1
|
Covill-Cooke C, Kwizera B, López-Doménech G, Thompson CO, Cheung NJ, Cerezo E, Peterka M, Kittler JT, Kornmann B. Shared structural features of Miro binding control mitochondrial homeostasis. EMBO J 2024; 43:595-614. [PMID: 38267654 PMCID: PMC10897228 DOI: 10.1038/s44318-024-00028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.
Collapse
Affiliation(s)
- Christian Covill-Cooke
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Brian Kwizera
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Caleb Od Thompson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ngaam J Cheung
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ema Cerezo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin Peterka
- Institute of Biochemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Luo BH, Huang JQ, Huang CY, Tian P, Chen AZ, Wu WH, Ma XM, Yuan YX, Yu L. Screening of Lymphoma Radiotherapy-Resistant Genes with CRISPR Activation Library. Pharmgenomics Pers Med 2023; 16:67-80. [PMID: 36743888 PMCID: PMC9897072 DOI: 10.2147/pgpm.s386085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 02/03/2023] Open
Abstract
Objective The objective of this study was to screen lymphoma radiotherapy-resistant genes using CRISPR activation (CRISPRa). Methods The Human CRISPRa library virus was packaged and then transfected into lymphoma cells to construct an activation library cell line, which was irradiated at the minimum lethal radiation dose to screen radiotherapy-resistant cells. Radiotherapy-resistant cell single-guide RNA (sgRNA) was first amplified by quantitative polymerase chain reaction (qPCR) in the coding region and then subject to next-generation sequencing (NGS) and bioinformatics analysis to screen radiotherapy-resistant genes. Certain radiotherapy-resistant genes were then selected to construct activated cell lines transfected with a single gene so as to further verify the relationship between gene expression and radiotherapy resistance. Results A total of 16 radiotherapy-resistant genes, namely, C20orf203, MTFR1, TAF1L, MYADM, NIPSNAP1, ZUP1, RASL11A, PSMB2, PSMA6, OR8H3, TMSB4Y, CD300LF, EEF1A1, ATP6AP1L, TRAF3IP2, and SNRNP35, were screened based on the NGS results and bioinformatics analysis of the radiotherapy-resistant cells. Activated cell lines transfected with a single gene were constructed using 10 radiotherapy-resistant genes. The qPCR findings showed that, when compared with the control group, the experimental group had significantly up-regulated mRNA expression of MTFR1, NIPSNAP1, ZUP1, PSMB2, PSMA6, EEF1A1, TMSB4Y and TAF1L (p < 0.05). No significant difference in the mRNA expression of AKT3 or TRAF3IP2 (p > 0.05) was found between the two groups (p > 0.05). Conclusion The 16 genes screened are potential lymphoma radiotherapy-resistant genes. It was initially determined that the high expression of 8 genes was associated with lymphoma radiotherapy resistance, and these genes could serve as the potential biomarkers for predicting lymphoma radiotherapy resistance or as new targets for therapy.
Collapse
Affiliation(s)
- Bi-Hua Luo
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Jian-Qing Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Chun-Yu Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Pan Tian
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Ai-Zhen Chen
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Wei-Hao Wu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Xiao-Mei Ma
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Yue-Xing Yuan
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China,Correspondence: Lian Yu, Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, No. 105 of Jiuyibei Road, Xinluo District, Fujian, 364000, People’s Republic of China, Tel +86 13859572936, Email
| |
Collapse
|
3
|
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J. AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology. SCIENCE ADVANCES 2022; 8:eabo7956. [PMID: 36367943 PMCID: PMC9651865 DOI: 10.1126/sciadv.abo7956] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Daniel M. Virga
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Anja V. Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Luis-Carlos Tabara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
- Corresponding author.
| |
Collapse
|
4
|
Li H, Zhu X, Zhang W, Lu W, Liu C, Ma J, Zang R, Song Y. Association of High Expression of Mitochondrial Fission Regulator 2 with Poor Survival of Patients with Esophageal Squamous Cell Carcinoma. J Cancer Prev 2021; 26:250-257. [PMID: 35047451 PMCID: PMC8749323 DOI: 10.15430/jcp.2021.26.4.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial fission regulator 2 (MTFR2) is associated with mitochondrial fission, while few studies have assessed the associations between MTFR2 expression and clinical characteristics or prognosis of esophageal squamous cell carcinoma (ESCC). In this study, we compared the expression of MTFR2 in 6 ESCC tumors and relative normal tissues by immunohistochemistry (IHC). To assess the effect of MTFR2 expression on clinicopathologic characteristics and survival, 115 paraffin embedded ESCC tissue samples were assessed by IHC staining. Furthermore, the association between clinicopathological properties and MTFR2 expression in patients with ESCC was examined. The survival analysis was performed using the Cox regression models. We found that MTFR2 expression was significantly increased in ESCC tumors compared with normal esophageal epithelial cells. IHC analysis of 115 paraffin embedded ESCC tumor specimens of the patients showed that the expression of MTFR2 was significantly associated with clinical stage (P < 0.001), tumor classification (P < 0.001), histological grade (P < 0.001), and other clinicopathological characteristics. Both univariate and multivariate analyses showed that MTFR2 expression was inversely correlated with the survival of ESCC patients. In conclusion, the expression of MTFR2 is significantly associated with clinicopathologic characteristics and prognosis of ESCC. Thus, MTFR2 expression could serve as a potentially important prognostic biomarker and clinical target for patients with ESCC.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xingzhuang Zhu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Ma
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Li Y, Liu Y, Jin K, Dong R, Gao C, Si L, Feng Z, Zhang H, Tian H. Negatively Regulated by miR-29c-3p, MTFR1 Promotes the Progression and Glycolysis in Lung Adenocarcinoma via the AMPK/mTOR Signalling Pathway. Front Cell Dev Biol 2021; 9:771824. [PMID: 34926459 PMCID: PMC8672271 DOI: 10.3389/fcell.2021.771824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the major form of lung cancer that presents a major peril to public health. Owing to the high rates of morbidity, mortality and chemoresistance, it is necessary to develop more effective therapeutic targets of LUAD. Mitochondrial fission regulator 1 (MTFR1) affects the occurrence and development of some diseases by regulating mitochondrial dynamics and is dysregulated in LUAD. However, the functions and molecular mechanisms of MTFR1 in LUAD have not been investigated. Methods: Immunohistochemical (IHC) analysis, real-time quantitative polymerase chain reaction (RT-qPCR), bioinformatic analysis and western blot (WB) were performed to assess the expression of MTFR1 at both protein and mRNA levels. The biological functions of MTFR1 in LUAD cells were assessed based on various in vivo and in vitro experiments. The dual-luciferase reporter assay and some rescue experiments were performed to evaluate the underlying mechanism of MTFR1 in LUAD. Results: MTFR1 was upregulated in LUAD cells and tissues and correlated with dismal clinicopathologic features and a worse prognosis of patients with LUAD. Functionally, MTFR1 overexpression stimulated the proliferation, invasion, migration and glycolytic capacity and impeded the apoptosis of LUAD cells; however, opposite results were obtained when MTFR1 expression was knocked down. MTFR1, which was directly targeted by miR-29c-3p, may exert its biological functions through the AMPK/mTOR signalling pathway. Conclusion: MTFR1 promotes the progression of LUAD. Therefore, targeting MTFR1 can offer an effective therapeutic strategy for LUAD treatment.
Collapse
Affiliation(s)
- Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Liu
- Department of Anesthesiology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Kai Jin
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Dong
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cun Gao
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
7
|
Wu L, Kang Z, Qiao N, Wang C, Tang Z. Cu-induced mitochondrial dysfunction is mediated by abnormal mitochondrial fission through oxidative stress in primary chicken embryo hepatocytes. J Trace Elem Med Biol 2021; 65:126721. [PMID: 33508548 DOI: 10.1016/j.jtemb.2021.126721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Excess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs). METHODS CEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected. RESULTS Results showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups. CONCLUSION In conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.
Collapse
Affiliation(s)
- Liuyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Lu W, Zang R, Du Y, Li X, Li H, Liu C, Song Y, Li Y, Wang Y. Overexpression of MTFR2 Predicts Poor Prognosis of Breast Cancer. Cancer Manag Res 2020; 12:11095-11102. [PMID: 33173342 PMCID: PMC7646465 DOI: 10.2147/cmar.s272088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background Mitochondrial fission regulator 2 (MTFR2) has been reported to promote proliferation, migration and invasion in tumors; however, little is known about its function in breast cancer. Thus, we investigated the effect of MTFR2 expression on prognosis of breast cancer. Methods The expression of MTFR2 in breast cancer tissues was detected by immunohistochemistry, and overall survival (OS) and recurrence free survival (RFS) were evaluated by the Log rank test and Cox model. Results We found that MTFR2 expression was significantly associated with clinical stage (P<0.001), T classification (P=0.005), N classification (P=0.001), M classification (P=0.041), HER2 expression (P= 0.001), and molecular subtypes (P=0.002), respectively. Compared with low MTFR2 expression, the patients with higher expression of MTFR2 exhibited significantly shorter OS and RFS (All P < 0.001). Both univariate and multivariate analyses showed that MTFR2 was an independent prognostic factor for OS (HR, 2.8, 95% CI 1.1-6.8, P = 0.023) and RFS (HR, 2.8, 95% CI 1.2-6.4, P = 0.015) in breast cancer patients. Moreover, in HER2 positive and TNBC subtype, the associations between high MTFR2 expression and poor OS and RFS were more pronounced. Conclusion Taken together, our results demonstrated that high MTFR2 expression was associated with poor prognosis of breast cancer patients, and such an association was more pronounced in the patients with aggressive tumors. Therefore, MTFR2 expression might be a potentially important prognostic biomarker and clinical target for patients with breast cancer.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yuanna Du
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Xinghua Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yang Wang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
9
|
Seitz S, Kwon Y, Hartleben G, Jülg J, Sekar R, Krahmer N, Najafi B, Loft A, Gancheva S, Stemmer K, Feuchtinger A, Hrabe de Angelis M, Müller TD, Mann M, Blüher M, Roden M, Berriel Diaz M, Behrends C, Gilleron J, Herzig S, Zeigerer A. Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nat Metab 2019; 1:1009-1026. [PMID: 32694843 DOI: 10.1038/s42255-019-0124-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a key feature of obesity-related type 2 diabetes with increasing prevalence worldwide. To our knowledge, no treatment options are available to date, paving the way for more severe liver damage, including cirrhosis and hepatocellular carcinoma. Here, we show an unexpected function for an intracellular trafficking regulator, the small Rab GTPase Rab24, in mitochondrial fission and activation, which has an immediate impact on hepatic and systemic energy homeostasis. RAB24 is highly upregulated in the livers of obese patients with NAFLD and positively correlates with increased body fat in humans. Liver-selective inhibition of Rab24 increases autophagic flux and mitochondrial connectivity, leading to a strong improvement in hepatic steatosis and a reduction in serum glucose and cholesterol levels in obese mice. Our study highlights a potential therapeutic application of trafficking regulators, such as RAB24, for NAFLD and establishes a conceptual functional connection between intracellular transport and systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Yun Kwon
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Götz Hartleben
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Jülg
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University München, Munich, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Krahmer
- German Center for Diabetes Research, Neuherberg, Germany
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Bahar Najafi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Loft
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Kerstin Stemmer
- German Center for Diabetes Research, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Timo D Müller
- German Center for Diabetes Research, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Roden
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University München, Munich, Germany
| | - Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale UMR1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
10
|
Chen P, Zhong J, Ye J, He Y, Liang Z, Cheng Y, Zheng J, Chen H, Chen C. miR-324-5p protects against oxidative stress-induced endothelial progenitor cell injury by targeting Mtfr1. J Cell Physiol 2019; 234:22082-22092. [PMID: 31066044 DOI: 10.1002/jcp.28771] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Endothelial progenitor cells (EPCs) belong to bone marrow-derived myeloid progenitor cells that have strong proliferative ability. Dysregulation of miRNAs after acute myocardial infarction (AMI) can result in EPCs injury, thus we hypothesize that correction of miRNA expression may contribute to the tolerance of EPCs against oxidative stress. The peripheral blood of healthy volunteers and patients with ST-segment elevation myocardial infarction (STEMI) was clinically collected. EPCs derived from peripheral blood were transfected by miR-324-5p mimic and simultaneously handled with hydrogen peroxide (H2 O2 ) to inducing EPCs injury. At 24 hrs after the H2 O2 treatment, cell viability, the uptake capacity on DiI-Ac-LDL, and carrying ability on FITC-UEA-l and multiplication capacity were analyzed. The mechanism process was carefully researched by valued the characteristics of the mitochondrion morphology, membrane potential, ATP levels, and the expressing of apoptosis pathways. Small RNA sequencing indicated that the expression level of miR-324-5p in peripheral blood EPCs of patients with STEMI was significantly lower compared with the healthy volunteers. The Mtfr1 has been confirmed as a targeted gene of miR-324-5p through miRTarBase software and western blot. The miR-324-5p mimic units could be contributed for the improvement of viability, the uptake capacity on DiI-Ac-LDL and carrying ability on FITC-UEA-l and multiplication capacity on oxidative stress-injured EPCs. miR-324-5p could suppress mitochondrial fragmentation, promote membrane potential, and ATP levels, as well as protect against oxidative stress-induced EPCs apoptosis. Our results suggested that miR-324-5p protects against oxidative stress-induced EPCs injury by regulating Mtfr1.
Collapse
Affiliation(s)
- Peier Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianfeng Ye
- People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Yuan He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zheng Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yu Cheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jie Zheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hao Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Can Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
The Alterations in Mitochondrial DNA Copy Number and Nuclear-Encoded Mitochondrial Genes in Rat Brain Structures after Cocaine Self-Administration. Mol Neurobiol 2016; 54:7460-7470. [PMID: 27819115 PMCID: PMC5622911 DOI: 10.1007/s12035-016-0153-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
The repeated intake of cocaine evokes oxidative stress that is present even during drug withdrawal. Recent studies demonstrate that cocaine-induced oxidative and/or endoplasmic reticulum stress can affect mitochondrial function and dynamics as well as the expression of mitochondrial and nuclear genes. These alterations in mitochondrial function may determine synaptic and behavioral plasticity. Mitochondria and mitochondrial DNA (mtDNA) seem to play an important role in the initiation of drug addiction. We used a microarray approach to investigate the expression patterns of nuclear-encoded genes relevant for mitochondrial functions and quantitative real-time PCR assays to determine the numbers of copies of mtDNA and of mRNAs corresponding to two mitochondrial proteins in the prefrontal cortex and hippocampus of rats during early cocaine abstinence. We found a significant elevation in the copy number of mtDNA and concomitant increased expression of mitochondrial genes. Moreover, microarray analysis revealed changes in the transcription of nuclear genes engaged in mtDNA replication, nucleoid formation, the oxidative phosphorylation pathway, and mitochondrial fission and fusion. Finally, we observed the upregulation of endoplasmic reticulum stress-induced genes. Cocaine self-administration influences the expression of both nuclear and mitochondrial genes as well as mtDNA replication. To determine whether these alterations serve as compensatory mechanisms to help maintain normal level of ATP production, further studies are necessary.
Collapse
|
12
|
Xu H, Watanabe KA, Zhang L, Shen QJ. WRKY transcription factor genes in wild rice Oryza nivara. DNA Res 2016; 23:311-23. [PMID: 27345721 PMCID: PMC4991837 DOI: 10.1093/dnares/dsw025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/18/2016] [Indexed: 11/26/2022] Open
Abstract
The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.
Collapse
Affiliation(s)
- Hengjian Xu
- School of Life Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, People's Republic of China School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Kenneth A Watanabe
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Liyuan Zhang
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
13
|
Cortese K, Daga A, Monticone M, Tavella S, Stefanelli A, Aiello C, Bisio A, Bellese G, Castagnola P. Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:679-685. [PMID: 27235706 DOI: 10.1016/j.phymed.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Carnosic acid (CA) is a diterpenoid found in Rosmarinus officinalis L. and Salvia officinalis L. as well as in many other Lamiaceae. This compound is reported to have antioxidant and antimicrobial properties. In addition, a number of reports showed that CA has a cytotoxic activity toward several cancer cell lines. PURPOSE The aim of this study was to establish whether CA has any specific antiproliferative effect toward human glioblastoma (GBM) cells and to analyze the molecular mechanisms involved. METHODS We evaluated cell survival by MTT assay, apoptosis and DNA content by flow cytometry, protein expression and phosphorylation by immunoblot analyses. RESULTS Our results showed that CA inhibited cell survival on both normal astrocytes and GBM cells. In GBM cells, in particular, CA caused an early G2 block, a reduction in the percentage of cells expressing Ki67, an enhanced expression of p21(WAF) and induced apoptosis. Furthermore, we showed that CA promoted proteasomal degradation of several substrate proteins, including Cyclin B1, retinoblastoma (RB), SOX2, and glial fibrillary acid protein (GFAP), whereas MYC levels were not modified. In addition, CA dramatically reduced the activity of CDKs. CONCLUSION In conclusion, our findings strongly suggest that CA promotes a profound deregulation of cell cycle control and reduces the survival of GBM cells via proteasome-mediated degradation of Cyclin B1, RB and SOX2.
Collapse
Affiliation(s)
- Katia Cortese
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Via de Toni 14, 16132 Genova, Italy
| | - Antonio Daga
- IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | | | - Sara Tavella
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Via de Toni 14, 16132 Genova, Italy; IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Alessia Stefanelli
- IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Cinzia Aiello
- IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Angela Bisio
- Dip. Farmacia, Università di Genova, Via Brigata Salerno 13, 16147 Genova, Italy
| | - Grazia Bellese
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Via de Toni 14, 16132 Genova, Italy
| | - Patrizio Castagnola
- IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, 10, 16132 Genova, Italy.
| |
Collapse
|
14
|
Wang K, Zhang DL, Long B, An T, Zhang J, Zhou LY, Liu CY, Li PF. NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1. Cell Death Dis 2015; 6:e2007. [PMID: 26633713 PMCID: PMC4720883 DOI: 10.1038/cddis.2015.348] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/10/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction and heart failure. However, the molecular components regulating mitochondrial network in heart remain largely unidentified. Here we report that NFAT4, miR-324-5p and mitochondrial fission regulator 1 (Mtfr1) function in one signaling axis that regulates mitochondrial morphology and cardiomyocyte cell death. Knocking down Mtfr1 suppresses mitochondrial fission, apoptosis and myocardial infarction. Mtfr1 is a direct target of miR-324-5p, and miR-324-5p attenuates mitochondrial fission, cardiomyocyte apoptosis and myocardial infarction by suppressing Mtfr1 translation. Finally, we show that transcription factor NFAT4 inhibits miR-324-5p expression. Knockdown of NFAT4 suppresses mitochondrial fission and protects cardiomyocyte from apoptosis and myocardial infarction. Our study defines the NFAT4/ miR-324-5p/Mtfr1 axis, which participates in the regulation of mitochondrial fission and cardiomyocyte apoptosis, and suggests potential new treatment avenues for cardiac diseases.
Collapse
Affiliation(s)
- K Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - D-L Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - B Long
- Laboratory of Molecular Medicine, Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - T An
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - J Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - L-Y Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - C-Y Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - P-F Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases. Oral Oncol 2015; 51:355-62. [DOI: 10.1016/j.oraloncology.2014.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/01/2014] [Accepted: 12/13/2014] [Indexed: 12/11/2022]
|
16
|
De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, Yu L, Leurgans SE, Tran D, Aubin C, Anderson CD, Biffi A, Corneveaux JJ, Huentelman MJ, Rosand J, Daly MJ, Myers AJ, Reiman EM, Bennett DA, Evans DA. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging 2011; 33:1017.e1-15. [PMID: 22054870 DOI: 10.1016/j.neurobiolaging.2011.09.033] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/09/2011] [Accepted: 09/16/2011] [Indexed: 11/24/2022]
Abstract
Age-related cognitive decline is likely promoted by accumulated brain injury due to chronic conditions of aging, including neurodegenerative and vascular disease. Because common neuronal mechanisms may mediate the adaptation to diverse cerebral insults, we hypothesized that susceptibility for age-related cognitive decline may be due in part to a shared genetic network. We have therefore performed a genome-wide association study using a quantitative measure of global cognitive decline slope, based on repeated measures of 17 cognitive tests in 749 subjects from the Religious Orders Study. Top results were evaluated in 3 independent replication cohorts, consisting of 2279 additional subjects with repeated cognitive testing. As expected, we find that the Alzheimer's disease (AD) susceptibility locus, APOE, is strongly associated with rate of cognitive decline (P(DISC) = 5.6 × 10(-9); P(JOINT)= 3.7 × 10(-27)). We additionally discover a variant, rs10808746, which shows consistent effects in the replication cohorts and modestly improved evidence of association in the joint analysis (P(DISC) = 6.7 × 10(-5); P(REP) = 9.4 × 10(-3); P(JOINT) = 2.3 × 10(-5)). This variant influences the expression of 2 adjacent genes, PDE7A and MTFR1, which are potential regulators of inflammation and oxidative injury, respectively. Using aggregate measures of genetic risk, we find that known susceptibility loci for cardiovascular disease, type 2 diabetes, and inflammatory diseases are not significantly associated with cognitive decline in our cohort. Our results suggest that intermediate phenotypes, when coupled with larger sample sizes, may be a useful tool to dissect susceptibility loci for age-related cognitive decline and uncover shared molecular pathways with a role in neuronal injury.
Collapse
Affiliation(s)
- Philip L De Jager
- Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monticone M, Panfoli I, Ravera S, Puglisi R, Jiang MM, Morello R, Candiani S, Tonachini L, Biticchi R, Fabiano A, Cancedda R, Boitani C, Castagnola P. The nuclear genes Mtfr1 and Dufd1 regulate mitochondrial dynamic and cellular respiration. J Cell Physiol 2010; 225:767-76. [PMID: 20568109 DOI: 10.1002/jcp.22279] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dufd1 (DUF729 domain containing 1) is related to Mtfr1 (mitochondrial fission regulator 1), a gene involved in the regulation of antioxidant activity in the mouse testis. The present study was undertaken to better understand their role in regulating mitochondrial architecture and function in the mouse. We show that Dufd1 is expressed as a 2 kb mRNA and has a more specific tissue pattern compared to Mtfr1, with highest level of expression in testes, lower level in spleen, and negligible levels in other organs and/or tissues. In the male gonad, Dufd1 mRNA expression increases during postnatal development, similarly to Mtfr1. In situ hybridization and real-time PCR analyses show that Dufd1 is expressed in the seminiferous tubules by middle-late pachytene spermatocytes and spermatids. In transfected cells, the Dufd1-tagged protein is located in mitochondria, associated with the tips of mitochondrial tubules and to tubules constrictions, and induces mitochondrial fission although with a lesser efficiency than Mtfr1. We also found that both endogenous Dufd1 and Mtfr1 proteins are associated with membrane-enriched subcellular fractions, including mitochondria. Inhibition of Mtfr1 and/or Dufd1 expression, in a testicular germ cells line, severely impairs O(2) consumption and indicates that both genes are required for mitochondrial respiration. Accordingly, analysis of testes mitochondria from Mtfr1-deficient mice reveals severely reduced O(2) consumption and ATP synthesis compared to wt animals. These data show that, in murine testis, Dufd1 and Mtfr1 have redundant functions related to mitochondrial physiology and represent genes with a potential role in testicular function.
Collapse
|
18
|
Jiang Z, Michal JJ, Chen J, Daniels TF, Kunej T, Garcia MD, Gaskins CT, Busboom JR, Alexander LJ, Wright RW, Macneil MD. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. Int J Biol Sci 2009; 5:528-42. [PMID: 19727437 PMCID: PMC2726579 DOI: 10.7150/ijbs.5.528] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022] Open
Abstract
Quantitative or complex traits are determined by the combined effects of many loci, and are
affected by genetic networks or molecular pathways. In the present study, we genotyped a total
of 138 mutations, mainly single nucleotide polymorphisms derived from 71 functional genes on a
Wagyu x Limousin reference population. Two hundred forty six F2 animals were
measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. A total of 2,280
single marker-trait association runs with 120 tagged mutations selected based on the HAPLOVIEW
analysis revealed 144 significant associations (P < 0.05), but 50 of them were removed
from the analysis due to the small number of animals (≤ 9) in one genotype group or
absence of one genotype among three genotypes. The remaining 94 single-trait associations were
then placed into three groups of quantitative trait modes (QTMs) with additive, dominant and
overdominant effects. All significant markers and their QTMs associated with each of these 19
traits were involved in a linear regression model analysis, which confirmed single-gene
associations for 4 traits, but revealed two-gene networks for 8 traits and three-gene networks
for 5 traits. Such genetic networks involving both genotypes and QTMs resulted in high
correlations between predicted and actual values of performance, thus providing evidence that
the classical Mendelian principles of inheritance can be applied in understanding genetic
complexity of complex phenotypes. Our present study also indicated that carcass, eating quality
and fatty acid composition traits rarely share genetic networks. Therefore, marker-assisted
selection for improvement of one category of these traits would not interfere with improvement
of another.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gu J, Orr N, Park SD, Katz LM, Sulimova G, MacHugh DE, Hill EW. A genome scan for positive selection in thoroughbred horses. PLoS One 2009; 4:e5767. [PMID: 19503617 PMCID: PMC2685479 DOI: 10.1371/journal.pone.0005767] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/22/2009] [Indexed: 01/10/2023] Open
Abstract
Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (F(ST)). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01), insulin receptor signalling (5.0-fold enrichment; P<0.01) and lipid transport (2.2-fold enrichment; P<0.05) genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05) and focal adhesion pathway (1.9-fold enrichment; P<0.01) genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease.
Collapse
Affiliation(s)
- Jingjing Gu
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Nick Orr
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
- The Breakthrough Breast Cancer Research Centre, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Stephen D. Park
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa M. Katz
- University Veterinary Hospital, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Galina Sulimova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - David E. MacHugh
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Emmeline W. Hill
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
20
|
Monticone M, Tonachini L, Tavella S, Degan P, Biticchi R, Palombi F, Puglisi R, Boitani C, Cancedda R, Castagnola P. Impaired expression of genes coding for reactive oxygen species scavenging enzymes in testes of Mtfr1/Chppr-deficient mice. Reproduction 2007; 134:483-92. [PMID: 17709566 DOI: 10.1530/rep-07-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mtfr1/Chppris a nuclear gene coding for a mitochondrial protein capable of inducing fission of this organelle in a sequence-specific manner. Here we show that in mice,Mtfr1/Chppris ubiquitously expressed and displays the highest level of expression in pubertal and adult testes and in particular in spermatids and Leydig cells. To investigateMtfr1functionin vivo, we analyzed homozygous mice null for this gene obtained through a gene trap approach. We show that these mice fail to expressMtfr1and that in their testes several genes coding for enzymes involved in the defense against oxidative stress are downregulated. Among these, we studied in particular glutathione peroxidase 3 and show its expression in selected testis cell types. Furthermore, we demonstrate oxidative DNA damage specifically in testes ofMtfr1-deficient mice likely resulting from a reduced antioxidant activity. As a whole, these data suggest thatMtfr1protects the male gonads against oxidative stress.
Collapse
|
21
|
Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B. CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta. Cell 2006; 127:291-304. [PMID: 17055431 DOI: 10.1016/j.cell.2006.08.039] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/04/2006] [Accepted: 08/18/2006] [Indexed: 11/26/2022]
Abstract
Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.
Collapse
Affiliation(s)
- Roy Morello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tamiji S, Beauvillain JC, Mortier L, Jouy N, Tual M, Delaporte E, Formstecher P, Marchetti P, Polakowska R. Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation. J Invest Dermatol 2005; 125:647-58. [PMID: 16185262 DOI: 10.1111/j.0022-202x.2005.23885.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Terminally differentiated keratinocytes are dead enucleated squams. We showed previously that the mitochondria-dependent cell death pathway might be gradually activated as differentiation progresses. In this study, we demonstrated that protoporphyrin IX, staurosporine, and rotenone induced apoptotic-like changes in the mitochondria, and early differentiation of keratinocytes without inducing apoptosis. Kinetics studies established that differentiation-related changes, including growth arrest, flattened morphology, stratification, and keratin 10 (K10) expression, were downstream of mitochondrial depolarization and proliferation, reactive oxygen species (ROS) production, and release of cytochrome c and apoptosis-inducing factor. When these changes were prevented by overexpressing Bcl-2 or pharmacologically decreasing the ROS level, K10 upregulation was inhibited, implying that the differentiated phenotype and K10 expression require apoptotic mitochondria, ROS being the most likely differentiation-mediating factor. Our data also suggest that the same mitochondria-affecting stimuli can induce either differentiation or apoptosis, depending on the keratinocyte's competency to undergo differentiation, a competency that may be controlled by Bcl-2.
Collapse
Affiliation(s)
- Susan Tamiji
- INSERM U459, Faculté de Médecine, Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arcucci A, Montagnani S, Gionti E. Expression and intracellular localization of Pyk2 in normal and v-src transformed chicken epiphyseal chondrocytes. Biochimie 2005; 88:77-84. [PMID: 16040187 DOI: 10.1016/j.biochi.2005.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 06/20/2005] [Indexed: 11/24/2022]
Abstract
The expression and localization of prolin-rich tyrosine kinase 2 (Pyk2) were studied in chick embryo epiphyseal chondrocytes. Two immunoreactive bands were detected in chondrocytes, a major band with an apparent Mr of 123 kDa and a minor band with an apparent Mr of 68 kDa. The major band appears to migrate as a doublet with apparent Mr of 116/123 kDa. Increased levels of the three forms of Pyk2 were observed in v-src transformed chondrocytes as compared to control uninfected chondrocytes. Immunofluorescent staining shows that Pyk2 is clearly visible in the cytosol and in the perinuclear region of control and v-src-chondrocytes and displays a pattern very similar to the distribution of the mitochondrial marker Mito Tracker. More, immunofluorescent staining shows that Pyk2 is nuclear in most chondrocytes. By subcellular fractionation, the p116/123 Pyk2 doublet, was found to be accumulated mainly in the cytoplasm while the p68 Pyk2 form, was found to be accumulated exclusively in the nucleus. The differential nuclear/cytoplasmic distribution of the Pyk2 forms remains unchanged after v-Src-induced transformation. The p68 Pyk2 form could no longer be detected by using a N-terminus domain-specific anti-Pyk2 antibody. Consistently, Pyk2 immunoreactivity was restricted to the cytoplasm of control and v-src transformed chondrocytes. Thus it appears that the p68 Pyk2 form that accumulates in the nucleus has a deletion in the N-terminus region.
Collapse
Affiliation(s)
- Alessandro Arcucci
- Dipartimento di Scienze Biomorfologiche e Funzionali, Università di Napoli Federico II, via S. Pansini n. 5, 80131 Napoli, Italy
| | | | | |
Collapse
|