1
|
Scicchitano BM, Bouchè M, Nervi C, Coletti D. A tribute to Professor Sergio Adamo, Full Professor of Histology and Embryology at Sapienza University, Rome. Eur J Transl Myol 2022; 32. [PMID: 35244364 PMCID: PMC8992673 DOI: 10.4081/ejtm.2022.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Sergio Adamo prematurely left us on January 7th 2022, just one year after his retirement, leaving his family, friends and colleagues deeply sad and grieving. Sergio was a full Professor of Histology and Embryology at the Sapienza University of Rome. Since the foundation of the Institute of Histology and Embryology more than 50 years ago, he dedicated himself to the institution, research, and teaching with integrity, generosity, and a great sense of teamwork. Sergio's main research interests have been the mechanisms of myogenesis, muscle homeostasis and regeneration under normal and pathological conditions. Most relevant results obtained by Sergio and his collaborators indicate novel functions for the neurohypophyseal hormones, vasopressin and oxytocin, upon striated muscle differentiation, trophism, and homeostasis. Here we like to give the proper tribute to a mentor, a colleague and a sincere friend. He left an indelible mark on the professional and personal lives of all of us and his absence provokes a profound sense of emptiness. “The trouble with the world is that the stupid are cocksure and the intelligent are full of doubt.” Bertrand Russell
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma.
| | - Marina Bouchè
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, Roma.
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie medico-chirurgiche , Sapienza Università di Roma, Roma.
| | - Dario Coletti
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, Roma.
| |
Collapse
|
2
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
3
|
Baccam A, Benoni-Sviercovich A, Rocchi M, Moresi V, Seelaender M, Li Z, Adamo S, Xue Z, Coletti D. The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Front Physiol 2019; 10:401. [PMID: 31068826 PMCID: PMC6491697 DOI: 10.3389/fphys.2019.00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.
Collapse
Affiliation(s)
- Alexandra Baccam
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Alexandra Benoni-Sviercovich
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Viviana Moresi
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marilia Seelaender
- Institute of Biomedical Sciences, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Zhenlin Li
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Sergio Adamo
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Interuniversity Institute of Myology, Rome, Italy
| | - Zhigang Xue
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
4
|
Ko YJ, Chang H, Lee DH. Analysis of Taurine's Anti-Down Syndrome Potential in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1113-1128. [PMID: 28849527 DOI: 10.1007/978-94-024-1079-2_89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Down syndrome (DS) patients overexpress human DS critical region gene 1 (hDSCR-1), whose translational product inhibits calcineurin-dependent signaling pathways of genetic transcription. Compared to hDSCR-1, C. elegans rcn-1 has 40% sequence similarity and its proteins share an analogous function with hDSCR-1 in regulating calcineurin. Taurine has had a positive effect on DS patients. According to animal research studies, taurine reduces the expression of MCIP1, a calcineurin inhibitory protein, on C2C12 myotubes and fibroblast in mouse. This study utilizes two C. elegans models for DS: rcn-1 overexpression model, displaying a calcineurin-deficient phenotype, and calcineurin loss-of function mutants. C. elegans larvae were treated with taurine to characterize its effect and mechanism in helping DS patients. RCN-1 expression and behavioral changes were examined in rcn-1 overexpression and calcineurin-deficient models at different concentrations of taurine. When treated with taurine, transgenic worms harboring an rcn-1 reporter (RCN-1::GFP) showed a reduced level of rcn-1 mRNA expression and improved behaviors that were comparable to those in the wild type. These results indicate that taurine exerts a down-regulating effect on the expression of rcn-1 and, consequently, a positive effect on the expression of calcineurins. In summary, taurine may improve the DS symptoms by prompting a positive interaction between RCN-1 and calcineurin. Furthermore, these results suggest that novel mechanisms may regulate interactions among taurine, RCN-1 and calcineurin.
Collapse
Affiliation(s)
- Yun Jung Ko
- Department of Life Sciences, University of Seoul, Seoul, 02504, South Korea
| | | | - Dong Hee Lee
- Department of Life Sciences, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
5
|
Perniconi B, Coletti D, Aulino P, Costa A, Aprile P, Santacroce L, Chiaravalloti E, Coquelin L, Chevallier N, Teodori L, Adamo S, Marrelli M, Tatullo M. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Front Physiol 2014; 5:354. [PMID: 25309452 PMCID: PMC4176465 DOI: 10.3389/fphys.2014.00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/30/2014] [Indexed: 01/17/2023] Open
Abstract
The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss.
Collapse
Affiliation(s)
- Barbara Perniconi
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; Maxillofacial Unit, Calabrodental Clinic Crotone, Italy
| | - Dario Coletti
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Paola Aulino
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Alessandra Costa
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy ; UTAPRAD-DIM, ENEA Frascati, Italy
| | - Paola Aprile
- UTAPRAD-DIM, ENEA Frascati, Italy ; Tor Vergata University of Rome Rome, Italy
| | - Luigi Santacroce
- JSGEM Department - Section of Taranto, University of Bari Taranto, Italy
| | | | - Laura Coquelin
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | - Nathalie Chevallier
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | | | - Sergio Adamo
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Massimo Marrelli
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| |
Collapse
|
6
|
Costa A, Toschi A, Murfuni I, Pelosi L, Sica G, Adamo S, Scicchitano BM. Local overexpression of V1a-vasopressin receptor enhances regeneration in tumor necrosis factor-induced muscle atrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:235426. [PMID: 24971321 PMCID: PMC4055243 DOI: 10.1155/2014/235426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca(2+)/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.
Collapse
Affiliation(s)
- Alessandra Costa
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Angelica Toschi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Ivana Murfuni
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Laura Pelosi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Bianca Maria Scicchitano
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
7
|
López-Caamal F, Oyarzún DA, Middleton RH, García MR. Spatial Quantification of Cytosolic Ca²⁺ Accumulation in Nonexcitable Cells: An Analytical Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:592-603. [PMID: 26356026 DOI: 10.1109/tcbb.2014.2316010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Calcium ions act as messengers in a broad range of processes such as learning, apoptosis, and muscular movement. The transient profile and the temporal accumulation of calcium signals have been suggested as the two main characteristics in which calcium cues encode messages to be forwarded to downstream pathways. We address the analytical quantification of calcium temporal-accumulation in a long, thin section of a nonexcitable cell by solving a boundary value problem. In these expressions we note that the cytosolic Ca(2+) accumulation is independent of every intracellular calcium flux and depends on the Ca(2+) exchange across the membrane, cytosolic calcium diffusion, geometry of the cell, extracellular calcium perturbation, and initial concentrations. In particular, we analyse the time-integrated response of cytosolic calcium due to i) a localised initial concentration of cytosolic calcium and ii) transient extracellular perturbation of calcium. In these scenarios, we conclude that i) the range of calcium progression is confined to the vicinity of the initial concentration, thereby creating calcium microdomains; and ii) we observe a low-pass filtering effect in the response driven by extracellular Ca(2+) perturbations. Additionally, we note that our methodology can be used to analyse a broader range of stimuli and scenarios.
Collapse
|
8
|
Miyazaki T, Honda A, Ikegami T, Matsuzaki Y. The role of taurine on skeletal muscle cell differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:321-8. [PMID: 23392893 DOI: 10.1007/978-1-4614-6093-0_29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Taurine abundantly contained in the skeletal muscle has been considered as one of essential factors for the differentiation and growth of skeletal muscles. The previous studies in the taurine transporter knockout mice showed that deficiency of taurine content in the skeletal muscle caused incomplete muscular developments, morphological abnormalities, and exercise abilities. In fetal and neonatal periods, taurine must be an essential amino acid due to no biosynthesis capacity, and therefore, taurine should be endogenously supplied through placenta and maternal milk. In general cell culture condition, taurine contained in the culture medium is absent or few, and therefore, most of cultured cells are in taurine-deficient condition. In the present study, we confirmed, in cultured mouse differentiable myoblast, taurine treatment significantly enhanced the differentiation to myotube in a dose-dependent manner, while these effects were abrogated by inhibitions of taurine transport and Ca(2+) signaling pathway.The present study suggested that exogenous taurine might play a key role on the mature differentiation/growth of the skeletal muscle during development period through Ca(2+) signaling pathway, and therefore, taurine would contribute the muscle recovery after damages.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | | | | | | |
Collapse
|
9
|
Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 2012; 7:e48246. [PMID: 23144744 PMCID: PMC3483218 DOI: 10.1371/journal.pone.0048246] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Annexin A1 (ANXA1, lipocortin-1) is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex) to cellular membranes in a Ca(2+)-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs) following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+) perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+). These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Luca Parente
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
- * E-mail:
| |
Collapse
|
10
|
Laguerre M, Wrutniak-Cabello C, Chabi B, López Giraldo LJ, Lecomte J, Villeneuve P, Cabello G. Does hydrophobicity always enhance antioxidant drugs? A cut-off effect of the chain length of functionalized chlorogenate esters on ROS-overexpressing fibroblasts. ACTA ACUST UNITED AC 2011; 63:531-40. [PMID: 21401605 DOI: 10.1111/j.2042-7158.2010.01216.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Phenolic antioxidants are currently attracting a growing interest as potential therapeutic agents to counteract diseases associated with oxidative stress. However, their high hydrophilicity results in a poor bioavailability hindering the development of efficient antioxidant strategies. A promising way to overcome this is to increase their hydrophobicity by lipophilic moiety grafting to form the newly coined 'phenolipids'. Although hydrophobicity is generally considered as advantageous regarding antioxidant properties, it is nevertheless worth investigating whether increasing hydrophobicity necessarily leads to a more efficient antioxidant drug. METHODS To answer this question, the antioxidant capacity of a homologous series of phenolics (chlorogenic acid and its methyl, butyl, octyl, dodecyl and hexadecyl esters) toward mitochondrial reactive oxygen species (ROS) generated in a ROS-overexpressing fibroblast cell line was investigated using 2',7'-dichlorodihydrofluorescein. KEY FINDINGS Overall, the long chain esters (dodecyl and hexadecyl esters) were more active than the short ones (methyl, butyl, and octyl esters), with an optimal activity for dodecyl chlorogenate. Moreover, dodecyl chlorogenate exerted a strong antioxidant capacity, for concentration and incubation time below the cytotoxicity threshold, making it a promising candidate for further in-vivo studies. More importantly, we found that the elongation of the chain length from 12 to 16 carbons led unexpectedly to a 45% decrease of antioxidant capacity. CONCLUSION The understanding of this sudden collapse of the antioxidant capacity through the cut-off theory will be discussed in this article, and may contribute towards development of a rational approach to design novel amphiphilic antioxidant drugs, especially phenolipids with medium fatty chain.
Collapse
Affiliation(s)
- Mickaël Laguerre
- aCIRAD, UMR Ingénierie des Agropolymères et Technologies Émergentes, and bINRA, UMR Différenciation Cellulaire et Croissance, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Myoglobin is a well-characterized, cytoplasmic hemoprotein that is expressed primarily in cardiomyocytes and oxidative skeletal muscle fibers. However, recent studies also suggest low-level myoglobin expression in various non-muscle tissues. Prior studies incorporating molecular, pharmacological, physiological and transgenic technologies have demonstrated that myoglobin is an essential oxygen-storage hemoprotein capable of facilitating oxygen transport and modulating nitric oxide homeostasis within cardiac and skeletal myocytes. Concomitant with these studies, scientific investigations into the transcriptional regulation of myoglobin expression have been undertaken. These studies have indicated that activation of key transcription factors (MEF2, NFAT and Sp1) and co-activators (PGC-1alpha) by locomotor activity, differential intracellular calcium fluxes and low intracellular oxygen tension collectively regulate myoglobin expression. Future studies focused on tissue-specific transcriptional regulatory pathways and post-translational modifications governing myoglobin expression will need to be undertaken. Finally, further studies investigating the modulation of myoglobin expression under various myopathic processes may identify myoglobin as a novel therapeutic target for the treatment of various cardiac and skeletal myopathies.
Collapse
Affiliation(s)
- Shane B Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
12
|
Butterfield TA, Best TM. Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise. Med Sci Sports Exerc 2009; 41:351-6. [PMID: 19127190 DOI: 10.1249/mss.0b013e318187cffa] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study was to test the hypothesis that stretch-activated ion channel (SAC) function is essential for the repeated bout effect (RBE) in skeletal muscle. Specifically, we investigated if daily injections of streptomycin (a known SAC blocker) would abrogate the muscle's adaptive resistance to the damaging effects of eccentric exercise over a 4-wk period. Furthermore, we hypothesized that the lack of an RBE would be due to the lack of functional adaptations that typically result from repeated bouts of eccentric exercise, including increased peak isometric torque, muscle hypertrophy, and rightward shift of the torque-angle relationship. METHODS Twelve New Zealand white rabbits were each subjected to 12 bouts of eccentric exercise over a 4-wk period while receiving either daily injections of streptomycin or sham injections. RESULTS Although blocking the SAC function completely eliminated the expected adaptive response in biomechanical parameters during the exercise regimen, there remained evidence of an acquired RBE, albeit with an attenuated response when compared with the muscles with intact SAC function. CONCLUSION Blocking sarcolemmal SAC eliminates functional adaptations of muscle after eccentric exercise. In the absence of SAC function, muscles subjected to chronic eccentric exercise still exhibit some degree of the RBE. As such, it appears that the signaling cascade that results in functional, biomechanical adaptations associated with the RBE during eccentric exercise is dependent upon intact SAC function.
Collapse
Affiliation(s)
- Timothy A Butterfield
- Division of Athletic Training, Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
13
|
Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S, Schessl J, Zou Y, Joya J, Bönnemann CG, Hardeman EC, Mitchell CA. Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. ACTA ACUST UNITED AC 2009; 183:1033-48. [PMID: 19075112 PMCID: PMC2600747 DOI: 10.1083/jcb.200804077] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulators of skeletal muscle mass are of interest, given the morbidity and mortality of muscle atrophy and myopathy. Four-and-a-half LIM protein 1 (FHL1) is mutated in several human myopathies, including reducing-body myopathy (RBM). The normal function of FHL1 in muscle and how it causes myopathy remains unknown. We find that FHL1 transgenic expression in mouse skeletal muscle promotes hypertrophy and an oxidative fiber-type switch, leading to increased whole-body strength and fatigue resistance. Additionally, FHL1 overexpression enhances myoblast fusion, resulting in hypertrophic myotubes in C2C12 cells, (a phenotype rescued by calcineurin inhibition). In FHL1-RBM C2C12 cells, there are no hypertrophic myotubes. FHL1 binds with the calcineurin-regulated transcription factor NFATc1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1), enhancing NFATc1 transcriptional activity. Mutant RBM-FHL1 forms aggregate bodies in C2C12 cells, sequestering NFATc1 and resulting in reduced NFAT nuclear translocation and transcriptional activity. NFATc1 also colocalizes with mutant FHL1 to reducing bodies in RBM-afflicted skeletal muscle. Therefore, via NFATc1 signaling regulation, FHL1 appears to modulate muscle mass and strength enhancement.
Collapse
Affiliation(s)
- Belinda S Cowling
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Formigli L, Meacci E, Sassoli C, Squecco R, Nosi D, Chellini F, Naro F, Francini F, Zecchi-Orlandini S. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. J Cell Physiol 2007; 211:296-306. [PMID: 17295211 DOI: 10.1002/jcp.20936] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study, we investigated the functional interaction between stress fibers (SFs) and stretch-activated channels (SACs) and its possible role in the regulation of myoblast differentiation induced by switch to differentiation culture in the presence or absence of sphingosine 1-phosphate. It was found that there was a clear temporal correlation between SF formation and SAC activation in differentiating C2C12 myoblasts. Inhibition of actin polymerization with the specific Rho kinase inhibitor Y-27632, significantly decreased SAC sensitivity in these cells, suggesting a role for Rho-dependent actin remodeling in the regulation of the channel opening. The alteration of cytoskeletal/SAC functional correlation had also deleterious effects on myogenic differentiation of C2C12 cells as judged by combined confocal immunofluorescence, biochemical and electrophysiological analyses. Indeed, the treatment with Y-27632 or with DHCB, an actin disrupting agent, inhibited the expression of the myogenic markers (myogenin and sarcomeric proteins) and myoblast-myotube transition. The treatment with the channel blocker, GdCl(3), also affected myogenesis in these cells. It impaired, in fact, myoblast phenotypic maturation (i.e., reduced the expression of alpha-sarcomeric actin and skeletal myosin and the activity of creatine kinase) but did not modify promoter activity and protein expression levels of myogenin. The results of this study, together with being in agreement with the general idea that cytoskeletal remodeling is essential for muscle differentiation, describe a novel pathway whereby the formation of SFs and their contraction, generate a mechanical tension to the plasma membrane, activate SACs and trigger Ca(2+)-dependent signals, thus influencing the phenotypic maturation of myoblasts.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tunstall RJ, McAinch AJ, Hargreaves M, van Loon LJC, Cameron-Smith D. Reduced plasma free fatty acid availability during exercise: effect on gene expression. Eur J Appl Physiol 2006; 99:485-93. [PMID: 17186295 DOI: 10.1007/s00421-006-0376-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2006] [Indexed: 11/30/2022]
Abstract
Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using L6 myocytes and secondly, to measure the expression of these same set of genes in vivo, following a single exercise bout when the post-exercise rise in plasma FA is abolished by acipimox. Initial studies using L6 myotubes demonstrated dose responsive sensitivity for both PDK4 and PGC-1alpha mRNA to acute FA exposure in vitro. Nine active males performed two trials consisting of 2 h exercise, followed by 2 h of recovery. In one trial, plasma FA availability was reduced by the administration of acipimox (LFA), a pharmacological inhibitor of adipose tissue lipolysis, and in the second trial a placebo was provided (CON). During the exercise bout and during recovery, the rise in plasma FA and glycerol was abolished by acipimox treatment. Following exercise the mRNA abundance of PDK4 and PGC-1alpha were elevated and unaffected by either acipimox or placebo. Further analysis of skeletal muscle gene expression demonstrated that the CPT I gene was suppressed in both trials, whilst UCP-3 gene was only modestly regulated by exercise alone. Acipimox ingestion did not alter the response for both CPT I and UCP-3. Thus, this study demonstrates that the normal increase in circulating concentrations of FA during the later stages of exercise and subsequent recovery is not required to induce skeletal muscle mRNA expression of several proteins involved in regulating substrate metabolism.
Collapse
Affiliation(s)
- Rebecca J Tunstall
- School of Exercise and Nutritional Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | | | | | | | | |
Collapse
|