1
|
Heidari Z, Farahmandpour F, Bazyar H, Pashayee-Khamene F. Effects of Hesperidin Supplementation on Cardiometabolic Markers: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae084. [PMID: 39038797 DOI: 10.1093/nutrit/nuae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
CONTEXT Hesperidin is a naturally occurring bioactive compound that may influence cardiometabolic markers, but the existing evidence is inconclusive. OBJECTIVE This study aims to further investigate the effects of hesperidin supplementation on cardiometabolic markers in adults. DATA SOURCES A comprehensive search was conducted up to August 2023, utilizing relevant key words in databases such as PubMed, Scopus, Embase, and the Cochrane Central Register of Controlled Trials, focusing on randomized controlled trials (RCTs). DATA EXTRACTION RCTs that examined the impact of hesperidin on fasting blood sugar (FBS), insulin, quantitative insulin-sensitivity check index (QUICKI), homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP), tumor necrosis factor-alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) were selected independently by 2 authors. The GRADE assessment was used to ascertain the certainty of the evidence. Results were pooled using a random-effects model as weighted mean differences and 95% CIs. DATA ANALYSIS The results of this study demonstrate that hesperidin supplementation had a significant impact on reducing FBS, TG, TC, LDL-C, SBP, and TNF-α. However, there was no significant effect observed on insulin, HOMA-IR, QUICKI, HDL-C, DBP, and hs-CRP. The study's subgroup analyses also revealed that interventions lasting more than 12 weeks were effective in reducing FBS, TG, TC, and LDL-C. Moreover, hesperidin dosage exceeding 500 mg/day showed significance in reducing FBS, TC, and LDL-C levels. CONCLUSION In conclusion, this research suggests that hesperidin can be consumed as an effective dietary approach to enhance cardiometabolic markers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022325775.
Collapse
Affiliation(s)
- Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Fatemeh Farahmandpour
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Hadi Bazyar
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, 7816916338, Iran
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, 7816916338, Iran
| | | |
Collapse
|
2
|
Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Front Nutr 2023; 10:1177708. [PMID: 37502716 PMCID: PMC10369082 DOI: 10.3389/fnut.2023.1177708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Hesperidin is a naturally occurring bioactive compound that may have an impact on cardiovascular disease risks, but the evidence is not conclusive. To investigate further, this study aimed to explore the effects of hesperidin supplementation on cardiovascular risk factors in adults. A comprehensive search was conducted up to August 2022 using relevant keywords in databases such as Scopus, PubMed, Embase, Cochrane Library, and ISI Web of Science for all randomized controlled trials (RCTs). The results showed that hesperidin supplementation had a significant effect on reducing serum triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL), tumor necrosis factor-alpha (TNF-α), and systolic blood pressure (SBP), whereas weight was increased. However, no significant effect was observed on high-density cholesterol (HDL), waist circumference (WC), fasting blood glucose (FBG), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), body mass index (BMI), and diastolic blood pressure (DBP). The study also found that an effective dosage of hesperidin supplementation was around 1,000 mg/d, and a more effective duration of supplementation was more than eight weeks to decrease insulin levels. Furthermore, the duration of intervention of more than six weeks was effective in decreasing FBG levels.
Collapse
Affiliation(s)
- Atie Sadat Khorasanian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadis Gerami
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu Q, Xu Y, Liu B, Yang H, Ma H, Yang A, He Y, Liu T. Identification of the Mechanism of Feiduqing on Viral Pneumonia Based on Network Pharmacology Analysis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Feiduqing (FDQ) is a traditional Chinese medicine formula used for many years in the treatment of viral pneumonia (VP). However, the effective components of FDQ and the mechanism by which it affects VP remain unclear. The purpose of this study is to determine the multitarget mechanism of the effect of FDQ on VP through determination and in vivo pharmacodynamics combined with network pharmacology. Firstly, the compound–target–pathway network was constructed by using TCMSP, UniProt, GeneCards, STRING, and DAVID databases through Cytoscape 3.7.0. Secondly, the content of the effective components of the original prescription of FDQ was determined. Finally, the pharmacological activity of FDQ in vivo was verified by an animal model, and the active ingredient composition (AIC), selected by network pharmacology was used for antipyretic, antiinflammatory, antitussive, and expectorant symptoms. Seven compounds of FDQ and 22 potential target genes in the treatment of VP with FDQ were identified by network pharmacology analysis. Kyoto Encyclopedia of genes and genomes enrichment analysis results indicated that the mechanism of FDQ in the treatment of VP was mainly related to pathways in cancer, hepatitis b, tumor necrosis factor (TNF) signaling pathway, Chagas disease, tuberculosis, influenza A, human T-cell leukemia virus, type 1 infection, toxoplasmosis and toll-like receptor signaling pathways, osteoclast differentiation, nonalcoholic fatty liver disease, and leishmaniasis. The results of pharmacodynamic experiments showed that FDQ and AIC possessed antipyretic, cough relieving, and reducing sputum effects. Besides, FDQ and AIC could also significantly reduce the content of prostaglandin E2, TNF-α, cyclic adenosine monophosphate, interleukin-1β, and myeloperoxidase in vivo, while increasing the content of interleukin-10 in vivo. The active ingredients of FDQ prescriptions could be accurately screened by network pharmacological analysis, as they clarified the mechanism of FDQ in the treatment of VP. The research results provided potential ideas and methods for the screening and purification of active ingredients in traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Qian Liu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
- Sichuan Tianyi College, Mianzhu, Sichuan, China
| | - Yuling Xu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bowen Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Yang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hanbin Ma
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Andi Yang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yongzhi He
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Tao Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Oliveira BC, Santos PP, Figueiredo AM, Rafacho BPM, Ishikawa L, Zanati SG, Fernandes AAH, Azevedo PS, Polegato BF, Zornoff LAM, Minicucci MF, Paiva SAR. Influence of Consumption of Orange Juice (Citrus Sinensis) on Cardiac Remodeling of Rats Submitted to Myocardial Infarction. Arq Bras Cardiol 2021; 116:1127-1136. [PMID: 34133599 PMCID: PMC8288524 DOI: 10.36660/abc.20190397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Fundamento O suco de laranja (SL) é rico em polifenóis com propriedades anti-inflamatórias e antioxidantes. Após o infarto do miocárdio (IM), mudanças complexas ocorrem na estrutura e na função cardíacas, processo conhecido como remodelação cardíaca (RC). O estresse oxidativo e a inflamação podem modular esse processo. Nossa hipótese foi a de que o consumo de SL atenua a RC após o IM. Objetivos Avaliar a influência do SL sobre a RC após IM pela análise de variáveis funcionais, morfológicas, de estresse oxidativo, de inflação, e de metabolismo energético. Métodos Um total de 242 ratos machos pesando entre 200 e 250g foram submetidos a um procedimento cirúrgico (ligação da artéria coronária ou cirurgia simulada). Sete dia após a cirurgia, os animais sobreviventes foram divididos para um dos quatro grupos: 1) SM, animais sham que receberam água e maltodextrina (n= 20); 2) SSL, animais sham que receberam SL (n= 20); 3) IM, animais infartados que receberam água e maltodextrina (n= 40); e 4) ISL, animais infartados que receberam SL (n = 40). A análise estatística foi realizada pelo teste de ANOVA com dois fatores com o teste de Holm-Sidak. Os resultados foram apresentados em média ± desvio padrão, e o nível de significância adotado foi de 5%. Resultados Três meses depois, o IM levou à hipertrofia do ventrículo esquerdo (VE), com disfunção sistólica e diastólica, e aumento nos mediadores inflamatórios e de estresse oxidativo. Os animais que consumiram SL apresentaram menor atividade da glutationa peroxidase e maior expressão da heme-oxigenase-1 (HO-1). Conclusão O SL atenuou a RC, e a HO-1 pode exercer um importante papel nesse processo.
Collapse
Affiliation(s)
- Bruna C Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Priscila P Santos
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Amanda M Figueiredo
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Bruna P M Rafacho
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Larissa Ishikawa
- Instituto de Biociências Campus de Botucatu (UNESP), Botucatu , SP - Brasil
| | - Silméia G Zanati
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Ana A H Fernandes
- Instituto de Biociências Campus de Botucatu (UNESP), Botucatu , SP - Brasil
| | - Paula S Azevedo
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Bertha F Polegato
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Leonardo A M Zornoff
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Marcos F Minicucci
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil
| | - Sergio A R Paiva
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina de Botucatu , Botucatu , SP - Brasil.,Food Research Center FoRC , São Paulo , SP - Brasil
| |
Collapse
|
5
|
Bekeschus S, Clemen R, Haralambiev L, Niessner F, Grabarczyk P, Weltmann KD, Menz J, Stope M, von Woedtke T, Gandhirajan R, Schmidt A. The Plasma-Induced Leukemia Cell Death is Dictated by the ROS Chemistry and the HO-1/CXCL8 Axis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3020686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of Urokinase-Type Plasminogen Activator Receptor by Docosahexaenoic Acid Mediated by Heme Oxygenase-1 in 12- O-Tetradecanoylphorbol-13-Acetate-Induced Human Endothelial Cells. Front Pharmacol 2021; 11:577302. [PMID: 33381031 PMCID: PMC7768974 DOI: 10.3389/fphar.2020.577302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) plays a crucial role in inflammation and tumor metastasis. Docosahexaenoic acid (DHA), a representative omega-3 polyunsaturated fatty acid, has been shown to exhibit anti-inflammatory and anti-tumor properties. However, the mechanism by which DHA negatively regulates uPAR expression is not yet understood. The aim of this study was to investigate the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and potential role of heme oxygenase-1 (HO-1) in DHA-induced inhibition of uPAR in human endothelial ECV304 cells. Results showed that TPA induced uPAR expression in a time dependent manner, while DHA inhibited uPAR expression in a concentration-dependent manner. Moreover, treatment with DHA induced HO-1 expression in a time- and concentration-dependent manner. In addition, DHA-induced inhibition of uPAR expression and cell invasion in TPA-stimulated cells was reversed by si-HO-1 RNA. Induction of HO-1 by ferric protoporphyrin IX (FePP) inhibited TPA-induced uPAR expression, and this effect was abolished by treatment with the HO-1 inhibitor tin protoporphyrin IX (SnPP). Additionally, carbon monoxide, an HO-1 product, attenuated TPA-induced uPAR expression and cell invasion. Collectively, these data suggest a novel role of DHA-induced HO-1 in reducing uPAR expression and cell invasion in human endothelial ECV304 cells.
Collapse
Affiliation(s)
- Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Nam Ho Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.,Thumbay Research Institute for Precision Medicine and Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
7
|
Takanche JS, Kim JE, Han SH, Yi HK. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153107. [PMID: 31790903 DOI: 10.1016/j.phymed.2019.153107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gomisin A is a lignan isolated from the hexane of Schisandra chinensis fruit extract with antioxidant properties. Oxidative stress mediated by high glucose is one of the major complications of diabetes mellitus. PURPOSE This study investigates the role of gomisin A in osteoblast differentiation under high glucose-induced oxidative stress in MC3T3 E1 cells and determines its relationship with heme oxygenase-1 (HO-1) and mitochondrial biogenesis. METHODS MC3T3 E1 cells were treated by gomisin A following induced by high glucose levels and glucose oxidase to investigate the inhibitory effect of gomisin A against high glucose oxidative stress. Western blot analysis, alizarin red staining, alkaline phosphatase (ALP) activity, analysis of reactive oxygen species (ROS) and confocal microscopy were used to determine mitochondrial biogenesis, oxidative stress, osteoblast differentiation and mineralization. To analyze the role of HO-1, the MC3T3 E1 cells were treated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). RESULTS Gomisin A enhanced the expression of HO-1, increased mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A), antioxidant enzymes (copper-zinc superoxide dismutases and manganese superoxide dismutase), osteoblast differentiation molecules (bone morphogenic protein-2/7, osteoprotegerin and Runt-related transcription factor-2) and mineralization by upregulation of ALP and alizarin red staining, which were decreased by ZnPP and high glucose oxidative stress. Similarly, gomisin A inhibited ROS which was increased by ZnPP and the high glucose-mediated oxidative stress. CONCLUSIONS The findings demonstrated the antioxidative effects of gomisin A, and its role in mitochondrial biogenesis and osteoblast differentiation. It potentially regulated osteoblast differentiation under high glucose-induced oxidative stress via upregulation of HO-1 and maintenance of mitochondrial homeostasis. Thus, gomisin A may represent a potential therapeutic agent for prevention of bone fragility fractures and implant failure triggered by diabetes.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea.
| |
Collapse
|
8
|
Jin HR, Yu J, Choi SJ. Hydrothermal Treatment Enhances Antioxidant Activity and Intestinal Absorption of Rutin in Tartary Buckwheat Flour Extracts. Foods 2019; 9:E8. [PMID: 31861857 PMCID: PMC7022688 DOI: 10.3390/foods9010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Tartary buckwheat (Fagopyrum esculentum) is widely used in the food industry due to its functionality, which is related to its high rutin content. However, rutin is easily converted into quercetin by an endogenous enzyme during processing, resulting in a bitter taste. In this study, rutin-enriched Tartary buckwheat flour extracts (TBFEs) were obtained by hydrothermal treatments (autoclaving, boiling, and steaming), and their antioxidant activity was evaluated in human intestinal cells. The intestinal absorption of the hydrothermally treated TBFEs was also investigated using in vitro models of intestinal barriers and an ex vivo model of intestinal absorption. The results demonstrated that all of the hydrothermally treated TBFEs had increased rutin, total polyphenol, and total flavonoid contents, which enhance the in vitro and intracellular radical scavenging activities. Antioxidant enzyme activity, cellular uptake efficiency, in vitro intestinal transport efficacy, and ex vivo intestinal absorption of the hydrothermally treated TBFEs were also enhanced compared with those of native TBFE or standard rutin. These findings suggest the promising potential of hydrothermally treated TBFEs for a wide range of applications in the functional food industry.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (H.-R.J.); (J.Y.)
| |
Collapse
|
9
|
Yari Z, Movahedian M, Imani H, Alavian SM, Hedayati M, Hekmatdoost A. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2019; 59:2569-2577. [PMID: 31844967 DOI: 10.1007/s00394-019-02105-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE Hesperidin as an antioxidant flavonoid exerts anti-adipogenic, anti-inflammatory, anti-oxidant and anti-hypercholesterolemic effects. Besides, the increasing prevalence of metabolic syndrome (MetS) and its allied complications, on the one hand, and the willingness of individuals to use natural products for curing their diseases, on the other hand, led to the design of this study to evaluate the efficacy of hesperidin in normalizing the metabolic abnormalities in patients with MetS. METHODS In this clinical trial with a parallel-group design, 49 patients with MetS received either 500-mg hesperidin or placebo, twice daily, for 12 weeks. Number of participants with treated MetS was considered as a primary end point. Anthropometric parameters, dietary intake, physical activity, lipid profile, glucose homeostasis parameter, tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP) were assessed at the beginning and at the end of the study. This trial is registered at clinicaltrials.gov as NCT03734874. RESULTS Compared with the placebo group, hesperidin decreased fasting glucose level (- 6.07 vs. - 13.32 mg/dL, P = 0.043), triglyceride (- 8.83 vs. - 49.09 mg/dL, P = 0.049), systolic blood pressure (- 0.58 vs. - 2.68 mmHg, P = 0.048) and TNF-α (- 1.29 vs. - 4.44 pg/mL, P = 0.009). Based on the within-group analysis, hesperidin led to significant decrease in serum levels of glucose, insulin, triglyceride, total cholesterol, low density lipoprotein cholesterol, TNF-α and hs-CRP, while in control group only glucose and insulin significantly decreased. CONCLUSIONS The results indicate that hesperidin supplementation can improve metabolic abnormalities and inflammatory status in patients with MetS.
Collapse
Affiliation(s)
- Zahra Yari
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Movahedian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4724920. [PMID: 31814878 PMCID: PMC6878820 DOI: 10.1155/2019/4724920] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Flavanones are a group of flavonoids that derive from their immediate chalcone precursors through the action of chalcone isomerase enzymes. The Aromatic A and B rings, C4-keto group, and the 15-carbon flavonoid skeleton are all evident in flavanones, but a notable absence of C2-C3 double bond and a lack of oxygenation at C-3 position of the C-ring makes them distinctively different from other groups such as flavonols (e.g., quercetin). On the basis of oxygenation level in the B ring, flavanones can vary from each other as exemplified by pinocembrin (no oxygenation), naringenin (4′-hydroxyl), or eriodictyol (3′,4′-dihydroxyl substitution). These groups are generally weaker free radical scavengers as compared to quercetin and derivatives though eriodictyol has a better free radical scavenging profile within the group due to the presence of the catechol functional moiety. In this communication, their antioxidant potential through the induction of antioxidant defenses is scrutinized. These compounds as exemplified by pinocembrin could induce the nuclear factor erythroid 2-related factor 2- (Nrf2-) heme oxygenase-1 (HO-1) axis leading to amelioration of oxidative stress in cellular and animal models. Their neuroprotective effect through such mechanism is discussed.
Collapse
|
11
|
Nardochinoid B Inhibited the Activation of RAW264.7 Macrophages Stimulated by Lipopolysaccharide through Activating the Nrf2/HO-1 Pathway. Molecules 2019; 24:molecules24132482. [PMID: 31284554 PMCID: PMC6650925 DOI: 10.3390/molecules24132482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nardochinoid B (NAB) is a new compound isolated from Nardostachys chinensis. Although our previous study reported that the NAB suppressed the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW264.7 cells, the specific mechanisms of anti-inflammatory action of NAB remains unknown. Thus, we examined the effects of NAB against LPS-induced inflammation. In this study, we found that NAB suppressed the LPS-induced inflammatory responses by restraining the expression of inducible nitric oxide synthase (iNOS) proteins and mRNA instead of cyclooxygenase-2 (COX-2) protein and mRNA in RAW264.7 cells, implying that NAB may have lower side effects compared with nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, NAB upregulated the protein and mRNA expressions of heme oxygenase (HO)-1 when it exerted its anti-inflammatory effects. Also, NAB restrained the production of NO by increasing HO-1 expression in LPS-stimulated RAW264.7 cells. Thus, it is considered that the anti-inflammatory effect of NAB is associated with an induction of antioxidant protein HO-1, and thus NAB may be a potential HO-1 inducer for treating inflammatory diseases. Moreover, our study found that the inhibitory effect of NAB on NO is similar to that of the positive drug dexamethasone, suggesting that NAB has great potential for developing new drugs in treating inflammatory diseases.
Collapse
|
12
|
Wang WJ, Huang YC, Su CM, Ger TR. Multi-Functional Drug Carrier Micelles With Anti-inflammatory Drug. Front Chem 2019; 7:93. [PMID: 30859098 PMCID: PMC6397834 DOI: 10.3389/fchem.2019.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
The multi-functional micelles poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide-co-10 undecanoic acid)/CM-Dextran Fe3O4 (PNDU/CM-Dex Fe3O4) were poly (NIPAAm-co-DMAAm-co-UA) (PNDU) grafting hydrophilic CM-Dextran Fe3O4 which possess pH-dependent temperature response and magnetic response. In this research, anti-inflammation drug Hesperetin was encapsulated by micelles using membrane dialysis method to obtain the different ratio of Hesperetin-embedded P5DF10, P10DF10, and P20DF10. These micelles were characterized by Fourier transform infrared spectroscopy, 1H-NMR, thermogravimetric analyzer, and superconducting quantum interference device magnetometer. The morphology and particle size of micelles was observed by transmission electron microscopy and dynamic light scattering. The low critical solution temperature of the P10DF10 micelles is in pH 6.6 at about 37.76°C and in pH 7.4 at about 41.70°C. The biocompatibility of micelles was confirmed by cytotoxicity study. Inflammatory inhibition of hesperetin-embedded P10DF10 micelles also studied through RAW264.7. Hesperetin-embed P10DF10 micelles suppressed LPS-induced inflammatory response. Via immunofluorescence cell staining demonstrate that Hesperetin-embed P10DF10 micelles inhibited the activation of NF-κB p60 and markedly attenuated in a drug dose-dependent manner. At a concentration of 1,000 ug/ml, an inflammatory rate can be reduced to 36.9%. Based on these results, the hesperetin-embed P10DF10 micelles had successfully synthesized and enable to carry and release the anti-inflammatory drugs, which instrumental for biomedical therapy and applications.
Collapse
Affiliation(s)
- Wei-Jie Wang
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Yin-Chou Huang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chao-Ming Su
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int J Oral Sci 2019; 11:6. [PMID: 30783082 PMCID: PMC6381107 DOI: 10.1038/s41368-018-0039-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies. Propolis, also known as ‘honeybee glue,’ may protect teeth and gums against periodontal disease. In periodontal disease, chronic inflammation and oxidative damage harm gum tissue and lead to tooth loss; propolis has been shown to improve periodontal health for patients with diabetes. Bees make propolis by mixing beeswax, honey, plant resins and their own saliva, and use it to patch honeycomb and prevent growth of microbes in the hive. Reinhard Gruber of the Department of Oral Biology at the Medical University of Vienna and of the Department of Periodontology, University of Bern and co-workers investigated the effects of one of propolis’ active ingredients, caffeic acid phenethyl ester (CAPE), on oxidative stress and inflammation. They found that CAPE reduced oxidative damage and dampened inflammation; further investigation revealed the genetic basis of the beneficial effects, paving the way for future clinical studies. These results may help identify alternative treatments for periodontal disease.
Collapse
|
14
|
Wei HJ, Gupta A, Kao WM, Almudallal O, Letterio JJ, Pareek TK. Nrf2-mediated metabolic reprogramming of tolerogenic dendritic cells is protective against aplastic anemia. J Autoimmun 2018; 94:33-44. [PMID: 30025621 DOI: 10.1016/j.jaut.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Aplastic anemia (AA) is a rare disease characterized by immune-mediated suppression of bone marrow (BM) function resulting in progressive pancytopenia. Stem cell transplant and immunosuppressive therapies remain the major treatment choices for AA patients with limited benefit and undesired side effects. Here, we report for the first time the therapeutic utility of Nrf2-induced metabolically reprogrammed tolerogenic dendritic cells (TolDCs) in the suppression of AA in mice. CDDO-DFPA-induced Nrf2 activation resulted in a TolDC phenotype as evidenced by induction of IL-4, IL-10, and TGF-β and suppression of TNFα, IFN-γ, and IL-12 levels in Nrf2+/+ but not Nrf2-/- DCs. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Although immature and LPS-induced (mature) Nrf2+/+ and Nrf2-/- DCs exhibited similar patterns of oxidative phosphorylation (OXPHOS) and glycolysis, only Nrf2+/+ DCs partially restored OXPHOS and reduced glycolysis during CDDO-DFPA-induced Nrf2 activation. These results were further confirmed by altered glucose uptake and lactate production. We observed significantly enhanced HO-1 and reduced iNOS/NO production in Nrf2+/+ compared to Nrf2-/- DCs, suggesting Nrf2-dependent TolDC induction is linked to suppression of the inhibitory effect of NO on OXPHOS. Furthermore, Nrf2-/- DCs demonstrated higher antigen-specific T cell proliferation. Lastly, TolDC administration improved hematopoiesis and survival in AA murine model, with decreased Th17 and increased Treg cells. Concomitantly, immunohistochemical analysis of AA patient BM biopsies displayed higher DCs, T cells, and iNOS expression accompanied with lower Nrf2 and HO-1 expression when compared to normal subjects. These results provide new insight into the therapeutic utility of metabolically reprogrammed TolDCs by CDDO-DFPA induced Nrf2 signaling in the treatment of AA.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashish Gupta
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA
| | - Wei-Ming Kao
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Omar Almudallal
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - John J Letterio
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA; Celloram Inc., Cleveland, OH 44106, USA.
| | - Tej K Pareek
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA; Celloram Inc., Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Xie GZ, Hui HY, Peng MJ, Tan ZJ. Biotransformation of glycosides in herbal medicine by gut microbiota. Shijie Huaren Xiaohua Zazhi 2018; 26:221-227. [DOI: 10.11569/wcjd.v26.i4.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interdisciplinary research between traditional Chinese medicine and microecology has become a current hot topic. The interplay between herbal medicines and gut microbiota contributes greatly to explaining the scientific basis of herbal medicines (HMs) and guiding new drug discovery. Glycosides, widely distributed in HMs, have a very low bioavailability. Gut microbiota can transform glycosides into smaller substances or genin that have better bioactivity. This paper discusses the significance of biotransformation of glycosides by gut microbiota, in order to promote the HMs-based drug development.
Collapse
|
16
|
Guo Z, Wu S, Li H, Li Q, Wu G, Zhou C. In vitro evaluation of electrospun PLGA/PLLA/PDLLA blend fibers loaded with naringin for guided bone regeneration. Dent Mater J 2017; 37:317-324. [PMID: 29279541 DOI: 10.4012/dmj.2016-220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was to evaluate fiber mesh loaded with naringin via electrospinning to guide bone regeneration in vitro. The naringin-loaded fiber mesh was prepared via elctrospinning of PLGA, PLLA, PDLLA blending solution with naringin. SEM showed that naringin decreased the fiber's diameter according to the concentration of naringin. After 20 days' degradation in PBS, the drug-loaded fiber meshes still kept their stability with about 10% decrease in tensile strength. In vitro release experiments showed a sustained and steady naringin releasing profile with little initial burst releasing. Compared to the mats without naringin, the fiber mats loaded with naringin showed the most pronounced enhancement of cell growth when MC3T3-E1 cells were cultured on the fiber mats. The blend fiber loaded with naringin has optimized physical properties and sustained release profile in vitro. The study presents a promising fibrous mesh material for guided bone regeneration therapy.
Collapse
Affiliation(s)
- Zhenzhao Guo
- Department of Materials Science and Engineering, Jinan University.,The First Affiliated Hospital of Jinan University
| | - Shuai Wu
- Department of Materials Science and Engineering, Jinan University
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University
| | - Qiyan Li
- Department of Endodontics, Periodontics and Oral Medicine, The First People's Hospital of Yunnan Province.,Department of Endodontics, Periodontics and Oral Medicine, Affiliated Hospital of Kunming University of Science and Technology
| | - Gang Wu
- Department of Biomedical Engineering, South China University of Technology
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University
| |
Collapse
|
17
|
Wu MS, Chien CC, Cheng KT, Subbaraju GV, Chen YC. Hispolon Suppresses LPS- or LTA-Induced iNOS/NO Production and Apoptosis in BV-2 Microglial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1649-1666. [PMID: 29121802 DOI: 10.1142/s0192415x17500896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hispolon (HIS) is an active polyphenol compound derived from Phellinus linteus (Berkeley & Curtis), and our previous study showed that HIS effectively inhibited inflammatory responses in macrophages [Yang, L.Y., S.C. Shen, K.T. Cheng, G.V. Subbaraju, C.C. Chien and Y.C. Chen. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol. 156: 61-72, 2014]; however, its effect on neuronal inflammation is still undefined. In this study, HIS concentration- and time-dependently inhibited lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production with increased heme oxygenase (HO)-1 proteins in BV-2 microglial cells. Accordingly, HIS protected BV-2 cells from LPS- or LTA-induced apoptosis, characterized by decreased DNA ladder formation, and caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage in BV-2 cells. Similarly, the NOS inhibitor, N-nitro-L-arginine methyl ester (NAME), inhibited LPS- or LTA-induced apoptosis of BV-2 cells, but neither NAME nor HIS showed any inhibition of NO production or cell death induced by the NO donor, sodium nitroprusside (SNP), indicating the involvement of NO in the inflammatory apoptosis of microglial cells. Activation of c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-[Formula: see text]B contributed to LPS- or LTA-induced iNOS/NO production and apoptosis of BV-2 cells, and that was suppressed by HIS. Additionally, HIS possesses activity to induce HO-1 protein expression via activation of extracellular signal-regulated kinase (ERK) in BV-2 cells, and application of the HO inhibitor, tin protoporphyrin (SnPP), or knockdown of HO-1 protein by HO-1 small interfering (si)RNA significantly reversed HIS inhibition of NO production and cell death in BV-2 cells stimulated by LPS. Results of an analysis of the effects of HIS and two structurally related chemicals, i.e. dehydroxy-HIS (D-HIS) and HIS-methyl ester (HIS-ME), showed that HIS expressed the most potent inhibitory effects on iNOS/NO production, JNK activation, and apoptosis in BV-2 microglial cells activated by LPS with increased HO-1 protein expression. Overall these results suggested that HIS possesses inhibitory activity against LPS- or LTA-induced inflammatory responses including iNOS/NO production and apoptosis in BV-2 microglial cells and that the mechanisms involve upregulation of the HO-1 protein and downregulation of JNK/NF-[Formula: see text]B activation. A critical role of hydroxyl at position C3 in the anti-inflammatory actions of HIS against activated BV-2 microglial cells was suggested.
Collapse
Affiliation(s)
- Ming-Shun Wu
- * Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,† Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- ¶ Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,∥ Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kur-Ta Cheng
- ‡ Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yen-Chou Chen
- § Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,†† Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit Rev Food Sci Nutr 2017; 58:513-527. [PMID: 27438892 DOI: 10.1080/10408398.2016.1196334] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past two decades, extensive studies have revealed that inflammation represents a major risk factor for various human diseases. Chronic inflammatory responses predispose to pathological progression of chronic illnesses featured with penetration of inflammatory cells, dysregulation of cellular signaling, excessive generation of cytokines, and loss of barrier function. Hence, the suppression of inflammation has the potential to delay, prevent, and to treat chronic diseases. Flavonoids, which are widely distributed in humans daily diet, such as vegetables, fruits, tea and cocoa, among others, are considered as bioactive compounds with anti-inflammatory potential. Modification of flavonoids including hydroxylation, o-methylation, and glycosylation, can alter their metabolic features and affect mechanisms of inflammation. Structure-activity relationships among naturally occurred flavonoids hence provide us with a preliminary insight into their anti-inflammatory potential, not only attributing to the antioxidant capacity, but also to modulate inflammatory mediators. The present review summarizes current knowledge and underlies mechanisms of anti-inflammatory activities of dietary flavonoids and their influences involved in the development of various inflammatory-related chronic diseases. In addition, the established structure-activity relationships of phenolic compounds in this review may give an insight for the screening of new anti-inflammatory agents from dietary materials.
Collapse
Affiliation(s)
- Lei Chen
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Hui Teng
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Zhenglu Xie
- b Jinshan College , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Hui Cao
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| | - Wai San Cheang
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| | - Krystyna Skalicka-Woniak
- d Department of Pharmacognosy with Medicinal Plant Unit , Medical University of Lublin , Lublin , Poland
| | - Milen I Georgiev
- e Group of Plant Cell Biotechnology and Metabolomics , The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Plovdiv , Bulgaria.,f Center of Plant Systems Biology and Biotechnology , Plovdiv , Bulgaria
| | - Jianbo Xiao
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| |
Collapse
|
19
|
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson's Disease. Nutrients 2017; 9:nu9050451. [PMID: 28468332 PMCID: PMC5452181 DOI: 10.3390/nu9050451] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurological disorder characterized by a loss of dopaminergic neurons within the midbrain. Neuroinflammation has been nominated as one of the key pathogenic features of PD. Recently, the inadequate pharmacotherapy and adverse effects of conventional drugs have spurred the development of unconventional medications in the treatment of PD. The purpose of this study is to investigate the anti-neuroinflammatory mechanisms of Atractylenolide-I (ATR-I) in in vivo and in vitro models of PD. Nitrite assay was measured via Griess reaction in lipopolysaccharide (LPS) stimulated BV-2 cells. mRNA and protein levels were determined by a reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analysis, respectively. Further, flow cytometry, immunocytochemistry, and immunohistochemistry were employed in BV-2 cells and MPTP-intoxicated C57BL6/J mice. Pre-treatment with ATR-I attenuated the inflammatory response in BV-2 cells by abating the nuclear translocation of nuclear factor-κB (NF-κB) and by inducing heme oxygenase-1 (HO-1). The intraperitoneal administration of ATR-I reversed MPTP-induced behavioral deficits, decreased microglial activation, and conferred protection to dopaminergic neurons in the mouse model of PD. Our experimental reports establish the involvement of multiple benevolent molecular events by ATR-I in MPTP-induced toxicity, which may aid in the development of ATR-I as a new therapeutic agent for the treatment of PD.
Collapse
|
20
|
Jung HA, Paudel P, Seong SH, Min BS, Choi JS. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorg Med Chem Lett 2017; 27:2274-2280. [PMID: 28454670 DOI: 10.1016/j.bmcl.2017.04.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/30/2023]
Abstract
Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5±2.6µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4±0.30µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6±0.49µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0±0.27µM). Among the glycosides, only prunin (IC50: 106.5±4.1µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.
Collapse
Affiliation(s)
- Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
21
|
Choung WJ, Hwang SH, Ko DS, Kim SB, Kim SH, Jeon SH, Choi HD, Lim SS, Shim JH. Enzymatic Synthesis of a Novel Kaempferol-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-glucopyranoside Using Cyclodextrin Glucanotransferase and Its Inhibitory Effects on Aldose Reductase, Inflammation, and Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2760-2767. [PMID: 28300406 DOI: 10.1021/acs.jafc.7b00501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Kaempferol-3-O-β-d-glucopyranoside (astragalin, AS), a major flavonoid that exists in various plants, exerts antioxidant, antitumor, anti-human immunodeficiency virus (HIV), and anti-inflammatory effects. However, the low water solubility of AS limits its use. In this study, we used cyclodextrin glucanotransferase (CGTase) with maltose (G2) as a donor molecule to enzymatically modify AS to improve its water solubility and physiochemical properties. We isolated the glycosylated astragalin (G1-AS) and identified the structure of G1-AS as kaempferol-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-glucopyranoside, where one glucose residue was transferred to AS. G1-AS retained the antioxidative activity of the original AS compound; however, the solubility of G1-AS was 65-fold higher than that of AS. In addition, G1-AS showed enhanced anti-inflammatory effects and aldose reductase inhibitory activity compared to AS when applied to rat lenses.
Collapse
Affiliation(s)
- Woo-Jae Choung
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Set Byeol Kim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Seo Hyun Kim
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Department of Life Science, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Sung Ho Jeon
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Department of Life Science, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Hee-Don Choi
- Division of Strategic Food Research, Korea Food Research Institute , Gyeonggi 13539, South Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
- Center for Aging and Health Care, Hallym University , 1 Hallymdaehak-gil, Chuncheon, Gwangwon-do 24252, South Korea
| |
Collapse
|
22
|
Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0136-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Chao KC, Chen SH, Chang CC, Lee YC, Wang CM, Chang JS. Effects of ferric citrate supplementation on advanced glycation end products in a rat model of streptozotocin/nicotinamide-induced diabetes. Mol Nutr Food Res 2017; 61. [PMID: 27862990 DOI: 10.1002/mnfr.201600753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022]
Abstract
SCOPE Diabetes is associated with the increased risks of anemia and activation of advanced glycation end products (AGEs) and the receptor for AGEs (RAGE). However, the effects of pharmacological doses of iron supplementation on AGE metabolism are less clear. The aim was to investigate the effect of ferric citrate supplementation on AGE metabolism. METHODS AND RESULTS Diabetes was induced in overnight starved rats by intraperitoneal injections of 40 mg/kg streptozotocin and 120 mg/kg nicotinamide. Diabetic rats were fed a standard diet or pharmacological doses of ferric citrate (0.5, 1, 2, and 3 g of ferric iron/kg diet) for 10 weeks. Ferric citrate supplementation showed a dose-related effect on the hepatic steatosis score, malondialdehyde, cathepsin D, and glyoxalase I. A Western blot analysis revealed that >1 g of ferric iron suppressed hepatic AGE receptor 1 and high-mobility group-box 1 expressions but increased heme oxygenase-1 and RAGE expressions. Further analysis showed that high doses of ferric iron triggered sterol regulatory element-binding protein 1c, p38-mitogen-activated protein kinase, and nuclear factor-κB protein expressions. CONCLUSION Overall, the present results suggest a dose-related effect of ferric citrate supplementation on AGE metabolism, and this effect was more evident at high iron doses (>1 g of ferric iron/kg diet).
Collapse
Affiliation(s)
- Kuo-Ching Chao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Mei Wang
- Department of Nutrition, MacKay Memorial Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Centre, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Naringenin interferes with the anti-diabetic actions of pioglitazone via pharmacodynamic interactions. J Nat Med 2016; 71:442-448. [DOI: 10.1007/s11418-016-1063-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 01/31/2023]
|
25
|
Gil M, Kim YK, Hong SB, Lee KJ. Naringin Decreases TNF-α and HMGB1 Release from LPS-Stimulated Macrophages and Improves Survival in a CLP-Induced Sepsis Mice. PLoS One 2016; 11:e0164186. [PMID: 27716835 PMCID: PMC5055320 DOI: 10.1371/journal.pone.0164186] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis.
Collapse
Affiliation(s)
- Minchan Gil
- Nano-Bio Resources center, Department of Cosmetic Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Bum Hong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- * E-mail: (KJL); (SBH)
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- * E-mail: (KJL); (SBH)
| |
Collapse
|
26
|
Kaltalioglu K, Coskun-Cevher S. Potential of morin and hesperidin in the prevention of cisplatin-induced nephrotoxicity. Ren Fail 2016; 38:1291-9. [PMID: 27425870 DOI: 10.1080/0886022x.2016.1209383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the important mechanisms of cisplatin-induced nephrotoxicity. Therefore, this study was designed to explore the potential protective effects of morin and/or hesperidin on oxidative stress in cisplatin-induced nephrotoxicity. This study was performed on 42 Wistar rats. Rats were divided into seven groups: control, morin, hesperidin, cisplatin, cisplatin + morin, cisplatin + hesperidin, and cisplatin + morin + hesperidin. Morin and/or hesperidin were given for 10 consecutive days by oral gavage and on the 4th day a single dose of cisplatin (7 mg/kg) was injected intraperitoneally. After administrations, on the 11th day of the experiment the animals were killed, and malondialdehyde (MDA), nitric oxide (NOx), glutathione (GSH) levels and myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD) activity were measured. Cisplatin-treated rats showed increased levels of MDA, and decreased levels of NOx also activity of CAT. Morin and/or hesperidin pretreatment prevent oxidative stress in kidney tissue, while they increase the NOx level, CAT activity, and decrease MPO activity. In conclusion, morin + hesperidin pretreatment may have a significant potential for protection of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Kaan Kaltalioglu
- a Espiye Vocational School, Giresun University , Giresun , Turkey
| | - Sule Coskun-Cevher
- b Department of Biology, Faculty of Science , Gazi University , Ankara , Turkey
| |
Collapse
|
27
|
Said Elshama S, Osman HEH, El-Kenawy AEM. Renoprotective Effects of Naringenin and Olive Oil against Cyclosporine- Induced Nephrotoxicity in Rats. IRANIAN JORNAL OF TOXICOLOGY 2016. [DOI: 10.29252/arakmu.10.5.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Chiou YS, Huang Q, Ho CT, Wang YJ, Pan MH. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med 2016; 94:1-16. [PMID: 26878775 DOI: 10.1016/j.freeradbiomed.2016.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/24/2016] [Accepted: 02/10/2016] [Indexed: 12/30/2022]
Abstract
Disruption of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) interaction has emerged as a promising strategy to reduce oxidative stress-induced inflammation. However, its roles in regulating downstream events, including the cross talk between Nrf2 and nuclear factor-kappa B (NF-κB), are not well defined. The objective of this study was to elucidate the mechanistic connection between Keap1-Nrf2 signaling and the transcription factor NF-κB and to investigate the function of (-)-epicatechin-3-gallate (ECG) in the repression of multiple inflammatory mediators. ECG attenuated lipopolysaccharide (LPS)-induced inflammatory mediator expression and intracellular reactive oxygen species (ROS) generation through the induction of Nrf2/antioxidant response element (ARE)-driven glutathione (GSH) and hemeoxygenase-1 (HO-1) levels, interference with NF-κB and Nfr2/ARE transcriptional activities, and suppression of the MAPKs (JNK1/2 and p38) and PI3K/Akt signaling pathways. Importantly, anti-inflammatory effects of ECG partly require activation of ERK1/2 signaling to mediate HO-1 expression and Nrf2/ARE signaling activation. Furthermore, ECG may directly interact intracellularly with the Kelch repeat domains of Keap1 and bind to extracellular LPS, thereby promoting the nuclear accumulation of the Nrf2 protein and blockading the activation of LPS-induced downstream target signaling pathways. Consistent with in vitro studies, ECG attenuates pathological syndromes of LPS-induced sepsis and systemic inflammation. Our results identified ECG as a novel Keap1-Nrf2 interaction disruptor and LPS-induced TLR4 activation inhibitor, thereby providing an innovative strategy to prevent or treat immune, oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 704, Taiwan; Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 704, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
29
|
Lee JH. In-vitro evaluation for antioxidant and anti-inflammatory property of flavanone derivatives. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Lee HN, Jin HO, Park JA, Kim JH, Kim JY, Kim B, Kim W, Hong SE, Lee YH, Chang YH, Hong SI, Hong YJ, Park IC, Surh YJ, Lee JK. Heme oxygenase-1 determines the differential response of breast cancer and normal cells to piperlongumine. Mol Cells 2015; 38:327-35. [PMID: 25813625 PMCID: PMC4400307 DOI: 10.14348/molcells.2015.2235] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 12/30/2022] Open
Abstract
Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic α,β-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.
Collapse
Affiliation(s)
- Ha-Na Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Jin-Ah Park
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Jin-Hee Kim
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Ji-Young Kim
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - BoRa Kim
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Wonki Kim
- College of Pharmacy, Seoul National University, Seoul 151-742,
Korea
| | - Sung-Eun Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Yun-Han Lee
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul 120-752,
Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Seok-Il Hong
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Young Jun Hong
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 151-742,
Korea
| | - Jin Kyung Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-709,
Korea
| |
Collapse
|
31
|
Yang LY, Shen SC, Cheng KT, Subbaraju GV, Chien CC, Chen YC. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:61-72. [PMID: 25128739 DOI: 10.1016/j.jep.2014.07.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellinus linteus (Berkeley & Curtis), a well-known medical fungus, has long been used as a traditional medicine in Oriental countries to treat various diseases, and hispolon (HIS) is one of its bioactive components. HIS is known to possess potent antineoplastic and antiviral properties; however, its effect on inflammatory apoptosis is still undefined. MATERIALS AND METHODS RAW264.7 macrophages were incubated with HIS for 30 min followed by LPS, LTA, or PGN stimulation for 12h. The expression of indicated proteins AP-1 and NF-κB transcriptional activities was examined by Western blotting using specific antibodies. Levels of NO and ROS were examined by Griess reaction, and DCHF-DA staining via flow cytometric analysis, respectively. AP-1 and NF-κB transcriptional activities were detected by luciferase reporter assay. Knockdown of HO-1 protein expression was performed by transfection of macrophages with HO-1 siRNA. Pharmacological inhibitors including ROS scavenger NAC, JNK inhibitor SP600125, NF-κB inhibitor BAY117082 were applied for mechanism study. RESULTS HIS showed concentration-dependent inhibition of LPS, LTA, and PGN-induced iNOS protein expressions and NO production by RAW264.7 macrophages. Accordingly, HIS protected RAW264.7 cells from LPS-, LTA-, and PGN-induced apoptosis. Increased HO-1 by HIS was detected at both protein and mRNA levels along with an increase in intracellular peroxide, and this was inhibited by the translational inhibitor, cycloheximide (CHX), the transcriptional inhibitor, actinomycin D (Act D), and the reactive oxygen species scavenger, N-acetylcysteine (NAC). A mechanistic study indicated that inhibition of c-Jun N-terminal kinase (JNK) protein phosphorylation, and activator protein (AP)-1 and nuclear factor (NF)-κB activation were involved in the anti-inflammatory actions of HIS in macrophages. A structure-activity relationship analysis showed that HIS expressed the most potent effect of inhibiting iNOS and apoptosis elicited by LPS, LTA, and PGN with a significant increase in HO-1 protein in macrophages. CONCLUSIONS Evidence supporting HIS prevention of inflammatory apoptosis via blocking NO production and inducing HO-1 protein expression in macrophages is provided, and the hydroxyl at position C3 is a critical substitution for the anti-inflammatory actions of HIS.
Collapse
Affiliation(s)
- Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 11031, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Chih-Chiang Chien
- Division of Nephrology, Chi Mei Medical Center, Tainan, Taiwan; Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Salis O, Bedir A, Gulten S, Okuyucu A, Kulcu C, Alacam H. Cytotoxic effect of fluvastatin on MCF-7 cells possibly through a reduction of the mRNA expression levels of SGK1 and CAV1. Cancer Biother Radiopharm 2014; 29:368-75. [PMID: 25347557 DOI: 10.1089/cbr.2013.1593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fluvastatin (FLU) prevents the conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonic acid by inhibiting HMG-CoA reductase and decreases cholesterol level. Although the effects of FLU treatment on several cancer types through many mechanisms have been identified, its relationship with unfolded protein response and apoptosis has not been clearly understood. In this recent study, we aimed to investigate the cytotoxic effect of Fluvastatin on MCF-7 cells and define the transcriptional regulation of specific genes during the occurrence of this cytotoxic effect. We administered 0.62, 2.5, 5, and 40 μM FLU on MCF-7 cells singly and in combination with 2-deoxyglucose (2-DG), and we monitored cell viability and proliferation for 48 hours using real-time cell analyzer system (xCELLigence). At the same time, we measured the mRNA expression levels of glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein, homologous protein (CHOP), caveolin-1 (CAV1), NDRG1 Variant 1 and Variant 2, HMOX1, SGK1, and prostate apoptosis response-4 (PAR4) genes using quantitative real-time polymerase chain reaction (LightCycler 480 II). We accepted GAPDH gene and control groups as the reference gene and calibrator, respectively. We performed relative gene expression analyses of the study groups using the QIAGEN 2009 Relative Expression Software Tool (REST). FLU revealed an antiproliferative and cytotoxic effect on MCF-7 cells, while causing the transcriptional regulation of many genes. Of these genes, the mRNA expressions of CHOP, heme oxygenase 1 (HMOX1), N-myc downstream-regulated gene 1 (NDRG1) V1, and NDRG1 V2 increased. On the other hand, the mRNA expression levels of SGK1 and CAV1 decreased. The antiproliferative effects of FLU may be related to the decreased expression levels of SGK1 and CAV1.
Collapse
Affiliation(s)
- Osman Salis
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University , Samsun, Turkey
| | | | | | | | | | | |
Collapse
|
33
|
Li H, Wood JT, Whitten KM, Vadivel SK, Seng S, Makriyannis A, Avraham HK. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells. Br J Pharmacol 2014; 170:489-505. [PMID: 23347118 DOI: 10.1111/bph.12111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids such as anandamide (AEA) are important lipid ligands regulating cell proliferation, differentiation and apoptosis. Their levels are regulated by hydrolase enzymes, the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Here, we investigated whether FAAH or AEA are involved in NF (erythroid-derived 2)-like 2 (Nrf2)/antioxidant responsive element (ARE) pathway. EXPERIMENTAL APPROACH The aim of this study was to analyse the effects of AEA or FAAH inhibition by the URB597 inhibitor or FAAH/siRNA on the activation of Nrf2-ARE signalling pathway and heme oxygenase-1 (HO-1) induction and transcription. KEY RESULTS Endogenous AEA was detected in the immortalized human mammary epithelial MCF-10A cells (0.034 ng per 10(6) cells) but not in MCF-7 or MDA-MB-231 breast cancer cells. Because breast tumour cells express FAAH abundantly, we examined the effects of FAAH on Nrf2/antioxidant pathway. We found that inhibition of FAAH by the URB597 inhibitor induced antioxidant HO-1 in breast cancer cells and MCF-10A cells. RNAi-mediated knockdown of FAAH or treatment with AEA-activated ARE-containing reporter induced HO-1 mRNA and protein expression, independent of the cannabinoid receptors, CB1, CB2 or TRPV1. Furthermore, URB597, AEA and siRNA-FAAH treatments induced the nuclear translocation of Nrf2, while siRNA-Nrf2 treatment and Keap1 expression blocked AEA, URB597 and si-FAAH from activation of ARE reporter and HO-1 induction. siRNA-HO-1 treatment decreased the viability of breast cancer cells and MCF-10A cells. CONCLUSIONS AND IMPLICATIONS These data uncovered a novel mechanism by which inhibition of FAAH or exposure to AEA induced HO-1 transcripts and implicating AEA and FAAH as direct modifiers in signalling mediated activation of Nrf2-HO-1 pathway, independent of cannabinoid receptors.
Collapse
Affiliation(s)
- H Li
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport. Drug Metab Dispos 2014; 42:1357-66. [PMID: 25002746 DOI: 10.1124/dmd.114.059337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway.
Collapse
Affiliation(s)
- Guohua An
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| | - Xiaodong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| |
Collapse
|
35
|
Lee JI, Lee JH. Antioxidant and inhibitory activities of thioflavanones against nitric oxide production. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0129-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Yeh JC, Hsu YT, Su CM, Wang MC, Lee TH, Lou SL. Preparation and characterization of biocompatible and thermoresponsive micelles based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) grafted on polysuccinimide for drug delivery. J Biomater Appl 2014; 29:442-53. [DOI: 10.1177/0885328214533736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompatible and temperature-sensitive amphiphilic polymeric micelles comprised of poly(succinimide)- g-poly( N-isopropylacrylamide- co-N, N-dimethylacrylamide) (PSI- g-poly(NIPAAm- co-DMAAm)) were synthesized to use as new drug carriers. The PSI- co-poly(PNIPAAm- co-DMAAm) polymers were prepared by nucleophilic opening of poly(succinimide) using amino-terminated poly(NIPAAm- co-DMAAm). The lower critical solution temperature of the copolymer was 40.6℃ higher than normal human body temperature. The blank polymeric micelles were observed to have a regular spherical shape, and the particle sizes were approximately 85 nm. This copolymer exhibited no significant cytotoxicity and hemolysis indicated that the micelles had good biocompatibility. In addition, these polymeric micelles encapsulated the anti-inflammatory drug, hesperetin, in the inner core with a drug loading content of approximately 20%. The release profiles of hesperetin showed a significant temperature-sensitive switching behavior. The hesperetin release response was dramatically lower at a temperature below the lower critical solution temperature as compared with a temperature above the lower critical solution temperature. The lipopolysaccharide-induced nitric oxide production inhibition experiments demonstrated that hesperetin-encapsulated micelles showed a significant reduction. In this study, the biocompatible temperature-sensitive micelles based on PSI- g-poly(NIPAAm- co-DMAAm) have great potential to act as a suitable carrier for drug delivery.
Collapse
Affiliation(s)
- Jih-Chao Yeh
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ting Hsu
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| | - Chao-Ming Su
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| | - Ming-Chen Wang
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shyh-Liang Lou
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| |
Collapse
|
37
|
Kim S, Lee JC, Cho ES, Kwon J. COMP-Ang1 accelerates chondrocyte maturation by decreasing HO-1 expression. J Cell Biochem 2014; 114:2513-21. [PMID: 24030957 DOI: 10.1002/jcb.24596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/14/2013] [Indexed: 01/08/2023]
Abstract
Endochondral ossification is essential for new bone formation and remodeling during the distraction stage. Endochondral ossification is attributed to chondrocyte maturation, which is induced by various factors, such as the cellular environment, gene transcription, and growth factor expression. Cartilage oligomeric matrix protein (COMP)-angiopoietin 1 (Ang1) is more soluble, stable, and potent than endogenous Ang1, and COMP-Ang1 treatment has osteogenic and angiogenic effects in an in vivo model of bone fracture healing. Although the osteogenic effects of COMP-Ang1 have been demonstrated, the precise mechanism by which COMP-Ang1 induces chondrocyte maturation and triggers endochondral ossification is not understood. Here, we investigated the possible mechanism by which COMP-Ang1 induces chondrocyte maturation. First, using a WST assay, we found that COMP-Ang1 is nontoxic in rat chondrocytes. Then, we isolated total RNA from COMP-Ang1-treated rat chondrocytes, and analyzed the decrease in chondrogenic gene expression and the increase in osteogenic gene expression using real-time RT-PCR. Gene and protein expression of heme oxygenase-1 (HO-1), which maintains chondrocytes in an immature stage, decreased in a dose-dependent manner upon COMP-Ang1 treatment. To clarify the relationship between HO-1 and COMP-Ang1 in chondrocyte maturation, we used cobalt protoporphyrin IX (CoPP IX), an HO-1 inducer, and tin protoporphyrin IX (SnPP-IX), an HO-1 inhibitor. Treatment with various combinations of CoPP IX, SnPP IX, and COMP-Ang1 confirmed that COMP-Ang1 accelerates chondrocyte maturation by reducing HO-1. In conclusion, our results suggest that COMP-Ang1 accelerates chondrocyte maturation by interacting with HO-1.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Institute of Oral Biosciences and BK21 Program, Chonbuk National University, Jeonju, 561-156, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Kim Y, Lee J. Anti-Inflammatory Activity of Capsaicin and Dihydrocapsaicin through Heme Oxygenase-1 Induction in Raw264.7 Macrophages. J Food Biochem 2014. [DOI: 10.1111/jfbc.12064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Younghwa Kim
- Department of Food Science and Technology; Chungbuk National University; Cheongju Chungbuk 361-763 Korea
| | - Junsoo Lee
- Department of Food Science and Technology; Chungbuk National University; Cheongju Chungbuk 361-763 Korea
| |
Collapse
|
39
|
Chandramohan Y, Parameswari CS. Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: Involvement of hemeoxygenase-1. Pharmacol Rep 2013; 65:1336-44. [DOI: 10.1016/s1734-1140(13)71492-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2013] [Indexed: 10/25/2022]
|
40
|
Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages. Shock 2013; 38:549-58. [PMID: 23042187 DOI: 10.1097/shk.0b013e31826b2826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although prostaglandins (PGs) were reported to exert proinflammatory and anti-inflammatory effects in macrophages, their action mechanisms remain unclear. The effects of PGs including PGJ2 (J2), Δ-PGJ2 (Δ), 15-deoxy-Δ PGJ2 (15d), PGE2 (E2), and PGF2α (F2α) on lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and peptidoglycan (PGN)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production by RAW264.7 macrophages were investigated. First, we found that induction of cyclooxygenase 2 (COX-2) protein occurred at a time earlier than that of heme oxygenase 1 (HO-1) protein, and the addition of the COX-2 inhibitor NS398 reduced HO-1 protein expression in LPS-, LTA-, and PGN-treated RAW264.7 macrophages. Incubation of RAW264.7 macrophages with the indicated PGs showed that J2, Δ, and 15d significantly induced HO-1 protein expression; however, E2 and F2α did not. Heme oxygenase 1 protein induced by J2, Δ, and 15d was inhibited by the transcriptional inhibitor, actinomycin (Act) D; the translational inhibitor, cycloheximide; and the antioxidant, N-acetyl cysteine (NAC). Increases in intracellular peroxide levels by J2, Δ, and 15d were detected via a 2',7'™-dichlorofluorescein diacetate (DCFH-DA) analysis, and they were prevented by the addition of NAC. In addition, J2, Δ, and 15d produced significant inhibition of LPS-, LTA-, and PGN-induced iNOS protein and NO production by RAW264.7 cells, in accordance with increased HO-1 protein expression. Reductions of LPS-, LTA-, and PGN-induced phosphorylated c-Jun N-terminal kinase, c-Jun protein, and activator protein 1 luciferase activity by J2, Δ, and 15d were identified, and the addition of the HO-1 inhibitor, tin protoporphyrin, reversed the inhibitory effects of Δ and 15d on LPS- and LTA-induced iNOS/NO, phosphorylated c-Jun N-terminal kinase, and c-Jun protein expressions by macrophages. Knockdown of HO-1 protein expression by HO-1 small interfering RNA blocked Δ and 15d inhibition of LPS- and LTA-induced events. Moreover, the compound, cyclopentenone (CP), which mimics the CP moiety of 15d, and its analog cyclohexenone were used, and cyclohexenone showed more potent induction of the HO-1 protein with effective inhibition of LPS-, LTA-, and PGN-induced iNOS/NO production than CP in macrophages. Reactive oxygen species-dependent HO-1 protein expression by PGs, which inhibited LPS-, LTA-, and PGN-induced iNOS/NO production, was identified in macrophages.
Collapse
|
41
|
Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem 2013; 24:1276-84. [PMID: 23333096 DOI: 10.1016/j.jnutbio.2012.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/07/2012] [Accepted: 10/10/2012] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) were recently shown to be involved in obesity-induced inflammation in adipose tissue, which contributes to the development of insulin resistance and type 2 diabetes. Thus, the appropriate regulation of TLR expression or activation is an important strategy for improving obesity-related diseases. In this report, we show that naringenin, a citrus flavonoid, inhibits TLR2 expression during adipocyte differentiation. This effect is mediated in part through peroxisome proliferator-activated receptor γ activation. In addition, naringenin suppresses TLR2 expression induced by the co-culture of differentiated adipocytes and macrophages and also inhibits tumor necrosis factor-α (TNF-α)-induced TLR2 expression by inhibiting the activation of nuclear factor-κB and c-Jun NH2-terminal kinase pathways in differentiated adipocytes. Furthermore, naringenin decreases TLR2 expression in adipose tissue of high-fat diet-fed mice. These results are correlated with the improvement of hyperglycemia and the suppression of inflammatory mediators, including TNF-α and monocyte chemotactic protein-1. Taken together, these data suggest that naringenin exhibits anti-inflammatory properties, presumably by inhibiting TLR2 expression in adipocytes. Our findings suggest a molecular mechanism by which naringenin exerts beneficial effects against obesity-related diseases.
Collapse
Affiliation(s)
- Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka City, Miyazaki 882-8508, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Hualin C, Wenli X, Dapeng L, Xijing L, Xiuhua P, Qingfeng P. The anti-inflammatory mechanism of heme oxygenase-1 induced by hemin in primary rat alveolar macrophages. Inflammation 2012; 35:1087-93. [PMID: 22160840 DOI: 10.1007/s10753-011-9415-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alveolar macrophages (AMs) can initiate lung inflammation by producing pro-inflammatory cytokines and chemokines, but they participate actively in the prevention of inflammation during acute lung injury (ALI). Heme oxygenase-1 (HO-1) is mainly expressed in AMs and has anti-inflammatory properties in ALI, but the anti-inflammatory mechanisms of HO-1 are largely unknown. In this study, AMs were treated with saline, LPS (1 μg/ml), hemin (10 μM), zinc protoporphyrin (ZnPP; 10 μM, 1 h prior to LPS and hemin), SB203580 (10 μM, 1 h prior to LPS and hemin), or their combination up to 24 h. The specific HO-1 inhibitor ZnPP and SB203580 were used to inhibit the effects of HO-1 and the phosphorylated p38 mitogen-activated protein kinase (MAPK), respectively. The protein levels of HO-1 and p38 MAPK were analyzed by western blotting; arginase activity was measured in lysates obtained from cultured cells; nitric oxide production in the extracellular medium of AMs cultured for 24 h was monitored by assessing nitrite levels; the phagocytic ability of macrophage was measured by neutral red uptake. IL-10 of culture supernatants in AMs was determined by enzyme-linked immunosorbent assay. The results indicated that HO-1 induced by hemin increased arginase activity and phagocytic ability and decreased iNOS activity via p38 MAPK pathway in primary rat AMs. These changes and p38 MAPK may be the anti-inflammatory mechanism of HO-1 induced by hemin in primary rat AMs.
Collapse
Affiliation(s)
- Chen Hualin
- Jiangsu Province Institute of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | | | | | | | | | | |
Collapse
|
43
|
Lee YH, Lee NH, Bhattarai G, Kim GE, Lee IK, Yun BS, Hwang PH, Yi HK. Anti-inflammatory effect of pachymic acid promotes odontoblastic differentiation via HO-1 in dental pulp cells. Oral Dis 2012; 19:193-9. [DOI: 10.1111/j.1601-0825.2012.01970.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/04/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Y-H Lee
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - N-H Lee
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - G Bhattarai
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - G-E Kim
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - I-K Lee
- Division of Biotechnology; College of Environmental & Biosource Science; Jeonju Korea
| | - B-S Yun
- Division of Biotechnology; College of Environmental & Biosource Science; Jeonju Korea
| | - P-H Hwang
- Department of Pediatrics; School of Medicine; Chonbuk National University; Jeonju Korea
| | - H-K Yi
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| |
Collapse
|
44
|
Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1. Food Chem Toxicol 2012; 50:3025-31. [PMID: 22709785 DOI: 10.1016/j.fct.2012.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/14/2012] [Accepted: 06/07/2012] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration, which is triggered by various inflammatory stimuli, contributes importantly to the pathogenesis of atherosclerosis and restenosis. Naringenin is a citrus flavonoid with both lipid-lowering and insulin-like properties. Here, we investigated whether naringenin affects TNF-α-induced VSMC proliferation and migration and if so, whether heme oxygenase-1 (HO-1) is involved. Rat VSMCs were treated with naringenin alone or in combination of TNF-α stimulation. We found that naringenin induced HO-1 mRNA and protein levels, as well as its activity, in VSMCs. Naringenin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. Mechanistic study demonstrated that naringenin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Naringenin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 inhibitor ZnPP IX or HO-1 siRNA partially abolished the beneficial effects of naringenin on VSMCs. These results suggest that naringenin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.
Collapse
|
45
|
Bhaskaran N, Shukla S, Kanwal R, Srivastava JK, Gupta S. Induction of heme oxygenase-1 by chamomile protects murine macrophages against oxidative stress. Life Sci 2012; 90:1027-33. [PMID: 22683429 DOI: 10.1016/j.lfs.2012.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
AIMS Protection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms. MAIN METHODS The cytoprotective effect of chamomile was examined on H(2)O(2)-induced cellular stress in RAW 264.7 murine macrophages. KEY FINDINGS RAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H(2)O(2). Treatment with 50μM H(2)O(2) for 6h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10-20μg/mL for 16h followed by H(2)O(2) treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus. SIGNIFICANCE These molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | | | |
Collapse
|
46
|
Shen SC, Lee WR, Yang LY, Tsai HH, Yang LL, Chen YC. Quercetin enhancement of arsenic-induced apoptosis via stimulating ROS-dependent p53 protein ubiquitination in human HaCaT keratinocytes. Exp Dermatol 2012; 21:370-5. [DOI: 10.1111/j.1600-0625.2012.01479.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Anti-inflammatory activity of Chrysanthemum zawadskii var. latilobum leaf extract through haem oxygenase-1 induction. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
48
|
Min KJ, Cho KH, Kwon TK. The effect of oxidized low density lipoprotein (oxLDL)-induced heme oxygenase-1 on LPS-induced inflammation in RAW 264.7 macrophage cells. Cell Signal 2012; 24:1215-21. [PMID: 22349240 DOI: 10.1016/j.cellsig.2012.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/03/2012] [Indexed: 11/19/2022]
Abstract
Macrophages take up oxidized low density lipoprotein (oxLDL) after being exposed to it in the blood vessels. oxLDL transforms macrophages into foam cells, which are a hallmark of atherosclerosis. The effects that oxLDL have on the inflammatory responses of foam cells are not clear. Here, we investigated how oxLDL modulates lipopolysaccharide (LPS)-induced inflammatory mediators in RAW 264.7 murine macrophages. Our results showed that oxLDL dramatically induced HO-1 expression, but did not increase pro-inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, iNOS, and monocyte chemoattractant protein (MCP)-1. In RAW 264.7 macrophages, oxLDL markedly inhibited LPS-induced inflammatory mediators such as inducible nitric oxide synthase (iNOS), IL-1β, IL-6, granulocyte macrophage colony-stimulating factor and stromal cell-derived factor-1. Interestingly, however, the down-regulation of HO-1 by siRNA did not recover the inhibition of LPS-induced expression and/or the secretion of inflammatory mediators. oxLDL blocked LPS-induced NF-κB nuclear translocation by inhibiting inhibitory κB (IκB) degradation. Taken together, our results suggest that oxLDL could modulate LPS-induced inflammatory responses by inhibiting NF-κB signaling independently of HO-1 expression.
Collapse
Affiliation(s)
- Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | | | | |
Collapse
|
49
|
Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-53836-9.00026-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Xiao J, Zhao Y, Mao F, Liu J, Wu M, Yu X. Investigation of the toxic effect of a QDs heterojunction on the interactions between small molecules and plasma proteins by fluorescence and resonance light-scattering spectra. Analyst 2012; 137:195-201. [PMID: 22046581 DOI: 10.1039/c1an15457e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jianbo Xiao
- College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234, PR China.
| | | | | | | | | | | |
Collapse
|