1
|
Mikheil DM, Prabhakar K, Arshad A, Rodriguez CI, Newton MA, Setaluri V. Notch signaling activation induces cell death in MAPKi-resistant melanoma cells. Pigment Cell Melanoma Res 2019; 32:528-539. [PMID: 30614626 DOI: 10.1111/pcmr.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Abstract
The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Dareen M Mikheil
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | - Ayyan Arshad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | | | - Michael A Newton
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
2
|
Yan Q, Zhao R, Shen C, Wang F, Li W, Gao SJ, Lu C. Upregulation of MicroRNA 711 Mediates HIV-1 Vpr Promotion of Kaposi's Sarcoma-Associated Herpesvirus Latency and Induction of Pro-proliferation and Pro-survival Cytokines by Targeting the Notch/NF-κB-Signaling Axis. J Virol 2018; 92:JVI.00580-18. [PMID: 29976660 PMCID: PMC6146700 DOI: 10.1128/jvi.00580-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
Coinfection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) often leads to AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The interaction between HIV and KSHV plays a pivotal role in the progression of these malignancies. We have previously demonstrated that, by upregulating miR-942-5p, HIV-1 viral protein R (Vpr) inhibits KSHV lytic replication by targeting IκBα to activate the NF-κB signaling (Q. Yan, C. Shen, J. Qin, W. Li, M. Hu, H. Lu, D. Qin, J. Zhu, S. J. Gao, C. Lu, J Virol 90:8739-8753, 2016). Here, we show that Vpr inactivates Notch signaling, resulting in inhibition of KSHV lytic replication and induction of pro-proliferative and -survival cytokines, including interleukin-2 (IL-2), TIMP-1, IGF-1, and NT-4. Mechanistically, Vpr upregulates miR-711, which directly targets the Notch1 3' untranslated region. Suppression of miR-711 relieved Notch1 and reduced Vpr inhibition of KSHV lytic replication and Vpr induction of pro-proliferation and -survival cytokines, while overexpression of miR-711 exhibited the opposite effect. Finally, overexpression of Notch1 reduced Vpr induction of NF-κB activity by promoting IκBα promoter activity. Our novel findings reveal that by upregulating miR-711 to target Notch1, Vpr silences Notch signaling to activate the NF-κB pathway by reducing IκBα expression, leading to inhibition of KSHV lytic replication and induction of pro-proliferation and -survival cytokines. Therefore, the miR-711/Notch/NF-κB axis is important in the pathogenesis of AIDS-related malignancies and could be an attractive therapeutic target.IMPORTANCE HIV-1 infection significantly increases the risk of KS and PEL in KSHV-infected individuals. Our previous study has shown that HIV-1 Vpr regulates the KSHV life cycle by targeting IκBα to activate NF-κB signaling through upregulating cellular miR-942-5p. In this study, we have further found that Vpr inactivates Notch signaling to promote KSHV latency and production of pro-proliferation and -survival cytokines. Another Vpr-upregulated cellular microRNA, miR-711, participates in this process by directly targeting Notch1. As a result, Notch1 upregulation of the IκBα promoter activity is attenuated, resulting in reduced levels of IκBα transcript and protein. Overall, these results illustrate an alternative mechanism of HIV-1 Vpr regulation of KSHV latency and aberrant cytokines through the miR-711/Notch/NF-κB axis. Our novel findings further demonstrate the role of an HIV-1-secreted regulatory protein in the KSHV life cycle and KSHV-related malignancies.
Collapse
Affiliation(s)
- Qin Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Runran Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenyou Shen
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fei Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wan Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Lu Z, Ren Y, Zhang M, Fan T, Wang Y, Zhao Q, Liu HM, Zhao W, Hou G. FLI-06 suppresses proliferation, induces apoptosis and cell cycle arrest by targeting LSD1 and Notch pathway in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 107:1370-1376. [PMID: 30257352 DOI: 10.1016/j.biopha.2018.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the Notch signaling plays an important role in progression of esophageal squamous cell carcinoma (ESCC) and may represent a potential therapeutic target for ESCC. FLI-06 is a novel Notch inhibitor, preventing the early secretion of Notch signaling. However, little information about the antitumor activity of FLI-06 has been reported so far. To evaluate the anti-tumor activity and possible molecular mechanism of FLI-06 to ESCC cells, the effects of FLI-06 on cell viability, apoptosis and cell cycle were evaluated by CCK-8 and flow cytometry assays, respectively, in ESCC cell lines ECa109 and EC9706, and the expressions of proteins in Notch signaling pathway and LSD1 were investigated after cells were treated with FLI-06 by Western blotting. The results showed that FLI-06 blocked proliferation, induced apoptosis and G1 phase arrest of ESCC cells in a dose-dependent manner. Mechanistically, we found FLI-06 could inhibit Notch signaling pathway by decreasing the expressions of Notch3, DTX1 and Hes1. Interestingly, we also found that the expression of LSD1 (histone lysine specific demethylase 1), which is dysregulated in multiple tumors, was also inhibited by FLI-06. In addition, inhibition of Notch pathway by γ-secretase inhibitor GSI-DAPT could also inhibit LSD1 expression. The current study demonstrated that FLI-06 exerts antitumor activity on ESCC by inhibiting both LSD1 and Notch pathway, which provides the theory support for the treatment of ESCC with FLI-06.
Collapse
Affiliation(s)
- Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Defective NOTCH signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy: A review of the evidence and future directions. Trends Cardiovasc Med 2018; 29:61-68. [PMID: 30621852 DOI: 10.1016/j.tcm.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Bicuspid aortic valve (BAV) disease remains the most common congenital cardiac disease and is associated with an increased risk of potentially fatal aortopathy including aortic aneurysm and dissection. Mutations in the NOTCH1 gene are one of only a few genetic anomalies identified in BAV disease; however evidence for defective NOTCH signaling, and its involvement in the characteristic histological changes of VSMC apoptosis and differentiation in ascending aortae of BAV patients is lacking. This review scrutinizes the evidence for the interactions of NOTCH signaling, cellular differentiation and apoptosis in the context of aortic VSMCs and provides focus for future research efforts in the diagnosis of BAV aortopathy and prevention of catastrophic complications through NOTCH signaling manipulation.
Collapse
|
5
|
Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed Pharmacother 2017; 95:1815-1829. [DOI: 10.1016/j.biopha.2017.09.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
|
6
|
Raafat A, Bargo S, McCurdy D, Callahan R. The ANK repeats of Notch-4/Int3 activate NF-κB canonical pathway in the absence of Rbpj and causes mammary tumorigenesis. Sci Rep 2017; 7:13690. [PMID: 29057904 PMCID: PMC5651869 DOI: 10.1038/s41598-017-13989-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Transgenic mice expressing the Notch-4 intracellular domain (designated Int3) in the mammary gland have two phenotypes exhibited with 100% penetrance: arrest of mammary alveolar/lobular development and mammary tumorigenesis. Notch-4 signaling is mediated primarily through the interaction of Int3 with the transcription repressor/activator Rbpj. Interestingly, WAP-Int3/Rbpj knockout mice have normal mammary gland development but still developed mammary tumors with a slightly longer latency than the WAP-Int3 mice. Thus, Notch-induced mammary tumor development is Rbpj-independent. Here, we show that Int3 activates NF-κB in HC11 cells in absence of Rbpj through an association with the IKK signalosome. Int3 induced the canonical NF-κB activity and P50 phosphorylation in HC11 cells without altering the NF-κB2 pathway. The minimal domain within the Int3 protein required to activate NF-κB consists of the CDC10/Ankyrin (ANK) repeats domain. Treatment of WAP-Int3 tumor bearing mice with an IKK inhibitor resulted in tumor regression. In a soft agar assay, treatment of HC11-Int3 cells with P50-siRNA caused a significant decrease in colony formation. In addition, Wap-Int3/P50 knockout mice did not develop mammary tumors. This data indicates that the activation of NF-κB canonical signaling by Notch-4/Int3 is ANK repeats dependent, Rbpj-independent, and is mediated by IKK activation and P50 phosphorylation causing mammary tumorigenesis.
Collapse
Affiliation(s)
- Ahmed Raafat
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Sharon Bargo
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - David McCurdy
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Robert Callahan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
7
|
Weiss-Gayet M, Starck J, Chaabouni A, Chazaud B, Morlé F. Notch Stimulates Both Self-Renewal and Lineage Plasticity in a Subset of Murine CD9High Committed Megakaryocytic Progenitors. PLoS One 2016; 11:e0153860. [PMID: 27089435 PMCID: PMC4835090 DOI: 10.1371/journal.pone.0153860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/05/2016] [Indexed: 01/24/2023] Open
Abstract
This study aimed at reinvestigating the controversial contribution of Notch signaling to megakaryocytic lineage development. For that purpose, we combined colony assays and single cells progeny analyses of purified megakaryocyte-erythroid progenitors (MEP) after short-term cultures on recombinant Notch ligand rDLL1. We showed that Notch activation stimulated the SCF-dependent and preferential amplification of Kit+ erythroid and bipotent progenitors while favoring commitment towards the erythroid at the expense of megakaryocytic lineage. Interestingly, we also identified a CD9High MEP subset that spontaneously generated almost exclusively megakaryocytic progeny mainly composed of single megakaryocytes. We showed that Notch activation decreased the extent of polyploidization and maturation of megakaryocytes, increased the size of megakaryocytic colonies and surprisingly restored the generation of erythroid and mixed colonies by this CD9High MEP subset. Importantly, the size increase of megakaryocytic colonies occurred at the expense of the production of single megakaryocytes and the restoration of colonies of alternative lineages occurred at the expense of the whole megakaryocytic progeny. Altogether, these results indicate that Notch activation is able to extend the number of divisions of MK-committed CD9High MEPs before terminal maturation while allowing a fraction of them to generate alternative lineages. This unexpected plasticity of MK-committed progenitors revealed upon Notch activation helps to better understand the functional promiscuity between megakaryocytic lineage and hematopoietic stem cells.
Collapse
Affiliation(s)
- Michèle Weiss-Gayet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Joëlle Starck
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Azza Chaabouni
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - François Morlé
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
- * E-mail:
| |
Collapse
|
8
|
Kong R, Feng J, Ma Y, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Zhang T, Zang Q, He X. Silencing NACK by siRNA inhibits tumorigenesis in non-small cell lung cancer via targeting Notch1 signaling pathway. Oncol Rep 2016; 35:2306-14. [PMID: 26782286 DOI: 10.3892/or.2016.4552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung tumor with poor prognosis, in which the Notch signaling pathway plays an important role. Notch activation complex kinase (NACK) has been reported both as a co-activator and a target gene of the Notch pathway. However, the molecular mechanism of NACK in NSCLC still remains unknown. In this study, the expression of NACK was analyzed in 35 paired NSCLC tumor samples and 2 NSCLC cell lines. MTT assay, cell migration assay, cell invasion assay, flow cytometry assay, and xenograft model were employed to detect the effect of NACK knockdown on the cell proliferation, metastasis, invasion and apoptosis of NSCLC. The relationship between NACK and Notch1 signaling pathway in NSCLC cells was assessed by western blot and luciferase reporter assay. We found that the expression of NACK in the NSCLC tissues and lung cancer cells were significantly increased. High level of NACK expression is remarkable associated with tumor differentiation, lymphatic metastasis, clinical stage and poor survival prognosis. The interference of NACK significantly inhibited cell proliferation, invasion and metastasis through inducing apoptosis in NSCLC cells. The transcriptional activity of related Notch1 target genes were significantly suppressed resulting from NACK knockdown. This study demonstrates that interference of NACK inhibits NSCLC progression through Notch1 signaling pathway and targeting NACK may be an effective approach for NSCLC therapy.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bin Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ting Zhang
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Quanjin Zang
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing He
- Second Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
9
|
Gopalakrishnan N, Sivasithamparam ND, Devaraj H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie 2014; 107 Pt B:310-8. [PMID: 25257945 DOI: 10.1016/j.biochi.2014.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Notch1 signaling plays a key role in normal developmental processes and in cancer. The association between Notch activation and development of cancer has been well documented. Notch activation and outcome of the disease depend upon the crosstalk with other regulatory pathways including Nuclear Factor kappa B (NFκB) pathway. In this study, we have investigated the interaction of Notch intracellular domain (NICD) with NFκBp65 in colorectal cancer which resulted in the upregulation of Bcl-xL resulting in the inhibition of apoptosis. Mesenchymal marker Slug expression and down regulation of E-cadherin, an epithelial phenotypic marker were demonstrated in colon cancer tissues. The study was also illustrated by using the gamma secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in HT29 cells. Immunohistochemistry (NICD, NFκBp65, and Slug) and double immunofluorescence analysis (NICD, NFκBp65) revealed that NICD and NFκBp65 were highly expressed in HT29 cells and in tumor tissue compared to normal tissue. Slug and Bcl-xL protein expressions were significantly reduced in DAPT treated HT 29 cells. Immunoprecipitation and dual staining emphasized the strong interaction of NICD with NFκBp65 in adenocarcinoma than in normal tissue. It appeared that Notch1 and NFκB could independently contribute to tumor progression. However, their interaction and synergism might be the determinants that would affect the outcome of the disease and therapeutic interventions.
Collapse
Affiliation(s)
- Natarajan Gopalakrishnan
- Unit of Biochemistry, Department of Zoology, University of Madras, School of Life Sciences, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | | - Halagowder Devaraj
- Unit of Biochemistry, Department of Zoology, University of Madras, School of Life Sciences, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|
10
|
The proteins DLK1 and DLK2 modulate NOTCH1-dependent proliferation and oncogenic potential of human SK-MEL-2 melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2674-84. [PMID: 25093684 DOI: 10.1016/j.bbamcr.2014.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
NOTCH receptors regulate cell proliferation and survival in several types of cancer cells. Depending on the cellular context, NOTCH1 can function as an oncogene or as a tumor suppressor gene. DLK1 is also involved in the regulation of cell growth and cancer, but nothing is known about the role of DLK2 in these processes. Recently, the proteins DLK1 and DLK2 have been reported to interact with NOTCH1 and to inhibit NOTCH1 activation and signaling in different cell lines. In this work, we focused on the role of DLK proteins in the control of melanoma cell growth, where NOTCH1 is known to exert an oncogenic effect. We found that human DLK proteins inhibit NOTCH signaling in SK-MEL-2 metastatic melanoma cells. Moreover, the proliferation rate of these cells was dependent upon the level of NOTCH activation and signaling as regulated by DLK proteins. In particular, high levels of NOTCH inhibition resulted in a decrease, whereas lower levels of NOTCH inhibition led to an increase in melanoma cell proliferation rates, both in vitro and in vivo. Finally, our data revealed additive NOTCH-mediated effects of DLK proteins and the γ-secretase inhibitor DAPT on cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of metastatic melanoma cell proliferation. Our results open the way to new research on the role of DLK proteins as potential therapeutic tools for the treatment of human melanoma.
Collapse
|
11
|
Abstract
Notch signaling, a critical pathway in cell fate determination, is well known to be involved in immune and inflammatory reactions, whereas its role in acute lung injury (ALI) remains unclear. Here, we report that notch signal activity is upregulated in lung tissue harvested from an ALI mouse model (induced by zymosan). We showed that notch signal activity in lung tissue was increased 6 h after zymosan injection and peaked at 24 h. Inhibition of notch signaling by either pre- or post-zymosan treatment with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester (DAPT) significantly reduced lung injury, characterized by improvement in lung histopathology, lung permeability (protein concentration in bronchoalveolar lavage fluid and lung wet-to-dry weight ratio), lung inflammation (bronchoalveolar lavage fluid cell count, lung myeloperoxidase, and tumor necrosis factor α), and also alleviated systemic inflammation and tissue damage, thus increasing the 7-day survival rate in zymosan-challenged mice. In conclusion, the role of notch signaling is functionally significant in the development of ALI. Inhibition of notch signaling by pretreatment or posttreatment with DAPT likely exerts its effects in part by mediating the expression of proinflammatory and anti-inflammatory cytokines and influencing tissue neutrophil recruitment. These results also imply that notch inhibitors may help attenuate local inflammatory lung damage.
Collapse
|
12
|
Abstract
The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway's oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies.
Collapse
|
13
|
Li L, Zhao F, Lu J, Li T, Yang H, Wu C, Liu Y. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS One 2014; 9:e95912. [PMID: 24760075 PMCID: PMC3997497 DOI: 10.1371/journal.pone.0095912] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/01/2014] [Indexed: 11/30/2022] Open
Abstract
The aberrant activation of Notch-1 signaling pathway has been proven to be associated with the development and progression of cancers. However, the specific roles and the underlying mechanisms of Notch-1 signaling pathway on the malignant behaviors of breast cancer are poorly understood. In this study, using multiple cellular and molecular approaches, we demonstrated that activation of Notch-1 signaling pathway promoted the malignant behaviors of MDA-MB-231 cells such as increased cell proliferation, colony formation, adhesion, migration, and invasion, and inhibited apoptosis; whereas deactivation of this signaling pathway led to the reversal of the aforementioned malignant cellular behaviors. Furthermore, we found that activation of Notch-1 signaling pathway triggered the activation of NF-κB signaling pathway and up-regulated the expression of NF-κB target genes including MMP-2/-9, VEGF, Survivin, Bcl-xL, and Cyclin D1. These results suggest that Notch-1 signaling pathway play important roles in promoting the malignant phenotype of breast cancer, which may be mediated partly through the activation of NF-κB signaling pathway. Our results further suggest that targeting Notch-1 signaling pathway may become a newer approach to halt the progression of breast cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Fenglong Zhao
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Juan Lu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- * E-mail:
| |
Collapse
|
14
|
Norcantharidin, derivative of cantharidin, for cancer stem cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:838651. [PMID: 24073010 PMCID: PMC3773992 DOI: 10.1155/2013/838651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/28/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
Abstract
Cancer stem cells (CSCs) existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance, invasion, metastasis, and relapse. Self-renewal pathways, Wnt/β-catenin, Sonic hedgehog (Shh), and the Notch signaling pathway play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR) is an unfavorable factor causing the failure of treatments against cancer cells. The most important and thoroughly studied mechanism involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence that Norcantharidin (NCTD), a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the medicinal insect blister beetle (Mylabris phalerata Pallas), is capable of chemoprevention and tumor inhibition. We summarize investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.
Collapse
|
15
|
Kang J, Kim E, Kim W, Seong KM, Youn H, Kim JW, Kim J, Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem 2013; 288:27343-27357. [PMID: 23902763 DOI: 10.1074/jbc.m113.490482] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.
Collapse
Affiliation(s)
- JiHoon Kang
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - EunGi Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Ki Moon Seong
- Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703
| | - HyeSook Youn
- Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747
| | - Jung Woo Kim
- Department of Life Science and Biotechnology, Pai Chai University, Daejeon 302-735
| | - Joon Kim
- School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul 136-701, South Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 609-735.
| |
Collapse
|
16
|
Li Y, Zhang J, Ma D, Zhang L, Si M, Yin H, Li J. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J 2012; 279:2247-59. [PMID: 22521131 DOI: 10.1111/j.1742-4658.2012.08607.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Notch signaling pathway plays critical roles in human cancers, including osteosarcoma, suggesting that the discovery of specific agents targeting Notch would be extremely valuable for osteosarcoma. Curcumin, a naturally occurring phenolic compound found in curcuma longa, has been shown to inhibit proliferation and induce apoptosis of osteosarcoma cells in vitro and tumor growth in xenotransplant or orthotransplant models. However, the precise molecular mechanisms by which curcumin exerts its antitumor activity remain unclear. Here we used multiple molecular approaches, such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the invasion assay, gene transfection, real-time RT-PCR, western blot and gelatin zymography, to investigate whether the downregulation of Notch-1 contributes to curcumin-induced inhibition of proliferation and invasion in osteosarcoma cells. The results showed that curcumin caused marked inhibition of osteosarcoma cell growth and G2/M phase cell cycle arrest. This was associated with concomitant attenuation of Notch-1 and downregulation of its downstream genes, such as matrix metalloproteinases, resulting in the inhibition of osteosarcoma cell invasion through Matrigel. We also found that specific downregulation of Notch-1 via small-interfering RNA prior to curcumin treatment resulted in enhanced inhibition of cell growth and invasion. These results suggest that antitumor activity of curcumin is mediated through a novel mechanism involving inactivation of the Notch-1 signaling pathway. Our data provide the first evidence that the downregulation of Notch-1 by curcumin may be an effective approach for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Effects of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) on cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Hum Cell 2011; 25:9-15. [PMID: 22189483 DOI: 10.1007/s13577-011-0038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Endometrial cancer is one of the most common gynecological malignancies in Japan, where the disease shows an increasing morbidity. However, surgical therapy remains the treatment of choice for endometrial cancers that tend to be insensitive to radiation therapy and chemotherapy. Therefore, novel therapeutic strategies are required. The Notch signaling pathway regulates embryogenesis and cellular development, but deregulated Notch signaling may contribute to tumorigenesis in several cancers. Moreover, γ-secretase inhibitors have been shown to be potent inhibitors of the Notch signaling pathway; they suppress cellular proliferation and induce apoptosis in several cancer cells. In the present study, we investigated the effect of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT, γ-secretase inhibitor) on the cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Real-time PCR detected mRNA derived from NOTCH1 and HES1, which are target genes of the Notch signaling pathway, in Ishikawa endometrial cancer cells. After blocking Notch signaling, cellular proliferation decreased, accompanied by increased expression of p21 mRNA and decreased expression of the cyclin A protein. Furthermore, blockade of Notch signaling induced apoptosis. These results suggest that the Notch signaling pathway may be involved in cell proliferation through cell cycle regulation and apoptosis in Ishikawa endometrial cancer cells. Inhibition of the Notch signaling pathway by γ-secretase inhibitors is expected to be a potential target of novel therapeutic strategies for endometrial cancer.
Collapse
|
18
|
Afshar Y, Jeong JW, Roqueiro D, DeMayo F, Lydon J, Radtke F, Radnor R, Miele L, Fazleabas A. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J 2011; 26:282-94. [PMID: 21990372 DOI: 10.1096/fj.11-184663] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by γ-secretase inhibition resulted in a significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1(d/d)) confirmed a Notch1-dependent hypomorphic decidual phenotype. Microarray and pathway analysis, following Notch1 ablation, demonstrated significantly altered signaling repertoire. Concomitantly, hierarchical clustering demonstrated Notch1-dependent differences in gene expression. Uteri deprived of Notch1 signaling demonstrated decreased cellular proliferation; namely, reduced proliferation-specific antigen, Ki67, altered p21, cdk6, and cyclinD activity and an increased apoptotic-profile, cleaved caspase-3, Bad, and attenuated Bcl2. The results demonstrate that the preimplantation uterus relies on Notch signaling to inhibit apoptosis of stromal fibroblasts and regulate cell cycle progression, which together promotes successful decidualization. In summary, Notch1 signaling modulates multiple signaling mechanisms crucial for decidualization and these studies provide additional perspectives to the coordination of multiple signaling modalities required during decidualization.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22:799-806. [PMID: 21295962 DOI: 10.1016/j.jnutbio.2010.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/09/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
20
|
Hernandez F, Peluffo MC, Stouffer RL, Irusta G, Tesone M. Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol Reprod 2011; 84:859-65. [PMID: 21209419 DOI: 10.1095/biolreprod.110.088708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the expression and cell localization of NOTCH1, NOTCH4, and the delta-like ligand DLL4 in corpus luteum (CL) from pregnant rats during prostaglandin F2alpha (PGF2alpha)-induced luteolysis. We also examined serum progesterone (P(4)) and CL proteins related to apoptosis after local administration of the notch inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT). Specific staining for NOTCH1 and NOTCH4 receptors was detected predominantly in large and small luteal cells. Furthermore, in line with the fact that the notch intracellular domain is translocated to the nucleus, where it regulates gene expression, staining was evident in the nuclei of luteal cells. In addition, we detected diffuse cytoplasmic immunostaining for DLL4 in small and large luteal cells, in accordance with the fact that DLL4 undergoes proteolytic degradation after receptor binding. The mRNA expression of Notch1, Notch4, and Dll4 in CL isolated on Day 19 of pregnancy decreased significantly after administration of PGF2alpha. Consistent with the mRNA results, administration of PGF2alpha to pregnant rats on Day 19 of pregnancy decreased the protein fragment corresponding to the cleaved forms of NOTCH1/4 CL receptors. In contrast, no significant changes were detected in protein levels for the ligand DLL4. The local intrabursal administration of DAPT decreased serum P(4) levels and increased luteal levels of active caspase 3 and the BAX:BCL2 ratio 24 h after the treatment. These results support a luteotropic role for notch signaling to promote luteal cell viability and steroidogenesis, and they suggest that the luteolytic hormone PGF2alpha may act in part by reducing the expression of some notch system members.
Collapse
Affiliation(s)
- Fatima Hernandez
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
Abstract
Notch signaling is an important molecular pathway involved in the determination of cell fate. In recent years, this signaling has been frequently reported to play a critical role in maintaining progenitor/stem cell population as well as a balance between cell proliferation, differentiation and apoptosis. Thus, Notch signaling may be mechanistically involved carcinogenesis. Indeed, many studies have showed that Notch signaling is overexpressed or constitutively activated in many cancers including colorectal cancer (CRC). Consequently, inactivation of Notch signaling may constitute a novel molecular therapy for cancer. CRC is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. In this review article, the authors reviewed the current understanding and research findings of the role of Notch signaling in CRC and discussed the possible Notch-targeting approaches in CRC.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Medicine and Centre for Cancer Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
22
|
Yoon JH, Kim SA, Kwon SM, Park JH, Park HS, Kim YC, Yoon JH, Ahn SG. 5'-Nitro-indirubinoxime induces G1 cell cycle arrest and apoptosis in salivary gland adenocarcinoma cells through the inhibition of Notch-1 signaling. Biochim Biophys Acta Gen Subj 2009; 1800:352-8. [PMID: 19914349 DOI: 10.1016/j.bbagen.2009.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/29/2009] [Accepted: 11/05/2009] [Indexed: 01/03/2023]
Abstract
BACKGROUND 5'-Nitro-indirubinoxime (5'-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified. METHODS Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis. RESULTS 5'-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5'-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5'-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5'-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5'-NIO-induced apoptosis. CONCLUSION These observations suggest that 5'-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling. GENERAL SIGNIFICANCE This study identifies a new mechanism of 5'-NIO-mediated anti-tumor properties. Thus, 5'-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.
Collapse
Affiliation(s)
- Ji-Hye Yoon
- Department of Pathology, School of Dentistry, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
24
|
Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett 2009; 279:8-12. [PMID: 19022563 PMCID: PMC2699045 DOI: 10.1016/j.canlet.2008.09.030] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/21/2008] [Accepted: 09/12/2008] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway is known to be responsible for maintaining a balance between cell proliferation and death and, as such, plays important roles in the formation of many types of human tumors. Recently, Notch signaling pathway has been shown to control stem cell self-renewal and multi-potency. As many cancers are thought to be developed from a number of cancer stem-like cells, which are also known to be linked with the acquisition of epithelial-mesenchymal transition (EMT); and thus suggesting an expanding role of Notch signaling in human tumor progression.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 9374 Scott Hall, 540 E Canfield, Detroit, MI 48201, United States
| | | | | | | |
Collapse
|
25
|
Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, Abbruzzese JL, Gallick GE, Sarkar FH. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009; 69:2400-7. [PMID: 19276344 DOI: 10.1158/0008-5472.can-08-4312] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite rapid advances in many fronts, pancreatic cancer (PC) remains one of the most difficult human malignancies to treat due, in part, to de novo and acquired chemoresistance and radioresistance. Gemcitabine alone or in combination with other conventional therapeutics is the standard of care for the treatment of advanced PC without any significant improvement in the overall survival of patients diagnosed with this deadly disease. Previous studies have shown that PC cells that are gemcitabine-resistant (GR) acquired epithelial-mesenchymal transition (EMT) phenotype, which is reminiscent of "cancer stem-like cells"; however, the molecular mechanism that led to EMT phenotype has not been fully investigated. The present study shows that Notch-2 and its ligand, Jagged-1, are highly up-regulated in GR cells, which is consistent with the role of the Notch signaling pathway in the acquisition of EMT and cancer stem-like cell phenotype. We also found that the down-regulation of Notch signaling was associated with decreased invasive behavior of GR cells. Moreover, down-regulation of Notch signaling by siRNA approach led to partial reversal of the EMT phenotype, resulting in the mesenchymal-epithelial transition, which was associated with decreased expression of vimentin, ZEB1, Slug, Snail, and nuclear factor-kappaB. These results provide molecular evidence showing that the activation of Notch signaling is mechanistically linked with chemoresistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of Notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemoresistance toward the prevention of tumor progression and/or treatment of metastatic PC.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Long L, Cao YD. Down-regulation of Notch1 and NF-κB by curcumin in breast cancer cells MDA-MB-231. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-008-0294-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE. Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 2008; 88:613-21. [PMID: 19057901 DOI: 10.1007/s00277-008-0646-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/11/2008] [Indexed: 01/13/2023]
Abstract
Activation of Notch1 signaling plays an important role in the pathogenesis of precursor T-cell lymphoblastic leukemia (T-ALL). The Notch1 receptor is cleaved and activated via the gamma-secretase complex. Downregulation of Notch1 signaling by gamma-secretase inhibitors (GSIs) thus represents a potential novel therapeutic approach. In this study, we analyzed the response of four T-ALL cell lines to compound E, a potent gamma-secretase inhibitor, and to the combination of compound E with vincristine, daunorubicin, L-asparaginase (L-ASP), and dexamethasone (DEX). We identified two distinct types of responses: In type 1 cell lines, represented by TALL1 and HSB2, GSI-induced apoptosis followed cell cycle arrest and enhanced the induction of apoptosis caused by DEX and L-ASP. In type 2 cell lines, represented by CEM and Jurkat J6, GSI caused neither cell cycle block nor cell death. Notably, the combination of GSI with chemotherapy-induced resistance by decreasing apoptosis. In type 2 cells, GSI induced the upregulation of Bcl-xl mRNA and protein, which was thus identified as a candidate mechanism for the inhibition of apoptosis. In conclusion, the data presented here caution against clinical use of a combination treatment of GSI and chemotherapy in T-ALL.
Collapse
Affiliation(s)
- Shuangyou Liu
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Zhang W, Wang C, Yang M, Wan C. Relationship between the apoptosis and notch-1 expression in acute pancreatitis. ACTA ACUST UNITED AC 2008; 27:48-50. [PMID: 17393108 DOI: 10.1007/s11596-007-0114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Indexed: 02/08/2023]
Abstract
In order to investigate the expression of Notch-1 in rats with acute pancreatitis (AP) and its relation with apoptosis of pancreatic cells, mild AP (MAP) and severe AP (SAP) models were established by retrograde injection of different concentrations of sodium taurocholae into pancreatic duct. The apoptosis index and the expression of Notch-1 protein and mRNA were detected by using TUNEL, Western blot and real-time PCR in MAP and SAP at different time intervals. The results showed that in MAP group the apoptosis index was significantly elevated during 4 to 24 h after induction of pancreatitis, but there was no significant difference among different time intervals. In SAP group, the apoptosis index reached the peak at 4th h after induction of pancreatitis, then gradually declined. There was significant difference in apoptosis index between MAP and SAP groups. Starting from 4th after induction of pancreatitis, the expression of Notch-1 in both MAP and SAP group was increased at different time intervals, but that in SAP group was significantly higher than in MAP group (P<0.05). The expression of Notch in MAP and SAP groups reached the peak at 12th and 8th h respectively after induction of pancreatitis. It was concluded that there was significant difference in apoptosis index and the Notch-1 expression in different types of AP. The overexpression of Notch-1 could aggravate AP by inhibiting the apoptosis of pancreatic cells.
Collapse
Affiliation(s)
- Weikang Zhang
- Center of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | |
Collapse
|
29
|
Wang Z, Desmoulin S, Banerjee S, Kong D, Li Y, Deraniyagala RL, Abbruzzese J, Sarkar FH. Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci 2008; 83:293-300. [PMID: 18640131 DOI: 10.1016/j.lfs.2008.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/18/2008] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer (PC) remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Numerous dietary and pharmacological agents have been proposed as alternative strategies for the prevention and/or treatment of PC. Isoflavone is a prominent flavonoid found in soy products and has been proposed to be responsible for lowering the incidence of PC in Asians. Similarly, curcumin, an active ingredient of turmeric, that inhibits growth of malignant neoplasms, has a promising role in the prevention and/or treatment of PC. Here we examined whether isoflavone together with curcumin could elicit a greater inhibition of growth of PC cells than either agent alone, and also sought to determine the molecular mechanism of action. We found that the inhibition of cell growth and induction of apoptosis was significantly greater in the combination group than that could be achieved by either agent alone. These changes were associated with decreased Notch-1 expression and DNA binding activity of NF-kappaB and its target genes such as Cyclin D1, Bcl-2, and Bcl-xL. Moreover, we found that the combination of four natural agents at lower concentration was much more effective. Collectively, our results suggest that diet containing multiple natural products should be preferable over single agents for the prevention and/or treatment of PC. The superior effects of the combinatorial treatment could partly be attributed to the inhibition of constitutive activation of Notch-1 and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. J Transl Med 2008; 88:11-7. [PMID: 18059366 DOI: 10.1038/labinvest.3700700] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The canonical Notch pathway that has been well characterized over the past 25 years is relatively simple compared to the plethora of recently published data suggesting non-canonical signaling mechanisms and cross talk with other pathways. The manner in which other pathways cross talk with Notch signaling appears to be extraordinarily complex and, not surprisingly, context-dependent. While the physiological relevance of many of these interactions remains to be established, there is little doubt that Notch signaling is integrated with numerous other pathways in ways that appear increasingly complex. Among the most intricate cross talks described for Notch is its interaction with the NF-kappaB pathway, another major cell fate regulatory network involved in development, immunity, and cancer. Numerous reports over the last 11 years have described multiple cross talk mechanisms between Notch and NF-kappaB in diverse experimental models. This article will provide a brief overview of the published evidence for Notch-NF-kappaB cross talk, focusing on vertebrate systems.
Collapse
Affiliation(s)
- Clodia Osipo
- Breast Cancer Program, Cardinal Bernadin Cancer Center, Loyola University Medical Center, Maywood, IL 60513, USA
| | | | | | | |
Collapse
|
31
|
Dror V, Nguyen V, Walia P, Kalynyak TB, Hill JA, Johnson JD. Notch signalling suppresses apoptosis in adult human and mouse pancreatic islet cells. Diabetologia 2007; 50:2504-15. [PMID: 17922104 DOI: 10.1007/s00125-007-0835-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/13/2007] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The pathogenesis of diabetes and the success of islet transplantation depend on the control of pancreatic beta cell fate. The Notch signalling pathway is essential for normal prenatal pancreatic development, but the presence and function of this gene network in adult islets has received much less attention. METHODS The presence of Notch signalling components was assessed in vitro using RT-PCR, western blotting and immunofluorescence. The functional consequences of altering Notch signalling on insulin secretion and programmed cell death were examined. RESULTS Adult mouse islets, human islets and mouse insulinoma MIN6 cells possess key components of the Notch pathway. RT-PCR, western blotting and immunofluorescence indicated that the Notch target gene, neurogenin3 (Ngn3, also known as Neurog3), is also present in adult islet cells. Inhibiting Notch signalling with N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) increased Ngn3 mRNA expression and protein levels in adult islets. The activated notch homologue 1 (NOTCH1) protein level was decreased upon serum withdrawal, as well as after treatment with a phosphatidylinositol 3-kinase inhibitor, or hydroxy-2-naphthalenylmethylphosphonic acid, an insulin receptor inhibitor. While islets cultured in DAPT did not exhibit defects in insulin secretion, indicating that differentiation is unaltered, inhibiting gamma-secretase-dependent Notch activation led to a dose-dependent increase in caspase-3-dependent apoptosis in both MIN6 cells and human islets. Conversely, gamma-secretase overactivity resulted in an accumulation of cleaved NOTCH1 and protection from apoptosis. CONCLUSIONS/INTERPRETATION Together these results show that the Notch/Ngn3 signalling network is intact and functional in adult islets. This pathway represents an attractive target for modulating beta cell fate in diabetes, islet transplantation and efforts to derive beta cell surrogates in vitro.
Collapse
Affiliation(s)
- V Dror
- Laboratory of Molecular Signalling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences and the Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Afshar Y, Stanculescu A, Miele L, Fazleabas AT. The role of chorionic gonadotropin and Notch1 in implantation. J Assist Reprod Genet 2007; 24:296-302. [PMID: 17616802 PMCID: PMC3455005 DOI: 10.1007/s10815-007-9149-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Failed implantation is a major limiting factor in infertility and early pregnancy loss. In primates, human chorionic gonadotropin mediated inhibition of stromal cell apoptosis and their subsequent differentiation into decidual cells is critical for successful embryo implantation. A major regulator of cell survival and differentiation is the Notch receptor, which transduces extracellular signals responsible for cell fate determination during development. Proteolytic cleavage of full-length Notch1 releases an active intracellular peptide, which later translocates to the nucleus and activates gene transcription. Induction of Notch1 during the window of uterine receptivity in stromal fibroblasts in response to chorionic gonadotropin upregulates anti- apoptotic genes and induces alpha-smooth muscle actin, enabling stromal cells to proliferate and differentiate into a decidualized phenotype. As such, prior to implantation the embryonic signal, chorionic gonadotropin, rescues stromal fibroblasts from normal regression at the end of each ovarian cycle. CONCLUSION We are suggesting that chorionic gonadotropin and Notch1 coordinately regulate decidualization by preventing apoptosis of endometrial stromal fibroblasts, averting uterine sloughing, and promoting cell survival and differentiation into the decidualized phenotype, which is critical for the maintenance of pregnancy.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 S Wood Street, M/C 808, Chicago, IL 60612-7313 USA
| | - Adina Stanculescu
- Department of Pathology, Cardinal Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Lucio Miele
- Department of Pathology, Cardinal Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 S Wood Street, M/C 808, Chicago, IL 60612-7313 USA
| |
Collapse
|
33
|
Yao J, Duan L, Fan M, Wu X. γ-secretase inhibitors exerts antitumor activity via down-regulation of Notch and Nuclear factor kappa B in human tongue carcinoma cells. Oral Dis 2007; 13:555-63. [DOI: 10.1111/j.1601-0825.2006.01334.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Podgorski GJ, Bansal M, Flann NS. Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor Biol Med Model 2007; 4:43. [PMID: 17974031 PMCID: PMC2203995 DOI: 10.1186/1742-4682-4-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022] Open
Abstract
Background A significant body of literature is devoted to modeling developmental mechanisms that create patterns within groups of initially equivalent embryonic cells. Although it is clear that these mechanisms do not function in isolation, the timing of and interactions between these mechanisms during embryogenesis is not well known. In this work, a computational approach was taken to understand how lateral inhibition, differential adhesion and programmed cell death can interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that formed by sensory (primary) and supporting (secondary) cells of the developing chick inner ear epithelium. Results Four different models that interlaced cellular patterning mechanisms in a variety of ways were examined and their output compared to the mosaic of sensory and supporting cells that develops in the chick inner ear sensory epithelium. The results show that: 1) no single patterning mechanism can create a 2-dimensional mosaic pattern of the regularity seen in the chick inner ear; 2) cell death was essential to generate the most regular mosaics, even through extensive cell death has not been reported for the developing basilar papilla; 3) a model that includes an iterative loop of lateral inhibition, programmed cell death and cell rearrangements driven by differential adhesion created mosaics of primary and secondary cells that are more regular than the basilar papilla; 4) this same model was much more robust to changes in homo- and heterotypic cell-cell adhesive differences than models that considered either fewer patterning mechanisms or single rather than iterative use of each mechanism. Conclusion Patterning the embryo requires collaboration between multiple mechanisms that operate iteratively. Interlacing these mechanisms into feedback loops not only refines the output patterns, but also increases the robustness of patterning to varying initial cell states.
Collapse
Affiliation(s)
- Gregory J Podgorski
- Biology Department and Center for Integrated Biosystems, Utah State University, Logan UT, USA.
| | | | | |
Collapse
|
35
|
Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 2007; 101:427-33. [PMID: 17927689 DOI: 10.1111/j.1742-7843.2007.00142.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin, the active chemical of the Asian spice turmeric, exhibits anticancer activity in several human cancer cell lines. We previously have proved that curcumin was a new member of the histone deacetylases (HDAC) inhibitors, while constitutive nuclear factor kappa B (NF-kappaB) is believed to be a crucial event for enhanced proliferation and survival of malignant cells. Here, we investigate the effect of curcumin on the activation of NF-kappaB signal molecule in Raji cells to explore its relationship with HDACs or p300/CREB binding protein (CBP). Curcumin presented striking proliferation inhibition potency on Raji cells in vitro, with the IC(50) value for 24 hr being 25 micromol/l. Significant decreases in the amounts of p300, HDAC1 and HDAC3 were detected after treatment with curcumin. These suppressing effects were more pronounced when the administered dose increased. The protection degradation of HDAC1 and p300 by MG-132 could be partially reversed by curcumin. Furthermore, curcumin could also prevent degradation of I kappaB alpha and inhibit nuclear translocation of the NF-kappaB/p65 subunit, as well as expression of Notch 1, induced by tumour necrosis factor-alpha. The results suggest that the depressive effect of curcumin on NF-kappaB signal transduction pathway may be mediated via the various components of the HDACs and p300/Notch 1 signal molecules, and may represent a new remedy for acute leukaemia.
Collapse
Affiliation(s)
- Yan Chen
- Department of Haematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
36
|
Henning K, Schroeder T, Schwanbeck R, Rieber N, Bresnick EH, Just U. mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate beta-globin. Exp Hematol 2007; 35:1321-32. [PMID: 17637499 DOI: 10.1016/j.exphem.2007.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. MATERIALS AND METHODS Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. RESULTS Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. CONCLUSIONS Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.
Collapse
Affiliation(s)
- Konstanze Henning
- Department of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Robert-Moreno A, Espinosa L, Sanchez MJ, de la Pompa JL, Bigas A. The notch pathway positively regulates programmed cell death during erythroid differentiation. Leukemia 2007; 21:1496-503. [PMID: 17476283 DOI: 10.1038/sj.leu.2404705] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Programmed cell death plays an important role in erythropoiesis under physiological and pathological conditions. In this study, we show that the Notch/RBPjkappa signaling pathway induces erythroid apoptosis in different hematopoietic tissues, including yolk sac and bone marrow as well as in murine erythroleukemia cells. In RBPjkappa(-/-) yolk sacs, erythroid cells have a decreased rate of cell death that results in increased number of Ter119(+) cells. A similar effect is observed when Notch activity is abrogated by incubation with the gamma-secretase inhibitors, DAPT or L685,458. We demonstrate that incubation with Jagged1-expressing cells has a proapoptotic effect in erythroid cells from adult bone marrow that is prevented by blocking Notch activity. Finally, we show that the sole expression of the activated Notch1 protein is sufficient to induce apoptosis in hexametilene-bisacetamide-differentiating murine erythroleukemia cells. Together these results demonstrate that Notch regulates erythroid homeostasis by inducing apoptosis.
Collapse
Affiliation(s)
- A Robert-Moreno
- Centre Oncologia Molecular, IDIBELL-Institut de Recerca Oncològica, Hospitalet, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Yao J, Duan L, Fan M, Yuan J, Wu X. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition. Int J Gynecol Cancer 2007; 17:502-10. [PMID: 17316355 DOI: 10.1111/j.1525-1438.2007.00872.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Notch signaling can serve as a tumor suppressor or tumor promoter in the same kind of cancer, such as human papillomavirus-positive cervical cancer cells. However, the exact mechanisms remain poorly characterized. Our studies demonstrated that constitutively overexpressed active Notch1 via stable transfection with exogenous intracellular domain of Notch1 (ICN) resulted in growth inhibition of the human cervical cancer cell line HeLa by inducing G(2)-M arrest and apoptosis. Moreover, the growth inhibition was correlated with inhibition of nuclear factor kappa B (NF-kappaB) p50 activation, accompanied by a decrease in the nuclear expression of NF-kappaB p50 and an increase in the cytosolic expression of IkappaBalpha. Consistent with these results, downregulation of cyclin D1 and Bcl-2, which are both the downstream genes of NF-kappaB, were observed in ICN-overexpressed cells. Overall, our results suggest that NF-kappaB inhibition may contribute partially to cell cycle arrest and apoptosis induced by Notch1 activation in human cervical cancer cells.
Collapse
Affiliation(s)
- J Yao
- Institute of Virology, School of Medicine, Wuhan University, Wuhan, Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Wang Z, Sengupta R, Banerjee S, Li Y, Zhang Y, Rahman KMW, Aboukameel A, Mohammad R, Majumdar APN, Abbruzzese JL, Sarkar FH. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res 2006; 66:7653-60. [PMID: 16885366 DOI: 10.1158/0008-5472.can-06-1019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) signaling network plays critical roles in human cancers, including pancreatic cancer, suggesting that the discovery of specific agents targeting EGFR would be extremely valuable for pancreatic cancer therapy. EGFR-related protein (ERRP), a recently identified pan-erbB inhibitor, has been shown to inhibit growth and induce apoptosis of pancreatic cancer cells in vitro and tumor growth in a xenograft model. However, the precise molecular mechanism(s) by which ERRP exerts its antitumor activity remains unclear. The current investigation was undertaken to delineate the tumor growth inhibitory mechanism(s) of ERRP in pancreatic cancer cells. Using multiple molecular assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, apoptosis, gene transfection, real-time reverse transcription-PCR, Western blotting, invasion, and electrophoretic mobility shift assay for measuring DNA-binding activity of nuclear factor-kappaB (NF-kappaB), we found that ERRP caused marked inhibition of pancreatic cancer cell growth. This was accompanied by increased apoptosis and concomitant attenuation of Notch-1 and NF-kappaB and down-regulation of NF-kappaB downstream genes, such as matrix metalloproteinase-9 and vascular endothelial growth factor, resulting in the inhibition of pancreatic cancer cell invasion through the Matrigel. We also found that down-regulation of Notch-1 by small interfering RNA before ERRP treatment resulted in enhanced cell growth inhibition and apoptosis. Our data suggest that the ERRP-mediated inactivation of EGFR, Notch-1, NF-kappaB, and its downstream target genes contributed to the inhibition of cell growth and invasion. We conclude that ERRP could be an effective agent for inhibiting tumor growth and invasion for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Departments of Pathology and Internal Medicine, Division of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 2006; 106:2503-13. [PMID: 16628653 DOI: 10.1002/cncr.21904] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, and thereby may contribute to the development of pancreatic cancer. Therefore, the down-regulation of Notch signaling may be a novel approach for pancreatic cancer therapy. It has been reported that curcumin down-regulates many genes that are known to promote survival and also up-regulates genes that are known promoters of apoptosis in pancreatic cancer cells in vitro. It also has been reported that there is cross-talk between Notch-1 and another major cell growth and apoptotic regulatory pathway, the nuclear factor kappaB (NF-kappaB) pathway, which is down-regulated by both curcumin and reduction of Notch-1 levels. However, to the authors' knowledge to date, no studies have determined whether the down-regulation of Notch-1 signaling, resulting in the inactivation of NF-kappaB activity, contributes to curcumin-induced cell growth inhibition and apoptosis in pancreatic cancer cells. METHODS The authors used multiple molecular approaches, such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, an apoptosis assay, gene transfection, real-time reverse transcriptase-polymerase chain reaction analysis, Western blot analysis, and an electrophoretic mobility shift assay to measure the DNA binding activity of NF-kappaB. RESULTS Curcumin inhibited cell growth and induced apoptosis in pancreatic cancer cells. Notch-1, Hes-1, and Bcl-XL expression levels concomitantly were down-regulated by curcumin treatment. These results correlated with the inactivation of NF-kappaB activity and increased apoptosis induced by curcumin. The down-regulation of Notch-1 by small-interfering RNA prior to curcumin treatment resulted in enhanced cell growth inhibition and apoptosis. CONCLUSIONS The current results provide the first demonstration to the authors' knowledge that the Notch-1 signaling pathway is associated mechanistically with NF-kappaB activity during curcumin-induced cell growth inhibition and apoptosis of pancreatic cells. These results suggest that the down-regulation of Notch signaling by curcumin may be a novel strategy for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
41
|
Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 2006; 5:483-93. [PMID: 16546962 DOI: 10.1158/1535-7163.mct-05-0299] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer remains the fourth most common cause of cancer-related death in the United States. Notch signaling plays a critical role in maintaining the balance among cell proliferation, differentiation, and apoptosis, and thereby may contribute to the development of pancreatic cancer. To characterize Notch pathway function in pancreatic cancer cells, we explored the consequences of down-regulation of Notch-1 in BxPC-3, HPAC, and PANC-1 pancreatic cancer cells. Using multiple cellular and molecular approaches such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, apoptosis assay, flow cytometry, gene transfection, real-time reverse transcription-PCR (RT-PCR), Western blotting, and electrophoretic mobility shift assay for measuring DNA binding activity of nuclear factor kappaB (NF-kappaB), we found that down-regulation of Notch-1 inhibited cell growth and induced apoptosis in pancreatic cancer cells. Notch-1 down-regulation also increased cell population in the G(0)-G(1) phase. Compared with control, small interfering RNA-transfected cells decreased expression of cyclin A, cyclin D1, and cyclin-dependent kinase 2. We found up-regulation of p21 and p27, which was correlated with the cell cycle changes. In addition, Notch-1 down-regulation also induced apoptosis, which could be due to decreased Bcl-2 and Bcl-X(L) protein expression in pancreatic cancer cells. Because Notch-1 is known to cross-talk with another major cell growth and apoptotic regulatory pathway (i.e., NF-kappaB), we found that NF-kappaB is a downstream target of Notch because down-regulation of Notch reduced NF-kappaB activity. We also found that genistein, a prominent isoflavone, could be an active agent for the down-regulation of the Notch pathway. These findings suggest that Notch-1 down-regulation, especially by genistein, could be a novel therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 9374 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Wang Z, Banerjee S, Li Y, Rahman KMW, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006; 66:2778-84. [PMID: 16510599 DOI: 10.1158/0008-5472.can-05-4281] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notch signaling plays a critical role in the pathogenesis and progression of human malignancies but the precise role and mechanism of Notch-1 for tumor invasion remains unclear. In our earlier report, we showed that down-regulation of Notch-1 reduced nuclear factor-kappaB (NF-kappaB) DNA-binding activity and matrix metalloproteinase-9 (MMP-9) expression. Because NF-kappaB, VEGF, and MMPs are critically involved in the processes of tumor cell invasion and metastasis, we investigated the role and mechanism(s) by which Notch-1 down-regulation (using molecular approaches) may lead to the down-regulation of NF-kappaB, vascular endothelial growth factor (VEGF), and MMP-9, thereby inhibiting invasion of pancreatic cancer cells through Matrigel. We found that the down-regulation of Notch-1 by small interfering RNA decreased cell invasion, whereas Notch-1 overexpression by cDNA transfection led to increased tumor cell invasion. Consistent with these results, we found that the down-regulation of Notch-1 reduced NF-kappaB DNA-binding activity and VEGF expression. Down-regulation of Notch-1 also decreased not only MMP-9 mRNA and its protein expression but also inactivated the pro-MMP-9 protein to its active form. Taken together, we conclude that the down-regulation of Notch-1 could be an effective approach for the down-regulation and inactivation of NF-kappaB and its target genes, such as MMP-9 and VEGF expression, resulting in the inhibition of invasion and metastasis.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 2006; 118:1930-6. [PMID: 16284950 DOI: 10.1002/ijc.21589] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Genistein is a prominent isoflavonoid found in soy products and has been proposed to be responsible for lowering the rate of pancreatic cancer in Asians. However, the molecular mechanism(s) by which genistein elicits its effects on pancreatic cancer cells has not been fully elucidated. We have previously shown that genistein induces apoptosis and inhibits the activation of nuclear factor kappaB (NF-kappaB) pathway. Moreover, Notch signaling is known to play a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of pancreatic cancer. Hence, in our study, we investigated whether there is any cross talk between Notch and NF-kappaB during genistein-induced apoptosis in BxPC-3 pancreatic cancer cells. We used multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, Western blotting and EMSA for measuring DNA binding activity of NF-kappaB. We found that genistein inhibits cell growth and induces apoptotic processes in BxPC-3 pancreatic cancer cells. This was partly due to inhibition of Notch-1 activity. BxPC-3 cells transfected with Notch-1 cDNA showed induction of NF-kappaB activity, and this was inhibited by genistein treatment. From these results, we conclude that the inhibition of Notch-1 and NF-kappaB activity and their cross talk provides a novel mechanism by which genistein inhibits cell growth and induces apoptotic processes in pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
A role for Notch signaling in human breast cancer has been suggested by both the development of adenocarcinomas in the murine mammary gland following pathway activation and the loss of Numb expression, a negative regulator of the Notch pathway, in a large proportion of breast carcinomas. However, it is not clear currently whether Notch signaling is frequently activated in breast tumors, and how it causes cellular transformation. Here, we show accumulation of the intracellular domain of Notch1 and hence increased Notch signaling in a wide variety of human breast carcinomas. In addition, we show that increased RBP-Jkappa-dependent Notch signaling is sufficient to transform normal breast epithelial cells and that the mechanism of transformation is most likely through the suppression of apoptosis. More significantly, we show that attenuation of Notch signaling reverts the transformed phenotype of human breast cancer cell lines, suggesting that inhibition of Notch signaling may be a therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Spyros Stylianou
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Christie Hospital NHS Trust, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
45
|
Nickoloff BJ, Hendrix MJC, Pollock PM, Trent JM, Miele L, Qin JZ. Notch and NOXA-related pathways in melanoma cells. J Investig Dermatol Symp Proc 2005; 10:95-104. [PMID: 16363061 DOI: 10.1111/j.1087-0024.2005.200404.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.
Collapse
Affiliation(s)
- Brian J Nickoloff
- Department of Pathology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University, Chicago, Illinois 60153-5385, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene 2005; 24:6333-44. [PMID: 15940249 DOI: 10.1038/sj.onc.1208783] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kaposi's sarcoma (KS) is a common neoplasm in HIV-1-infected individuals causing significant morbidity and mortality. Despite recent advances, the pathogenesis of this potentially life-threatening neoplasm remains unclear, and there is currently no cure for KS. Notch proteins are known to play a fundamental role in cell fate decisions including proliferation, differentiation, and apoptosis. It is, therefore, not surprising that Notch proteins have been implicated in tumorigenesis and appear to function as either oncogenes or tumor suppressor proteins depending on cellular context. In this report, we demonstrate elevated levels of activated Notch-1, -2, and -4 in KS tumor cells in vivo and in vitro compared to endothelial cells, the precursor of the KS cell. Notch activation was confirmed through luciferase reporter assays and localization of Hes (Hairy/Enhancer of Split)-1 and Hey (Hairy/Enhancer of Split related with YRPW)1 (primary targets of the Notch pathway) in KS cell nuclei. Studies using gamma-secretase inhibitors (GSI and LY-411,575), which block Notch activation, resulted in apoptosis in primary and immortalized KS cells. Similar studies injecting GSI into established KS cell tumors on mice demonstrated growth inhibition or tumor regression that was characterized by apoptosis in treated, but not control tumors. The results indicate that KS cells overexpress activated Notch and interruption of Notch signaling inhibits KS cell growth. Thus, targeting Notch signaling may be of therapeutic value in KS patients.
Collapse
Affiliation(s)
- Christine L Curry
- Department of Pathology and Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153-5385, USA
| | | | | | | | | | | |
Collapse
|
47
|
Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. ACTA ACUST UNITED AC 2005; 201:1781-91. [PMID: 15928197 PMCID: PMC2213260 DOI: 10.1084/jem.20041992] [Citation(s) in RCA: 480] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stem cells reside in a specialized niche that regulates their abundance and fate. Components of the niche have generally been defined in terms of cells and signaling pathways. We define a role for a matrix glycoprotein, osteopontin (OPN), as a constraining factor on hematopoietic stem cells within the bone marrow microenvironment. Osteoblasts that participate in the niche produce varying amounts of OPN in response to stimulation. Using studies that combine OPN-deficient mice and exogenous OPN, we demonstrate that OPN modifies primitive hematopoietic cell number and function in a stem cell–nonautonomous manner. The OPN-null microenvironment was sufficient to increase the number of stem cells associated with increased stromal Jagged1 and Angiopoietin-1 expression and reduced primitive hematopoietic cell apoptosis. The activation of the stem cell microenvironment with parathyroid hormone induced a superphysiologic increase in stem cells in the absence of OPN. Therefore, OPN is a negative regulatory element of the stem cell niche that limits the size of the stem cell pool and may provide a mechanism for restricting excess stem cell expansion under conditions of niche stimulation.
Collapse
Affiliation(s)
- Sebastian Stier
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA. Cyclic Strain Inhibits Notch Receptor Signaling in Vascular Smooth Muscle Cells In Vitro. Circ Res 2005; 96:567-75. [PMID: 15705961 DOI: 10.1161/01.res.0000159182.98874.43] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Notch signaling has been shown recently to regulate vascular cell fate in adult cells. By applying a uniform equibiaxial cyclic strain to vascular smooth muscle cells (SMCs), we investigated the role of strain in modulating Notch-mediated growth of SMCs in vitro. Rat SMCs cultured under conditions of defined equibiaxial cyclic strain (0% to 15% stretch; 60 cycles/min; 0 to 24 hours) exhibited a significant temporal and force-dependent reduction in Notch 3 receptor expression, concomitant with a significant reduction in Epstein Barr virus latency C promoter-binding factor-1/recombination signal-binding protein of the Jkappa immunoglobulin gene-dependent Notch target gene promoter activity and mRNA levels when compared with unstrained controls. The decrease in Notch signaling was Gi-protein- and mitogen-activated protein kinase-dependent. In parallel cultures, cyclic strain inhibited SMC proliferation (cell number and proliferating cell nuclear antigen expression) while significantly promoting SMC apoptosis (annexin V binding, caspase-3 activity and bax/bcl-x(L) ratio). Notch 3 receptor overexpression significantly reversed the strain-induced changes in SMC proliferation and apoptosis to levels comparable to unstrained control cells, whereas Notch inhibition further potentiated the changes in SMC apoptosis and proliferation. These findings suggest that cyclic strain inhibits SMC growth while enhancing SMC apoptosis, in part, through regulation of Notch receptor and downstream target gene expression.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Division/physiology
- Cells, Cultured/physiology
- DNA-Binding Proteins/physiology
- Gene Expression Regulation
- Immunoglobulin J Recombination Signal Sequence-Binding Protein
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/physiology
- Nuclear Proteins/physiology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Receptor, Notch1
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Recombinant Fusion Proteins/antagonists & inhibitors
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction/physiology
- Stress, Mechanical
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transfection
- bcl-2-Associated X Protein
- bcl-X Protein
Collapse
Affiliation(s)
- David Morrow
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
49
|
Hübscher SG, Strain AJ. Another Notch to be added to the list of hepatocellular growth regulatory factors? Hepatology 2005; 41:439-42. [PMID: 15723323 DOI: 10.1002/hep.20640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, Furukawa K. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 2004; 101:9458-62. [PMID: 15190179 PMCID: PMC438998 DOI: 10.1073/pnas.0308126101] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During development of the nervous system, the fate of stem cells is regulated by a cell surface receptor called Notch. Notch is also present in the adult mammalian brain; however, because Notch null mice die during embryonic development, it has proven difficult to determine the functions of Notch. Here, we used Notch antisense transgenic mice that develop and reproduce normally, but exhibit reduced levels of Notch, to demonstrate a role for Notch signaling in synaptic plasticity. Mice with reduced Notch levels exhibit impaired long-term potentiation (LTP) at hippocampal CA1 synapses. A Notch ligand enhances LTP in normal mice and corrects the defect in LTP in Notch antisense transgenic mice. Levels of basal and stimulation-induced NF-kappa B activity were significantly decreased in mice with reduced Notch levels. These findings suggest an important role for Notch signaling in a form of synaptic plasticity known to be associated with learning and memory processes.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|