the benzodiazepines are adequate for inhibition of adenosine uptake. Benzodiazepines, such as RO15-1788 and RO5-4864, which do not enhance gamma-aminobutyric acid binding, may exert some of their central effects by inhibiting the uptake of adenosine.
Collapse
|
35
|
Shopsis C, Sathe S. Uridine uptake inhibition as a cytotoxicity test: correlations with the Draize test. Toxicology 1984; 29:195-206. [PMID: 6695382 DOI: 10.1016/0300-483x(84)90021-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effects of 25 xenobiotic chemicals on the uptake of [3H]-uridine by Balb/c 3T3 cells were assessed. The test compounds, which included alcohols, ethers, esters, ketones, amides, acids and a detergent, inhibited uridine uptake at concentrations lower than those required to kill the cells; thus uridine uptake inhibition is a more sensitive indicator of toxic action than is cell lethality. The concentration of agent required to induce a 50% inhibition in uridine uptake rates after 4 h of treatment was determined for each agent, and this value (UI-50) was used to rank the potency of the test agents. This ranking correlated well with published data on the chemicals' capacity to induce ocular irritation in rabbits (the Draize test). Combinations of agents with differing functional groups produced additive uridine uptake inhibitory effects, suggesting the utility of this approach for the analysis of mixtures. Cells treated with levels of agents that reduced uridine uptake by 60-80% were able to recover most of their uridine uptake capacity after refeeding, indicating that the test shares with in vivo tests the ability to demonstrate recovery from toxic insult. This uridine uptake assay system provides a quantitative and rapid method for assessing toxicity that correlates well with Draize test results.
Collapse
|
36
|
Jarvis SM, Janmohamed SN, Young JD. Kinetics of nitrobenzylthioinosine binding to the human erythrocyte nucleoside transporter. Biochem J 1983; 216:661-7. [PMID: 6667262 PMCID: PMC1152559 DOI: 10.1042/bj2160661] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The kinetics of [3H]nitrobenzylthioinosine binding to human erythrocyte membranes was studied. The pseudo-first-order association was linear and consistent with a simple bimolecular reaction mechanism between nitrobenzylthioinosine and the nucleoside-transport mechanism. Dissociation of the [3H]nitrobenzylthioinosine complex at 22 degrees C was also linear (apparent k-1 congruent to 0.20 min-1). Adenosine was a competitive inhibitor of equilibrium high-affinity [3H]nitrobenzylthioinosine-binding activity (apparent Ki 0.1 mM). Dissociation of the [3H]nitrobenzylthioinosine-membrane complex was faster in the presence of adenosine and uridine, and this effect was proportional to the nucleoside concentration. Nucleoside concentrations less than 1 mM had no significant effect on the dissociation rate constant. In contrast, dissociation was slower in the presence of high concentrations (micromolar) of dipyridamole. Low concentrations of dipyridamole (2-200 nM) and nitrobenzylthioinosine concentrations as high as 2.5 microM had no effect on the rate of [3H]nitrobenzylthioinosine dissociation. These results are discussed in terms of possible distinct inhibitor and permeation sites, and are suggested to be consistent with both a single-site model for the binding of nitrobenzylthioinosine and permeant to the same site, or an allosteric-site model in which permeant and inhibitor bind to different sites.
Collapse
|
37
|
Gewert DR, Moore G, Clemens MJ. Inhibition of cell division by interferons. The relationship between changes in utilization of thymidine for DNA synthesis and control of proliferation in Daudi cells. Biochem J 1983; 214:983-90. [PMID: 6194788 PMCID: PMC1152341 DOI: 10.1042/bj2140983] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inhibition of the proliferation of Daudi cells by exposure to human lymphoblastoid interferons is associated with an early and marked decrease in the incorporation into DNA of exogenous [3H]thymidine when cells are incubated with trace amounts of this precursor. In contrast, incorporation of exogenous deoxyadenosine into DNA is unchanged under the same conditions. Interferon treatment results in a lowering of thymidine kinase activity, an effect which may be largely responsible for the inhibition of incorporation of labelled thymidine into DNA. At higher concentrations of exogenous thymidine, which minimize the contribution of intracellular sources to the dTTP pool, the inhibition of thymidine incorporation is abolished. Under conditions in which exogenous thymidine is rigorously excluded from the medium or, conversely, in which cells are entirely dependent on exogenous thymidine for growth, the magnitude of the inhibition of cell proliferation by interferons is the same as under normal culture conditions. We conclude that, even though cell growth is impaired, the rate of DNA synthesis is not grossly inhibited up to 48 h after commencement of interferon treatment. Furthermore, changes in neither the utilization of exogenous thymidine nor the synthesis of nucleotides de novo are responsible for the effect on cell proliferation.
Collapse
|
38
|
Plagemann PG, Wohlhueter RM. Adenosine and tubercidin binding and transport in Chinese hamster ovary and Novikoff rat hepatoma cells. J Cell Physiol 1983; 116:247-55. [PMID: 6863404 DOI: 10.1002/jcp.1041160217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The uptake of adenosine and tubercidin by control and ATP-deleted wild-type and adenosine kinase-deficient cells was measured by rapid kinetic techniques. Adenosine deamination was inhibited by pretreatment with 2-deoxycoformycin. Control wild-type cells phosphorylated adenosine so rapidly that the kinetics of transport per se could not be assessed unambiguously. ATP depletion and adenosine kinase deficiency did not abolish the conversion of adenosine to nucleotides, but reduced it to such an extent that initial velocities of uptake could be safely construed as transport velocities in both zero-trans and equilibrium exchange modes. The same was true for tubercidin, which was not phosphorylated in adenosine kinase-deficient cells. It accumulated intracellularly, however, to concentrations 50 to 120% higher than those in the extracellular space, apparently due to binding to some intracellular component(s). Binding was not saturated up to a concentration of 200 microM, but seemed to be slow relative to transport. Fits of appropriate integrated rate equations based on the simple carrier model to uptake time courses obtained under these conditions yielded Michaelis-Menten constants for adenosine and tubercidin transport of 100 to 200 microM and maximum velocities of 10 to 30 pmol/microliters cell H2O . sec, whereas the rate of intracellular phosphorylation was maximal at concentrations between 2 and 8 microM. The first-order rate constant (Vmax/Km) for adenosine phosphorylation, however, seemed to be appreciably higher than that for its transport. This indicates that at physiological concentrations, which fall in the first-order range for both processes, adenosine trapping is very efficient. Adenosine, tubercidin, tricyclic nucleoside, 2'-deoxyadenosine, and 3'-deoxyadenosine all inhibited uridine and thymidine transport to about the same extent, whereas pyrazofurin was significantly less effective.
Collapse
|
39
|
Wohlhueter RM, Brown WE, Plagemann PG. Kinetic and thermodynamic studies on nitrobenzylthioinosine binding to the nucleoside transporter of Chinese hamster ovary cells. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 731:168-76. [PMID: 6849914 DOI: 10.1016/0005-2736(83)90006-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding of [G-3H]nitrobenzylthioinosine to intact Chinese hamster ovary cells has been studied kinetically and thermodynamically. The association of nitrobenzylthioinosine with cells is a second-order process which proceeds at 24 degrees C with a rate constant of 2 X 10(7) M-1 X S-1. Dissociation of the complex was characterized as a simple first-order process with rate constant on the order of 7 X 10(-3)S-1. The quotient of these is comparable to the dissociation constant as measured in equilibrium binding studies, 2.2 X 10(-10) M. The temperature dependence of the rate of association indicated an Arrhenius activation energy of 8.4 kcal X mol-1, while that of the equilibrium constant for dissociation indicated a standard enthalpy change of 8.8 kcal X mol-1. The large increase in affinity of nitrobenzylthioinosine as compared to natural nucleosides is attributable to an entropy-driven interaction with the binding site. Thymidine, dipyridamole and papaverine each decrease the apparent dissociation constant for the nitrobenzylthioinosine-cell complex; the latter, inhibitors of nucleoside transport, decrease the rate of dissociation of the complex.
Collapse
|
40
|
|
41
|
Whitehouse RO, Schauer IE, Bryant RE. Isolation by tritium suicide of uridine-cytidine kinase-defective mutants in Chinese hamster V79 cells. Exp Cell Res 1982; 142:451-5. [PMID: 6293853 DOI: 10.1016/0014-4827(82)90387-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Wohlhueter RM, Plagemann PG. On the functional symmetry of nucleoside transport in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 689:249-60. [PMID: 7115709 DOI: 10.1016/0005-2736(82)90257-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transport of uridine and thymidine has been examined in HeLa cells, in Novikoff rat hepatoma cells and in human erythrocytes, with the purpose of comparing influx, efflux and isotopic exchange at chemical equilibrium. The results support the following conclusions: (i) In all three cell types influx and efflux are comparable; (ii) HeLa and Novikoff cells show no trans-effect, while erythrocytes show a 5-fold trans-stimulation; (iii) a single kinetic entity accounts for nucleoside transport in HeLa and Novikoff cells - no parallel routes of permeation with Km less than 40 microM were detected. For the cultured cells, the flux data conform to the kinetic model of a single, carrier-mediated transport system symmetrical with respect to direction, and with equal mobilities of substrate-loaded and empty carrier.
Collapse
|
43
|
Eilam Y, Ariel M, Grossowicz N. Effect of insulin on folic-acid transport in cultured fibroblasts. J Cell Physiol 1982; 111:218-22. [PMID: 7045144 DOI: 10.1002/jcp.1041110215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uptake of folic acid was measured in secondary cultures of skin fibroblasts from fetal rats. The cultures were made quiescent by 24 hours preincubation in medium containing 1% serum and subsequent 3 hours preincubation in phosphate buffered saline. The uptake of 3H-folic acid was linear with time during 15 seconds and reached a plateau level at 2-3 minutes. There was no further increase in the intracellular radioactivity until the end of the experiments at 10 minutes. The uptake of folic acid in fibroblasts was not concentrative and proceeded until equilibration with the extracellular concentration. Intracellular metabolic conversion of folic acid was not significant during the time of experiments (up to 10 minutes). Insulin caused a two-fold increase in the initial rate of folate uptake as determined from the 15 second uptake values. The dose response curves for the insulin effect showed that 85% of the maximal effect was exerted by 1 microM insulin. A lag period of 7-10 minutes was observed after the addition of insulin and before the effect on folic acid uptake was manifested. Thereafter the effect increased with the time of preincubation with insulin. The concentration dependence of folate uptake yielded non homogeneous curves. At low concentrations of substrate, saturable components were observed while at high concentrations (above 5 X 10(-6) M) a linear component was observed. Insulin increased the slope of the linear component and the Vmax of the saturable component while the Km remained unaltered.
Collapse
|
44
|
Loike JD. VP16-213 and podophyllotoxin. A study on the relationship between chemical structure and biological activity. Cancer Chemother Pharmacol 1982; 7:103-11. [PMID: 7044591 DOI: 10.1007/bf00254530] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
VP16-213, a semi-synthetic derivative of podophyllotoxin, is an effective antitumor agent in the treatment of a variety of leukemias and solid tumors. A comparison of the mechanism of action of VP16-213 and podophyllotoxin has revealed that although both drugs inhibit the uptake of nucleosides into HeLa cells, they exhibit other biological properties which are quite distinct. Podophyllotoxin is a potent inhibitor of microtubule assembly in vitro, while VP16-213 has no effect in this system. VP16-213 induces single stranded breaks in HeLa cells DNA, an effect which may be related to its antitumor activity. In contrast to VP16-213 treated cells, podophyllotoxin-treated cells maintain DNA integrity. Structure-activity relationship studies have identified some of chemical sites of VP16-213 and podophyllotoxin responsible for each of their biological properties. These studies illustrate that chemical modification of podophyllotoxin can generate derivatives which possess new and unique biological properties.
Collapse
|
45
|
Ribose-1-P is the essential precursor for nucleic acid synthesis in animal cells growing on uridine in the absence of sugar. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34963-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Cass CE, Kolassa N, Uehara Y, Dahlig-Harley E, Harley ER, Paterson AR. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport-deficient mouse lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 649:769-77. [PMID: 7317429 DOI: 10.1016/0005-2736(81)90182-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cells of an adenosine-resistant clone (AE1) of S49 mouse lymphoma cells were compared with cells of the parental line with respect to (a) characteristics of nucleoside transport, (b) high affinity binding of the inhibitor of nucleoside transport, nitrobenzylthioinosine (NBMPR), and (c) the antiproliferative effects of the nucleoside antibiotics, tubercidin, arabinosyladenine and showdomycin. Rates of inward transport of uridine, thymidine, adenosine, 2'-deoxyadenosine, tubercidin, showdomycin, and arabinosyladenine in AE1 cells were less than 1% of those in cells of the parental S49 line. The inhibitor of nucleoside transport, NBMPR, reduced rates of inward nucleoside transport in S49 cells to levels comparable to those seen in the transport-defective mutant. S49 cells possessed high affinity sites that bound NBMPR (6.6 X 10(4) sites/cell, Kd = 0.2 nM), whereas site-specific binding of NBMPR to AE1 cells was not demonstrable, indicating that loss of nucleoside transport activity in AE1 cells was accompanied by loss of the high affinity NBMPR binding sites. Relative to S49 cells, AE1 cells were resistant to the antiproliferative effects of tubercidin and showdomycin, but differences between the two cell lines in sensitivity toward arabinosyladenine were minor, suggesting that nucleoside transport activity was required for cytotoxicity of tubercidin and showdomycin, but not for that of arabinosyladenine.
Collapse
|
47
|
Wierda D, Pazdernik TL. Uridine transport in concanavalin A- and lipopolysaccharide-activated mouse lymphocytes. Biochem Pharmacol 1981; 30:3295-303. [PMID: 7326038 DOI: 10.1016/0006-2952(81)90602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Dahlig-Harley E, Eilam Y, Paterson AR, Cass CE. Binding of nitrobenzylthioinosine to high-affinity sites on the nucleoside-transport mechanism of HeLa cells. Biochem J 1981; 200:295-305. [PMID: 6280683 PMCID: PMC1163535 DOI: 10.1042/bj2000295] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nitrobenzylthioinosine (NBMPR) binds reversibly, but with high affinity (Kd 0.1--1.2 nM), to inhibitory sites on nucleoside-transport elements of the plasma membrane in a variety of animal cells. The present study explored relationships in HeLa cells between NBMPR binding and inhibition of uridine transport. The Km value for inward transport of uridine by HeLa cells in both suspension and monolayer culture was about 0.1 mM. The affinity of the transport-inhibitory sites for uridine (Kd 1.7 mM), inosine (Kd 0.4 mM) and other nucleoside permeants was low relative to that for NBMPR. The pyrimidine homologue of NBMPR, nitrobenzylthiouridine, also exhibited low affinity for the NBMPR-binding sites. Pretreatment of HeLa cells with p-chloromercuribenzene sulphonate (p-CMBS) or N-ethylmaleimide (NEM) decreased binding of NBMPR to its high-affinity sites and inhibited uridine transport, indicating the presence of thiol groups essential to both processes. NEM, a more penetrable reagent than p-CMBS, inhibited binding and transport at much lower concentrations than the latter compound. Pretreatment of cells with concentrations of p-CMBS that alone had no effect on either NBMPR binding or uridine transport increased the sensitivity of transport to NBMPR inhibition and changed the shape of the NBMPR concentration-effect curve, suggesting synergistic inhibiton of uridine-transport activity by these two agents.
Collapse
|
49
|
Abstract
The rate of uptake of the nucleoside uridine increases within minutes after adding a growth stimulus to quiescent 3T3 cells. We have previously shown this uptake rate to be highly sensitive to changes in the intracellular concentration of Mg2+. In the present paper, the alteration of uptake by Mg2+ is shown to occur at the phosphorylation step - the same point at which serum acts to modulate uridine uptake. The serum stimulation of uridine uptake can be mimicked by Mg2+ alone or blocked by partially depleting cells of their Mg2+. Work with cell-free extracts shows that the uridine kinase enzyme responds to Mg2+ in a manner similar to that exhibited by whole cells whose concentrations of Mg2+ have been raised. In addition, the enzyme's inhibition by ATP is relieved by raising the Mg2+ concentration. Thymidine uptake, a reaction which does not respond quickly to mitogenic stimulation, is unaffected by alterations in Mg2+ concentration. These results are discussed in terms of a possible role for Mg2+ as an intracellular regulator of uridine uptake and other reactions of the coordinate response of cells to external effectors.
Collapse
|
50
|
Prasad R, Shopsis C, Hochstadt J. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 643:306-18. [PMID: 7225383 DOI: 10.1016/0005-2736(81)90076-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both enzyme-mediated group translocation and facilitated diffusion have been proposed as mechanisms by which mammalian cells take up purine bases and nucleosides. We have investigated the mechanisms for hypoxanthine and inosine transport by using membrane vesicles from Chinese hamster ovary cells (CHO), Balb/c 3T3 and SV3T3 cells prepared by identical procedures. Uptake mechanisms were characterized by analyzing intravesicular contents, determining which substrates could exchange with the transport products, assaying for hypoxanthine phosphoribosyltransferase activity, and measuring the stimulation of uptake of hypoxanthine by phosphoribosyl pyrophosphate (PRib-PP). We found that the uptake of hypoxanthine in Balb 3T3 vesicles was stimulated 3--4-fold by PRib-PP. The intravesicular product was predominantly IMP. The hypoxanthine phosphoribosyltransferase activity copurified with the vesicle preparation. These results suggest the possible involvement of this enzyme in hypoxanthine uptake in 3T3 vesicles. In contrast to the 3T3 vesicles, CHO vesicles prepared under identical procedures did not retain hypoxanthine phosphoribosyltransferase activity and did not demonstrate PRib-PP-stimulated hypoxanthine uptake. The intravesicular product of hypoxanthine uptake in CHO vesicles was hypoxanthine. These results and data from our kinetic and exchange studies indicated that CHO vesicles transport hypoxanthine via facilitated diffusion. An analogous situation was observed for inosine uptake; CHO vesicles accumulated inosine via a facilitated diffusion mechanism, while in the same experiments SV3T3 vesicles exhibited a purine nucleoside phosphorylase-dependent translocation of the ribose moiety of inosine. Vesicles prepared from a CHO cell line temperature-sensitive for hypoxanthine uptake (Azarts) showed a temperature-sensitivity in Km for uptake parallel to that of the intact cells. This suggests that the defect in Azarts may be caused by a missense mutation in the gene coding for the hypoxanthine transport carrier.
Collapse
|