1
|
Eton D, Zhou G, He TC, Bartholomew A, Patil R. Filgrastim, fibrinolysis, and neovascularization. J Tissue Eng Regen Med 2022; 16:496-510. [PMID: 35175691 PMCID: PMC9302657 DOI: 10.1002/term.3284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Segmental recanalization of chronically occluded arteries was observed in patients with chronic limb-threatening ischemia (CLTI) treated with Filgrastim, a granulocyte colony stimulating factor, every 72 h for up to a month, and an infra-geniculate programmed compression pump (PCP) for 3 h daily. Molecular evidence for fibrinolysis and neovascularization was sought. CLTI patients were treated with PCP alone (N = 19), or with Filgrastim and PCP (N = 8 and N = 6, at two institutions). Enzyme-Linked Immunosorbent Assay was used to measure the plasma concentration of plasmin and of fibrin degradation products (FDP), and the serum concentration of proteins associated with neovascularization. In the PCP-alone group, blood was sampled on Day 1 (baseline) and after 30 days of daily PCP. In the Filgrastim and PCP group, blood was drawn on Day 1, and 1 day after the 5th and the 10th Filgrastim doses. Each blood draw occurred before and after 2 h of supervised PCP. Significant (p < 0.01) PCP independent increases in the plasma concentration of plasmin (>10-fold) and FDP (>5-fold) were observed 1 day after both the 5th and the 10th Filgrastim doses, compared to Day 1. Significant (p < 0.05) increases in the concentration of pro-angiogenic proteins (e.g., HGF, MMP-9, VEGF A) were also observed. Filgrastim at this novel dosimetry induced fibrinolysis without causing acute hemorrhage, in addition to inducing a pro-angiogenic milieu conducive to NV. Further clinical testing is warranted at this novel dosimetry in CLTI, as well as in other chronically ischemic tissue beds. Trial registration. https://clinicaltrials.gov/ct2/show/NCT02802852.
Collapse
Affiliation(s)
- Darwin Eton
- Department of Surgery, University of Illinois Chicago, Chicago, Illinois, USA
| | - Guolin Zhou
- GCIS, University of Chicago, Chicago, Illinois, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Amelia Bartholomew
- Department of Surgery, College of Medicine Research, University of Illinois Chicago, Chicago, Illinois, USA
| | - Rachana Patil
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Ribatti D, Tamma R. Hematopoietic growth factors and tumor angiogenesis. Cancer Lett 2018; 440-441:47-53. [PMID: 30312730 DOI: 10.1016/j.canlet.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Angiogenesis is regulated by numerous "classic" factors such as vascular endothelial growth factor (VEGF) and many other endogenous "non-classic"peptides, including erythropoietin (Epo), and granulocyte-/granulocyte macrophage colony stimulating factor (G-/GM-CSF). The latter play an important regulatory role in angiogenesis, especially under pathological conditions and constitute a crosslink between angiogenesis and hematopoiesis. This article reviews studies on the ability of hematopoietic cytokines to affect several endothelial cell functions in tumor angiogenesis. These findings in all these studies support the hypothesis formulated at the beginning of this century that a common ancestral cell, the hemangioblast, gives rise to cells of both the endothelial and the hematopoietic lineages.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Grzywocz Z, Hoser G, Sabalinska S, Ladyzynski P, Czubak J, Dworczynska M, Debski R, Pius-Sadowska E, Machalinski B, Kawiak J. Response of human normal and leukemia cells to factors released by amnion fragments in vitro. PLoS One 2018; 13:e0195035. [PMID: 29596519 PMCID: PMC5875856 DOI: 10.1371/journal.pone.0195035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/15/2018] [Indexed: 11/18/2022] Open
Abstract
Amnion is a membrane surrounding the embryo/fetus which determine growth factors and interleukins with angiogenic, immunogenic, and anti-inflammatory properties. The aim of the present study was to investigate the effects of conditioned culture medium from 24-h cultures of human amnion (hAM CCM) on migration and proliferation of human umbilical vein endothelial primary cells (HUVECs), freshly isolated bone marrow mononuclear cells (BM MNCs), and Jurkat leukemia cell line. Amnion membrane was freshly isolated from healthy placenta and its fragments cultured in vitro to produce hAM CCM. Members of the IGFBP protein family made up one third of all assayed proteins present in the hAM medium. The hAM CCM did not affect the proliferation rate of HUVECs or MNCs, but we observed more intensive migration of those cells, and lower expression of CD31 surface antigen on HUVECs as compared to control cultures. In contrast, Jurkat cells did not respond to hAM CCM treatment by proliferation or mobility change. The conditioned medium from 24-h cultures of human amnion is easy to obtain and is a convenient source of various growth and other factors that may be useful in practical medicine.
Collapse
Affiliation(s)
- Zofia Grzywocz
- Department of Clinical Cytophysiology, Medical Centre of Postgraduate Education, Warsaw/Poland
| | - Grazyna Hoser
- Laboratory of Flow Cytometry, Medical Centre of Postgraduate Education, Warsaw/Poland
| | | | - Piotr Ladyzynski
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw/Poland
| | - Jaroslaw Czubak
- Clinic of Pediatric Orthopedy & Traumatology, Medical Centre of Postgraduate Education, Warsaw/Poland
| | | | - Romuald Debski
- Obstetrics and Gynecology Clinic, Bielanski Hospital, Warsaw/Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin/Poland
| | | | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Medical Centre of Postgraduate Education, Warsaw/Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw/Poland
- * E-mail:
| |
Collapse
|
4
|
Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther 2017; 8:203. [PMID: 28962669 PMCID: PMC5622478 DOI: 10.1186/s13287-017-0653-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSC) show remarkable therapeutic potential to repair tissue upon injury via paracrine signaling by secreting diverse trophic factors that promote angiogenesis. However, the mechanisms and signaling pathways that regulate the induction of these specific factors are still mostly unknown. Emerging evidence suggests that Sonic hedgehog (SHH) plays a central role in angiogenesis and tissue maintenance. However, its contribution to the angiogenic potential of MSC has not been fully addressed. The aim of this work was to characterize the expression of the SHH pathway components in WJ-MSC primary cultures and to evaluate their angiogenic responsiveness to SHH signaling. Methods Primary cell cultures obtained from human umbilical cords were treated with pharmacological modulators of the SHH pathway. We evaluated the modulation of diverse trophic factors in cell lysates, conditioned medium, and functional in vitro assays. In addition, we determined the angiogenic potential of the SHH pathway in the chicken chorioallantoic membrane, an in vivo model. Results Our results show that WJ-MSC express components of the canonical SHH pathway and are activated by its signaling. In fact, we provide evidence of basal autocrine/paracrine SHH signaling in WJ-MSC. SHH pathway stimulation promotes the secretion of angiogenic factors such as activin A, angiogenin, angiopoietin 1, granulocyte-macrophage colony-stimulating factor, matrix metallometallopeptidase -9, and urokinase-type plasminogen activator, enhancing the pro-angiogenic capabilities of WJ-MSC both in vitro and in vivo. Conclusion WJ-MSC are a cell population responsive to SHH pathway stimulation. Basal SHH signaling is in part responsible for the angiogenic inductive properties of WJ-MSC. Overall, exogenous activation of the SHH pathway enhances the angiogenic properties of WJ-MSC, making this cell population an ideal target for treating tissue injury. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0653-8) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Ribatti D. The discovery of angiogenic growth factors: the contribution of Italian scientists. Vasc Cell 2014; 6:8. [PMID: 24690161 PMCID: PMC3974417 DOI: 10.1186/2045-824x-6-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is regulated, under both physiological and pathological conditions, by numerous “non-classic” pro-angiogenic factors, including fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and “non-classic” pro-angiogenic factors, including granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and erythropoietin (EPO). In the context of the most important discoveries in this field, this review article summarizes the important role played by the Italian scientists in the course of the last twenty years.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G, Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
6
|
Lee AS, Kim D, Wagle SR, Lee JE, Jung YJ, Kang KP, Lee S, Park SK, Kim W. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis. Biochem Biophys Res Commun 2013; 436:565-70. [DOI: 10.1016/j.bbrc.2013.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
|
7
|
Angiogenic activity of classical hematopoietic cytokines. Leuk Res 2012; 36:537-43. [PMID: 22386730 DOI: 10.1016/j.leukres.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/24/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Hematopoiesis is regulated by several cytokines with pleiotropic activity. Several evidences have clearly demonstrated that these molecules, formerly regarded as specific for the hematopoietic system, also affect certain endothelial cell functions and that hematopoietic factors clearly influence angiogenesis. This review article summarizes the most important literature data concerning this inconvertible relationship.
Collapse
|
8
|
Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003; 102:1340-6. [PMID: 12702503 DOI: 10.1182/blood-2003-01-0223] [Citation(s) in RCA: 667] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that postnatal neovascularization involves the recruitment of circulating endothelial progenitor cells (EPCs). Hematopoietic and endothelial cell lineages share common progenitors. Cytokines formerly thought to be specific for the hematopoietic system have only recently been shown to affect several functions in endothelial cells. Accordingly, we investigated the stimulatory potential of erythropoietin (Epo) on EPC mobilization and neovascularization. The bone marrow of Epo-treated mice showed a significant increase in number and proliferation of stem and progenitor cells as well as in colony-forming units. The number of isolated EPCs and CD34+/flk-1+ precursor cells was significantly increased in spleen and peripheral blood of Epo-treated mice compared with phosphate-buffered saline-treated mice. In in vivo models of postnatal neovascularization, Epo significantly increased inflammation- and ischemia-induced neovascularization. The physiologic relevance of these findings was investigated in patients with coronary heart disease. In a multivariate regression model, serum levels of Epo and vascular endothelial growth factor were significantly associated with the number of stem and progenitor cells in the bone marrow as well as with the number and function of circulating EPCs. In conclusion, the present study suggests that Epo stimulates postnatal neovascularization at least in part by enhancing EPC mobilization from the bone marrow. Epo appears to physiologically regulate EPC mobilization in patients with ischemic heart disease. Thus, Epo serum levels may help in identifying patients with impaired EPC recruitment capacity.
Collapse
Affiliation(s)
- Christopher Heeschen
- Department of Internal Medicine IV and Hematology, University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bhattacharya V, Shi Q, Ishida A, Sauvage LR, Hammond WP, Wu MH. Administration of granulocyte colony-stimulating factor enhances endothelialization and microvessel formation in small-caliber synthetic vascular grafts. J Vasc Surg 2000; 32:116-23. [PMID: 10876212 DOI: 10.1067/mva.2000.107308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether systemic administration of granulocyte colony-stimulating factor (G-CSF) would promote endothelialization for small-caliber Dacron vascular grafts. METHODS We implanted 4-mm preclotted Dacron grafts in both carotids of 12 dogs. For a fair comparison, all dogs had a comparable platelet aggregation profile with platelet aggregation scores less than 30. Five dogs served as controls, and the others were given 7-day subcutaneous injections of G-CSF (10 microg/kg per day), starting on the seventh postoperative day. The effect of G-CSF was evaluated by white blood cell count, which showed a 3.7-fold (+/- 2.7-fold) increase at the end of treatment. Grafts were harvested at 4 weeks. All G-CSF grafts were patent, and one control occluded. Endothelial-like cell coverage averaged 80.8% on G-CSF grafts, but only 35.6% for control grafts (P <.0004). With the exclusion of the anastomotic pannus healing factor, the difference in endothelial-like cell coverage was even greater (68.5% vs 9.8%; P <.0001). Immunocytochemical staining and electron microscopy studies demonstrated endothelial cells. Light microscopy also showed that there were more microvessels on and in the G-CSF grafts than in the control grafts. This study suggests that G-CSF can enhance early endothelialization of small-caliber vascular grafts. Further studies to determine the proper dosage and timing are needed before clinical application can be recommended.
Collapse
Affiliation(s)
- V Bhattacharya
- Hope Heart Institute, Providence Seattle Medical Center, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ribatti D, Vacca A, Roncali L, Dammacco F. Hematopoiesis and angiogenesis: a link between two apparently independent processes. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:13-9. [PMID: 10738967 DOI: 10.1089/152581600319577] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In early ontogeny, hematopoiesis is closely associated with angiogenesis. This article reviews recent studies on the role of angiogenic factors that regulate the proliferation and differentiation of endothelial cells in promoting hematopoietic cell growth and studies on the ability of hematopoietic cytokines to affect several endothelial cell functions. The findings in all these studies support the hypothesis formulated at the beginning of this century that a common ancestral cell, the hemangioblast, gives rise to cells of both the endothelial and the hematopoietic lineages.
Collapse
Affiliation(s)
- D Ribatti
- Institute of Human Anatomy, Histology, and Embryology, University of Bari Medical School, Italy
| | | | | | | |
Collapse
|
11
|
Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Blood 1999. [DOI: 10.1182/blood.v93.8.2627.408k21_2627_2636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.
Collapse
|
12
|
Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Blood 1999. [DOI: 10.1182/blood.v93.8.2627] [Citation(s) in RCA: 395] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.
Collapse
|
13
|
Kosaki K, Ando J, Korenaga R, Kurokawa T, Kamiya A. Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res 1998; 82:794-802. [PMID: 9562439 DOI: 10.1161/01.res.82.7.794] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate whether the production of colony-stimulating factors (CSFs) by vascular endothelial cells is regulated by hemodynamic force, we exposed cultured human umbilical vein endothelial cells (HUVECs) to controlled levels of shear stress in a flow-loading apparatus and examined changes in the production of CSFs at both the protein and mRNA level. Exposure of HUVECs to a shear stress of 15 and 25 dyne/cm2 markedly increased the release of granulocyte-macrophage CSF (GM-CSF) detected by ELISA to 5.0 and 9.5 times, respectively, the amount released by the static controls at 24 hours, but it had no significant influence on the release of granulocyte CSF or macrophage CSF. The results of reverse transcriptase-polymerase chain reaction demonstrated that GM-CSF mRNA began to increase as early as 2 hours after initiation of 15 dyne/cm2 shear stress and continued to increase with time, reaching a peak of about four times the control levels at 24 hours. This increase in GM-CSF mRNA levels in response to shear stress depended on protein synthesis, because it was blocked by cycloheximide. Neither nuclear run-on assay or luciferase assay using a reporter gene containing GM-CSF gene promoter showed any significant change in transcription of the GM-CSF gene even after 24-hour exposure to a shear stress of 15 dyne/cm2. Actinomycin D chase experiments using a competitive polymerase chain reaction showed that shear stress extended the half-life of GM-CSF mRNA from approximately 23 to 42 minutes in HUVECs. These findings suggest that fluid shear stress increases the production of GM-CSF in HUVECs via mRNA stabilization.
Collapse
Affiliation(s)
- K Kosaki
- Department of Orthopedic Surgery, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Bussolino F, Bocchietto E, Silvagno F, Soldi R, Arese M, Mantovani A. Actions of molecules which regulate hemopoiesis on endothelial cells: memoirs of common ancestors? Pathol Res Pract 1994; 190:834-9. [PMID: 7534912 DOI: 10.1016/s0344-0338(11)80986-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The proliferation and differentiation of hematopoietic stem cells (hematopoiesis) takes place in close contact with stromal cells and matrix in bone marrow. Hematopoiesis requires cytokines, collectively termed colony stimulating factors (CSFs), which act on progenitor cell populations and induce their commitment to a specific lineage. For instance, leukemia, inhibitor factor and stem cell factor act on pluripotent cells and immature progenitors, granulocyte-macrophage colony stimulating factor (GM-CSF) acts at early stages of the development of myelomonocytic lineage, whereas granulocyte-colony stimulating factor (G-CSF) and macrophage-colony stimulating factor (M-CSF) act on more mature cells of the same lineage and are only required later during the differentiation of this cell lineage. A second important element for the hematopoietic process is the presence of extracellular matrix proteins, which bind CSFs and correctly present the molecules to specific receptors present on the surface of the progenitor cells. Finally, stromal cells (i.e. fibroblasts, endothelial cells and adipocytes) which support the growth of hematopoietic stem cells in vitro, are crucial for the production of CSFs and protein matrix and regulate the passage of mature cells from bone marrow to bloodstream. Idiopathic myelofibrosis is an example of the relevance of microenvironment in hematopoiesis. This disease is characterized by fibroblast and basement membrane accumulation, appearance of myofibroblasts and modification of the capillary network and provokes a bone marrow aplasia. In this article we review recent studies on the role of hemopoietic cytokines on stromal cells, in particular on endothelial cells, and propose a double role for CSFs in hematopoiesis: to induce the commitment of progenitor cells and to maintain the behavior of bone marrow endothelial cells.
Collapse
Affiliation(s)
- F Bussolino
- Dipartimento di Genetica, Biologia e Chimica Medica, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Bone development and remodeling depend on complex interactions between bone-forming osteoblasts, bone-degrading osteoclasts, and other cells present within the bone microenvironment. Balanced control of bone formative and degradative processes is normally carefully maintained in the adult skeleton but becomes uncoupled in the course of aging or in various pathological disease states. Systemic regulators of bone metabolism and local mediators, including matrix molecules, cytokines, prostaglandins, leukotrienes, and other autocrine or paracrine factors, regulate the recruitment, differentiation, and function of cells participating in bone formation and turnover. Although some of these interactions are now understood, many yet remain to be elucidated. Recent studies have begun exploring in detail how vascular endothelial cells and their products function in bone physiology. The findings are revealing that bone vascular endothelial cells may be members of a complex communication network in bone which operates between endothelial cells, osteoblasts, osteoclasts, macrophages, stromal cells, and perhaps other cell types found in bone as well. Therefore, multiple systemic and locally produced signals may be received, transduced, and integrated by individual cells and then propagated by the release from these cells of further signals targeted to other members of the bone cell network. In this manner, bone cell activities may be continuously coordinated to afford concerted actions and rapid responses to physiological changes. The bone microvasculature may play a pivotal role in these processes, both in linking circulatory and local signals with cells of the bone microenvironment and in actively contributing itself to the regulation of bone cell physiology.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Collin-Osdoby
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
16
|
Bussolino F, Colotta F, Bocchietto E, Guglielmetti A, Mantovani A. Recent developments in the cell biology of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor: activities on endothelial cells. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1993; 23:8-12. [PMID: 7682862 DOI: 10.1007/bf02592273] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor were considered as growth and differentiation factors restricted to hematopoietic cells. It was recently found that non-hematopoietic cells, including endothelial cells, respond to these cytokines. In this review we describe their effects on endothelial cells, underlining their role in the behavior and survival of the microenvironment of bone marrow, in the angiogenesis process related to the progression of solid tumors and of vascular tumors, and in the homing of lymphocytes.
Collapse
Affiliation(s)
- F Bussolino
- Dipartimento di Genetica, Biologia e Chimica Medica, Turin, Italy
| | | | | | | | | |
Collapse
|
17
|
Bocchietto E, Guglielmetti A, Silvagno F, Taraboletti G, Pescarmona GP, Mantovani A, Bussolino F. Proliferative and migratory responses of murine microvascular endothelial cells to granulocyte-colony-stimulating factor. J Cell Physiol 1993; 155:89-95. [PMID: 7682223 DOI: 10.1002/jcp.1041550112] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microvascular murine endothelial cells lines transformed by middle T oncogene of polyoma virus maintain the biological characteristics of nontransformed microvascular endothelial cells (EC). By using cell lines originated from different anatomical districts (thymus, brain, heart, and skin), we demonstrated that murine granulocyte-colony-stimulating factor (G-CSF) induces proliferation of murine microvascular endothelial cells at nanomolar concentrations without any cooperation with fetal calf serum. The proliferative effect on murine cells is less than that elicited by epidermal growth factor (EGF), used as standard for this function. G-CSF also promotes the migration of tEnd.1 endothelial cell line assayed by Boyden chamber technique. The analysis of transcript for G-CSF receptor (G-CSFR) by Northern blot hybridization and by reverse-transcriptase polymerase chain reaction (RT-PCR) shows that these cell lines have specific mRNA, with the size of that present in myeloid cells. These results indicate that G-CSF operates in the microvascular endothelial cells by a mechanism related to the presence of a specific receptor.
Collapse
Affiliation(s)
- E Bocchietto
- Dipartimento di Genetica, Biologia e Chimica Medica, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Niedbala MJ. Cytokine regulation of endothelial cell extracellular proteolysis. AGENTS AND ACTIONS. SUPPLEMENTS 1993; 42:179-93. [PMID: 8356923 DOI: 10.1007/978-3-0348-7397-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The vascular endothelium plays a central role in the regulation of extrinsic fibrinolysis and thus maintains vascular patency through clot dissolution. Plasminogen activation provides an important source of localized proteolytic activity not only during fibrinolysis but also during a variety of other physiological and pathological processes. Numerous studies have indicated that human endothelial cells can directly synthesize and secrete plasminogen activators (PA) and inhibitors of these activators. PAs specifically hydrolyse a single arginine-valine bond in plasminogen, an abundant and widely distributed plasma zymogen, to form the broad spectrum serine protease, plasmin. Tissue type-PA (t-PA) and urokinase type PA (u-PA) forms of PA have been described in endothelial cells, although t-PA production and secretion is elevated most frequently. The tPA form of PA functions predominantly in endothelial cell mediated fibrinolysis, while uPA is involved in tissue remodeling. During inflammatory reactions activated mononuclear phagocytes produce a variety of cytokines which may influence the phenotype of the endothelium through a process termed "endothelial cell activation". Tumor necrosis factor alpha (TNF alpha), a mononuclear cytokine, is a distinct polypeptide of Mr 17,000 and has been implicated as a mediator of gram negative induced sepsis as well as angiogenesis. TNF alpha is known to interact with specific endothelial cell receptors and to alter endothelial coagulant and anticoagulant properties implying that cytokines may be potent modulators of hemostasis. Recent observations have indicated that TNF alpha and lymphotoxin (TNF beta) can promote the expression, synthesis and secretion of urokinase plasminogen activator (uPA) in human endothelial cells. The upregulation of uPA results in an alteration in the fibrinolytic capacity of endothelial cells and allows cells the selective ability to degrade and invade underlying subendothelial extracellular matrix (ECM). Endothelial cells treated with TNF alpha also display, in an in vitro angiogenic assay, the ability to invade Matrigel and reorganize into tube-like structures, unlike control cultures. The effects of TNF alpha on the PA proteolytic system of endothelial cells, the biological significance of this event and potential in vivo consequences will be discussed. In addition, the influence of cytokine regulatory control systems will be described, since it is becoming increasingly clear that cytokines do not act in isolation. The vascular endothelium serves as a widely distributed anatomical interface between the blood and tissue with diverse capabilities, performing distinctive biologic functions at different sites and within specific organs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M J Niedbala
- Institute of Inflammation and Autoimmunity, Miles Research Center, Miles Inc. West Haven, CT 06516
| |
Collapse
|
19
|
Affiliation(s)
- J S Hunt
- Department of Pathology and Oncology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|
20
|
Bussolino F, Ziche M, Wang JM, Alessi D, Morbidelli L, Cremona O, Bosia A, Marchisio PC, Mantovani A. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 1991; 87:986-95. [PMID: 1705569 PMCID: PMC329891 DOI: 10.1172/jci115107] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study was designed to identify the set of functions activated in cultured endothelial cells by the hematopoietic growth factors, granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage-colony-stimulating factor (GM-CSF), and to compare them with those elicited by prototypic cytokines active on these cells. Moreover, indications as to the in vivo relevance of in vitro effects were obtained. G-CSF and GM-CSF induced endothelial cells to proliferate and migrate. In contrast, unlike appropriate reference cytokines (IL-1 and tumor necrosis factor, IFN-gamma), G-CSF and GM-CSF did not modulate endothelial cell functions related to hemostasis-thrombosis (production of procoagulant activity and of platelet activating factor), inflammation (expression of leukocyte adhesion molecule-1 and production of platelet activating factor), and accessory function (expression of class II antigens of MHC). Other colony-stimulating factors (IL-3 and macrophage-colony-stimulating factor) were inactive on all functions tested. In comparison to basic fibroblast growth factor (bFGF), G-CSF and GM-CSF induced lower maximal proliferation of endothelial cells, whereas migration was of the same order of magnitude. G-CSF and GM-CSF stimulated repair of mechanically wounded endothelial monolayers. Exposure to both cytokines induced shape changes and cytoskeletal reorganization consistent with a migratory phenotype. To explore the in vivo relevance of the in vitro effects of these cytokines on endothelium, we studied the angiogenic activity of human G-CSF in the rabbit cornea. G-CSF, but not the heat-inactivated molecule, had definite angiogenic activity, without any sign of inflammatory reactions. G-CSF was less active than bFGF. However, the combination of a nonangiogenic dose of bFGF with G-CSF resulted in an angiogenic response higher than that elicited by either individual cytokines. Thus, G-CSF and GM-CSF induce endothelial cells to express an activation/differentiation program (including proliferation and migration) related to angiogenesis.
Collapse
Affiliation(s)
- F Bussolino
- Dipartimento di Genetica, Biologia, e Chimica Medica, Università di Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- C H Leist
- Department of Biotechnology, Swiss Federal Institute of Technology (ETH), ETH-Hönggerberg, Zürich
| | | | | |
Collapse
|
22
|
Stimulation of the Na+/H+ exchanger in human endothelial cells activated by granulocyte- and granulocyte-macrophage-colony-stimulating factor. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51460-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
23
|
Mantovani A, Dejana E. Cytokines as communication signals between leukocytes and endothelial cells. IMMUNOLOGY TODAY 1989; 10:370-5. [PMID: 2514701 DOI: 10.1016/0167-5699(89)90270-3] [Citation(s) in RCA: 368] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hemostasis, inflammatory reactions and immunity involve close interactions between immunocompetent cells and the vascular endothelium. Cytokines, produced by and acting on endothelial cells, are mediators of the complex bidirectional interactions between leukocytes and vascular cells. Cytokines affect endothelial cell function in inflammation, thrombosis and angiogenesis, in addition to their role as accessory cells. As well as acting as targets for the action of cytokines, endothelial cells are important producers of polypeptide mediators that regulate hematopoiesis, the differentiation and proliferation of T and B cells and the extravasation of leukocytes. In this review, Alberto Mantovani and Elisabetta Dejana discuss endothelial cells as important participants in the induction and regulation of coagulation, inflammation and immunity and cytokines as crucial mediators of the symbiotic interactions between vascular cells and leukocytes.
Collapse
|