1
|
Moody TW, Ramos-Alvarez I, Jensen RT. Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer. BIOLOGY 2023; 12:957. [PMID: 37508387 PMCID: PMC10376828 DOI: 10.3390/biology12070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Irene Ramos-Alvarez
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Robert T Jensen
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Moody TW, Ramos-Alvarez I, Jensen RT. Adding of neurotensin to non-small cell lung cancer cells increases tyrosine phosphorylation of HER3. Peptides 2022; 156:170858. [PMID: 35932909 PMCID: PMC9529830 DOI: 10.1016/j.peptides.2022.170858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Neurotensin (NTS) receptor 1 regulates the growth non-small cell lung cancer (NSCLC) cells. NTS binds with high affinity to NTSR1, leading to increased tyrosine phosphorylation of the EGFR and HER2. Using Calu3, NCI-H358, or NCI-H441 cells, the effects of NTS on HER3 transactivation were investigated. HER3 tyrosine phosphorylation was increased by NTS or neuregulin (NRG1) addition to NSCLC cells. NCI-H358, NCI-H441, and Calu-3 cells have HER3, NTSR1 and neuregulin (NRG)1 protein. NTSR1 regulation of HER3 transactivation was impaired by SR48692 (NTSR1 antagonist) or monoclonal antibody (mAb)3481 (HER3 blocker). Immunoprecipitation experiments indicated that NTS addition to NCI-H441cells resulted in the formation of EGFR/HER3 and HER2/HER3 heterodimers. The ability of NTS to increase HER3 tyrosine phosphorylation was impaired by GM6001 (MMP inhibitor), PP2 (Src inhibitor), Tiron (superoxide scavenger), or N-acetylcysteine (antioxidant). Adding NTS to NSCLC cells increased phosphorylation of ERK, HER3, and AKT. NTS or NRG1 increased colony formation of NSCLC cells which was strongly inhibited by SR48692 and mAb3481. The results indicate that NTSR1 regulates HER3 transactivation in NSCLC cells leading to increased proliferation.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Center for Cancer Training, Bethesda, MD 20892, USA.
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
3
|
Moody TW, Ramos-Alvarez I, Jensen RT. Bombesin, endothelin, neurotensin and pituitary adenylate cyclase activating polypeptide cause tyrosine phosphorylation of receptor tyrosine kinases. Peptides 2021; 137:170480. [PMID: 33385499 DOI: 10.1016/j.peptides.2020.170480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Numerous peptides including bombesin (BB), endothelin (ET), neurotensin (NTS) and pituitary adenylate cyclase-activating polypeptide (PACAP) are growth factors for lung cancer cells. The peptides bind to G protein-coupled receptors (GPCRs) resulting in elevated cAMP and/or phosphatidylinositol (PI) turnover. In contrast, growth factors such as epidermal growth factor (EGF) or neuregulin (NRG)-1 bind to receptor tyrosine kinases (RTKs) such as the EGFR or HER3, increasing tyrosine kinase activity, resulting in the phosphorylation of protein substrates such as PI3K or phospholipase (PL)C. Peptide GPCRs can transactivate numerous RTKs, especially members of the EGFR/HER family resulting in increased phosphorylation of ERK, leading to cellular proliferation or increased phosphorylation of AKT, leading to cellular survival. GRCR antagonists and tyrosine kinase inhibitors are useful agents to prevent RTK transactivation and inhibit proliferation of cancer cells.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Center for Cancer Training, Bethesda, MD, 20892, USA.
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| |
Collapse
|
4
|
Nikolaou S, Qiu S, Fiorentino F, Simillis C, Rasheed S, Tekkis P, Kontovounisios C. The role of Neurotensin and its receptors in non-gastrointestinal cancers: a review. Cell Commun Signal 2020; 18:68. [PMID: 32336282 PMCID: PMC7183616 DOI: 10.1186/s12964-020-00569-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neurotensin, originally isolated in 1973 has both endocrine and neuromodulator activity and acts through its three main receptors. Their role in promoting tumour cell proliferation, migration, DNA synthesis has been studied in a wide range of cancers. Expression of Neurotensin and its receptors has also been correlated to prognosis and prediction to treatment. Main body The effects of NT are mediated through mitogen-activated protein kinases, epidermal growth factor receptors and phosphatidylinositol-3 kinases amongst others. This review is a comprehensive summary of the molecular pathways by which Neurotensin and its receptors act in cancer cells. Conclusion Identifying the role of Neurotensin in the underlying molecular mechanisms in various cancers can give way to developing new agnostic drugs and personalizing treatment according to the genomic structure of various cancers. Video abstract
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Constantinos Simillis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
5
|
Sriram K, Salmerón C, Wiley SZ, Insel PA. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol 2020; 177:2434-2455. [PMID: 32060895 DOI: 10.1111/bph.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates (5-year survival ~9%) among cancers. Pancreatic adenocarcinoma (PAAD) is the most common (>80%) and the most lethal type of pancreatic cancer. A need exists for new approaches to treat pancreatic adenocarcinoma. GPCRs, the largest family of cell-surface receptors and drug targets, account for ~35% of approved drugs. Recent studies have revealed roles for GPCRs in PAAD cells and cells in the tumour micro-environment. This review assesses current information regarding GPCRs in PAAD by summarizing omics data for GPCRs expression in PAAD. The PAAD "GPCRome" includes GPCRs with approved agents, thereby offering potential for their repurposing/repositioning. We then reviewed the evidence for functional roles of specific GPCRs in PAAD. We also highlight gaps in understanding the contribution of GPCRs to PAAD biology and identify several GPCRs that may be novel therapeutic targets for future work in search of GPCR-targeted drugs to treat PAAD tumours.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Cristina Salmerón
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shu Z Wiley
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
6
|
Moody TW, Lee L, Ramos-Alvarez I, Jensen RT. Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner. Eur J Pharmacol 2019; 865:172735. [PMID: 31614143 DOI: 10.1016/j.ejphar.2019.172735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023]
Abstract
Neurotensin is a 13 amino acid peptide which is present in many lung cancer cell lines. Neurotensin binds with high affinity to the neurotensin receptor 1, and functions as an autocrine growth factor in lung cancer cells. Neurotensin increases tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and the neurotensin receptor 1 antagonist SR48692 blocks the transactivation of the EGFR. Here the effects of reactive oxygen species on the transactivation of the EGFR and HER2 were investigated. Using non-small cell lung cancer (NSCLC) cell lines, neurotensin receptor 1 mRNA and protein were present. Using NCI-H838 cells, neurotensin or neurotensin8-13 but not neurotensin1-8 increased EGFR, ERK and HER2 tyrosine phosphorylation which was blocked by SR48692. Neurotensin addition to NCI-H838 cells increased significantly reactive oxygen species which was inhibited by SR48692, Tiron (superoxide scavenger) and diphenylene iodonium (DPI inhibits the ability of NADPH oxidase and dual oxidase enzymes to produce reactive oxygen species). Tiron or DPI impaired the ability of neurotensin to increase EGFR, ERK and HER2 tyrosine phosphorylation. Neurotensin stimulated NSCLC cellular proliferation whereas the growth was inhibited by SR48692, DPI or lapatinib (lapatinib is tyrosine kinase inhibitor of the EGFR and HER2). Lapatinib inhibited the ability of the neurotensin receptor 1 to transactivate the EGFR and HER2. The results indicate that neurotensin receptor 1 regulates the transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Terry W Moody
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, 20892, USA.
| | - Lingaku Lee
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD, 20892, USA
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD, 20892, USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Hao F, Xu Q, Wang J, Yu S, Chang HH, Sinnett-Smith J, Eibl G, Rozengurt E. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS One 2019; 14:e0216603. [PMID: 31100067 PMCID: PMC6524808 DOI: 10.1371/journal.pone.0216603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
We examined the impact of statins on Yes-associated Protein (YAP) localization, phosphorylation and transcriptional activity in human and mouse pancreatic ductal adenocarcinoma (PDAC) cells. Exposure of sparse cultures of PANC-1 and MiaPaCa-2 cells to cerivastatin or simvastatin induced a striking re-localization of YAP from the nucleus to the cytoplasm and inhibited the expression of the YAP/TEAD-regulated genes Connective Tissue Growth Factor (CTGF) and Cysteine-rich angiogenic inducer 61 (CYR61). Statins also prevented YAP nuclear import and expression of CTGF and CYR61 stimulated by the mitogenic combination of insulin and neurotensin in dense culture of these PDAC cells. Cerivastatin, simvastatin, atorvastatin and fluvastatin also inhibited colony formation by PANC-1 and MiaPaCa-2 cells in a dose-dependent manner. In contrast, the hydrophilic statin pravastatin did not exert any inhibitory effect even at a high concentration (10 μM). Mechanistically, cerivastatin did not alter the phosphorylation of YAP at Ser127 in either PANC-1 or MiaPaCa-2 cells incubated without or with neurotensin and insulin but blunted the assembly of actin stress fiber in these cells. We extended these findings with human PDAC cells using primary KC and KPC cells, (expressing KrasG12D or both KrasG12D and mutant p53, respectively) isolated from KC or KPC mice. Using cultures of these murine cells, we show that lipophilic statins induced striking YAP translocation from the nucleus to the cytoplasm, inhibited the expression of Ctgf, Cyr61 and Birc5 and profoundly inhibited colony formation of these cells. Administration of simvastatin to KC mice subjected to diet-induced obesity prevented early pancreatic acini depletion and PanIN formation. Collectively, our results show that lipophilic statins restrain YAP activity and proliferation in pancreatic cancer cell models in vitro and attenuates early lesions leading to PDAC in vivo.
Collapse
Affiliation(s)
- Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Tianjin Medical University, Tianjin, China
| | - Qinhong Xu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Shuo Yu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Wu Z, Fournel L, Stadler N, Liu J, Boullier A, Hoyeau N, Fléjou JF, Duchatelle V, Djebrani-Oussedik N, Agopiantz M, Ségal-Bendirdjian E, Gompel A, Alifano M, Melander O, Trédaniel J, Forgez P. Modulation of lung cancer cell plasticity and heterogeneity with the restoration of cisplatin sensitivity by neurotensin antibody. Cancer Lett 2018; 444:147-161. [PMID: 30583074 DOI: 10.1016/j.canlet.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Overall survival of patients with metastatic non-small cell lung cancer (NSCLC) has significantly improved with platinum-based salt treatments and recently with targeted therapies and immunotherapies. However, treatment failure occurs due to acquired or emerging tumor resistance. We developed a monoclonal antibody against the proform of neurotensin (LF-NTS mAb) that alters the homeostasis of tumors overexpressing NTSR1. Neurotensin is frequently overexpressed along with its high affinity receptor (NTSR1) in tumors from epithelial origins. This ligand/receptor complex contributes to the progression of many tumor types by activation of the cellular effects involved in tumor progression (proliferation, survival, migration, and invasion). We demonstrate that LF-NTS mAb operates on the plasticity of tumor cells overexpressing NTSR1 and lowers their aggressiveness. The mAb enables the restoration of platinum-based therapies responsiveness, while also decreasing metastatic processes. Efficacy dosage with long-term treatment showed no obvious adverse events, while demonstrating improvement in the performance status. Our data suggests that LF-NTS mAb is an ideal candidate to be safely added to the conventional standard of care in order to improve its efficacy.
Collapse
Affiliation(s)
- Zherui Wu
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France
| | - Ludovic Fournel
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France; Department of Thoracic Surgery, Cochin Hospital of Paris, AP-HP, Paris Descartes University, Paris, France; Paris-Sud, Paris-Saclay University, Orsay, France
| | - Nicolas Stadler
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France
| | - Jin Liu
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France
| | - Agnès Boullier
- CBH Biochemistry Laboratory, CHU Amiens-Picardie, Amiens, France
| | - Nadia Hoyeau
- Department of Pathology, Saint-Antoine Hospital, AP-HP, UPMC, Paris, France
| | | | - Véronique Duchatelle
- Department of Pathology, Groupe Hospitalier Paris Saint Joseph, Paris Descartes University, Paris, France
| | | | - Mikaël Agopiantz
- Department of Pathology, CHRU Nancy, University of Lorraine, Nancy, France
| | | | - Anne Gompel
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France; Department of Gynecology Obstetrics II and Reproductive Medicine, Paris Descartes University, AP-HP, Paris, France
| | - Marco Alifano
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France; Department of Thoracic Surgery, Cochin Hospital of Paris, AP-HP, Paris Descartes University, Paris, France
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Skåne University Hospital, CRC, Malmö, Sweden
| | - Jean Trédaniel
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France; Unit of Thoracic Oncology, Groupe Hospitalier Paris Saint Joseph, Paris Descartes University, Paris, France.
| | - Patricia Forgez
- INSERM UMRS 1007, Paris Descartes University, 75270, Paris Cedex 06, France.
| |
Collapse
|
9
|
Moody TW, Ramos-Alvarez I, Jensen RT. Neuropeptide G Protein-Coupled Receptors as Oncotargets. Front Endocrinol (Lausanne) 2018; 9:345. [PMID: 30008698 PMCID: PMC6033971 DOI: 10.3389/fendo.2018.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide G protein-coupled receptors (GPCRs) are overexpressed on numerous cancer cells. In a number of tumors, such as small cell lung cancer (SCLC), bombesin (BB) like peptides and neurotensin (NTS) function as autocrine growth factors whereby they are secreted from tumor cells, bind to cell surface receptors and stimulate growth. BB-drug conjugates and BB receptor antagonists inhibit the growth of a number of cancers. Vasoactive intestinal peptide (VIP) increases the secretion rate of BB-like peptide and NTS from SCLC leading to increased proliferation. In contrast, somatostatin (SST) inhibits the secretion of autocrine growth factors from neuroendocrine tumors (NETs) and decreases proliferation. SST analogs such as radiolabeled octreotide can be used to localize tumors, is therapeutic for certain cancer patients and has been approved for four different indications in the diagnosis/treatment of NETs. The review will focus on how BB, NTS, VIP, and SST receptors can facilitate the early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| |
Collapse
|
10
|
Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol 2017; 54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a lethal disease with no efficacious treatment modalities. The incidence of PDAC is expected to increase, at least partially because of the obesity epidemic. Increased efforts to prevent or intercept this disease are clearly needed. Mutations in KRAS are initiating events in pancreatic carcinogenesis supported by genetically engineered mouse models of the disease. However, oncogenic KRAS is not entirely sufficient for the development of fully invasive PDAC. Additional genetic mutations and/or environmental, nutritional, and metabolic stressors, e.g. inflammation and obesity, are required for efficient PDAC formation with activation of KRAS downstream effectors. Multiple factors "upstream" of KRAS associated with obesity, including insulin resistance, inflammation, changes in gut microbiota and GI peptides, can enhance/modulate downstream signals. Multiple signaling networks and feedback loops "downstream" of KRAS have been described that respond to obesogenic diets. We propose that KRAS mutations potentiate a signaling network that is promoted by environmental factors. Specifically, we envisage that KRAS mutations increase the intensity and duration of the growth-promoting signaling network. As the transcriptional activator YAP plays a critical role in the network, we conclude that the rationale for targeting the network (at different points), e.g. with FDA approved drugs such as statins and metformin, is therefore compelling.
Collapse
Affiliation(s)
- Guido Eibl
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States.
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Hao F, Xu Q, Zhao Y, Stevens JV, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol Cancer Res 2017; 15:929-941. [PMID: 28360038 DOI: 10.1158/1541-7786.mcr-17-0023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
We examined the impact of crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways on the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in the context of human pancreatic ductal adenocarcinoma (PDAC). Stimulation of PANC-1 or MiaPaCa-2 cells with insulin and neurotensin, a potent mitogenic combination of agonists for these cells, promoted striking YAP nuclear localization and decreased YAP phosphorylation at Ser127 and Ser397 Challenging PDAC cells with either insulin or neurotensin alone modestly induced the expression of YAP/TEAD-regulated genes, including connective tissue growth factor (CTGF), cysteine-rich angiogenic inducer 61 (CYR61), and CXCL5, whereas the combination of neurotensin and insulin induced a marked increase in the level of expression of these genes. In addition, siRNA-mediated knockdown of YAP/TAZ prevented the increase in the expression of these genes. A small-molecule inhibitor (A66), selective for the p110α subunit of PI3K, abrogated the increase in phosphatidylinositol 3,4,5-trisphosphate production and the expression of CTGF, CYR61, and CXCL5 induced by neurotensin and insulin. Furthermore, treatment of PDAC cells with protein kinase D (PKD) family inhibitors (CRT0066101 or kb NB 142-70) or with siRNAs targeting the PKD family prevented the increase of CTGF, CYR61, and CXCL5 mRNA levels in response to insulin and neurotensin stimulation. Thus, PI3K and PKD mediate YAP activation in response to insulin and neurotensin in pancreatic cancer cells.Implications: Inhibitors of PI3K or PKD disrupt crosstalk between insulin receptor and GPCR signaling systems by blocking YAP/TEAD-regulated gene expression in pancreatic cancer cells. Mol Cancer Res; 15(7); 929-41. ©2017 AACR.
Collapse
Affiliation(s)
- Fang Hao
- Tianjin Medical University, Tianjin, China.,Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Qinhong Xu
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Xi'an Jiaotong University, Xi'an, China
| | - Yinglan Zhao
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Sichuan University, Chengdu, China
| | - Jan V Stevens
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Steven H Young
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California. .,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
12
|
The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer. Sci Rep 2016; 6:33758. [PMID: 27649783 PMCID: PMC5030668 DOI: 10.1038/srep33758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Increased expression of PRKD1 and its gene product protein kinase D1 (PKD1) are linked to oncogenic signaling in pancreatic ductal adenocarcinoma, but a direct functional relationship to oncogenic KRas has not been established so far. We here describe the PRKD1 gene promoter as a target for oncogenic KRas signaling. We demonstrate that KRas-induced activation of the canonical NF-κB pathway is one mechanism of how PRKD1 expression is increased and identify the binding sites for NF-κB in the PRKD1 promoter. Altogether, these results describe a novel mechanism governing PRKD1 gene expression in PDA and provide a functional link between oncogenic KRas, NF-κB and expression of PRKD1.
Collapse
|
13
|
Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nat Commun 2015; 6:6200. [PMID: 25698580 PMCID: PMC4394184 DOI: 10.1038/ncomms7200] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.
Collapse
|
14
|
Ouyang Q, Gong X, Xiao H, Zhou J, Xu M, Dai Y, Xu L, Feng H, Cui H, Yi L. Neurotensin promotes the progression of malignant glioma through NTSR1 and impacts the prognosis of glioma patients. Mol Cancer 2015; 14:21. [PMID: 25644759 PMCID: PMC4351837 DOI: 10.1186/s12943-015-0290-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Background The poor prognosis and minimally successful treatments of malignant glioma indicate a challenge to identify new therapeutic targets which impact glioma progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) overexpression induces neoplastic growth and predicts the poor prognosis in various malignancies. Whether NTS can promote the glioma progression and its prognostic significance for glioma patients remains unclear. Methods NTS precursor (ProNTS), NTS and NTSR1 expression levels in glioma were detected by immunobloting Elisa and immunohistochemistry assay. The prognostic analysis was conducted from internet by R2 microarray platform. Glioma cell proliferation was evaluated by CCK8 and BrdU incorporation assay. Wound healing model and Matrigel transwell assay were utilized to test cellular migration and invasion. The orthotopic glioma implantations were established to analyze the role of NTS and NTSR1 in glioma progression in vivo. Results Positive correlations were shown between the expression levels of NTS and NTSR1 with the pathological grade of gliomas. The high expression levels of NTS and NTSR1 indicate a worse prognosis in glioma patients. The proliferation and invasiveness of glioma cells could be enhanced by NTS stimulation and impaired by the inhibition of NTSR1. NTS stimulated Erk1/2 phosphorylation in glioma cells, which could be reversed by SR48692 or NTSR1-siRNA. In vivo experiments showed that SR48692 significantly prolonged the survival length of glioma-bearing mice and inhibited glioma cell invasiveness. Conclusion NTS promotes the proliferation and invasion of glioma via the activation of NTSR1. High expression levels of NTS and NTSR1 predict a poor prognosis in glioma patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0290-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China. .,State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.
| | - Xueyang Gong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.
| | - Hualiang Xiao
- Department of Pathology, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Ji Zhou
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Ming M, Sinnett-Smith J, Wang J, Soares HP, Young SH, Eibl G, Rozengurt E. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells. PLoS One 2014; 9:e114573. [PMID: 25493642 PMCID: PMC4262417 DOI: 10.1371/journal.pone.0114573] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022] Open
Abstract
Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3-6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.
Collapse
Affiliation(s)
- Ming Ming
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jia Wang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heloisa P. Soares
- Division of Hematology-Oncology, Department of Medicine David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven H. Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
SR48692 inhibits non-small cell lung cancer proliferation in an EGF receptor-dependent manner. Life Sci 2014; 100:25-34. [PMID: 24496038 DOI: 10.1016/j.lfs.2014.01.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
AIMS The mechanism by which SR48692 inhibits non-small cell lung cancer (NSCLC) proliferation was investigated. MAIN METHODS The ability of SR48692 to inhibit the proliferation of NSCLC cell lines NCI-H1299 and A549 was investigated in vitro in the presence or absence of neurotensin (NTS). The ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation was investigated by Western blot using NSCLC cells and various inhibitors. The growth effects and Western blot results were determined in cell lines treated with siRNA for NTSR1. KEY FINDINGS Treatment of A549 or NCI-H1299 cells with siRNA for NTSR1 reduced significantly NTSR1 protein and the ability of SR48692 to inhibit the proliferation of A549 or NCI-H1299 NSCLC cells. Treatment of A549 and NCI-H1299 cells with siRNA for NTSR1 reduced the ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation. SR48692 or gefitinib (EGFR tyrosine kinase inhibitor) inhibited the ability of NTS to cause EGFR and ERK tyrosine phosphorylation. NTS transactivation of the EGFR was inhibited by GM6001 (matrix metalloprotease inhibitor), Tiron (superoxide scavenger) or U73122 (phospholipase C inhibitor) but not H89 (PKA inhibitor). NTS stimulates whereas SR48692 or gefitinib inhibits the clonal growth of NSCLC cells. SIGNIFICANCE These results suggest that SR48692 may inhibit NSCLC proliferation in an EGFR-dependent mechanism.
Collapse
|
17
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Di Florio A, Sancho V, Moreno P, Fave GD, Jensen RT. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:573-82. [PMID: 23220008 PMCID: PMC3556220 DOI: 10.1016/j.bbamcr.2012.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 02/07/2023]
Abstract
Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.
Collapse
Affiliation(s)
- Alessia Di Florio
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Veronica Sancho
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, II Medical School, University La Sapienza, S. Andrea Hospital, Via Di Grottarossa 00189, Rome, Italy
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
19
|
Kruger WA, Monteith GR, Poronnik P. NHERF-1 regulation of EGF and neurotensin signalling in HT-29 epithelial cells. Biochem Biophys Res Commun 2013; 432:568-73. [PMID: 23454118 DOI: 10.1016/j.bbrc.2013.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023]
Abstract
Neurotensin receptors (NT-R) and the epidermal growth factor receptors (EGF-R) are commonly overexpressed in many epithelial origin tumours. In addition to their role as mitogenic mediators through specific cell signalling, recent studies indicate that the activity/expression of scaffold proteins responsible for the assembly and coordination of the signalling complexes may also have central roles in epithelial transformation. In particular, the "epithelial" PSD-95/Dlg/Zo-1 (PDZ) scaffold/adapter protein, Na(+)/H(+) exchanger regulatory factor isoform one (NHERF-1), has been identified as a potential regulator of cellular transformation. NHERF-1 is a known regulator of EGF-R function and plays numerous roles in G-protein-coupled receptor signalling. Because of the synergistic signalling between these two potent mitogens, we investigated a potential role for NHERF-1 in the molecular mechanism linking the aberrant proliferative phenotype initiated by some G-Protein-coupled receptor activators in the colon adenocarcinoma HT-29 cell line. Knockdown (80%) of endogenous NHERF-1 leads to significant reduction in proliferation rate; an effect that could not be recovered by exogenous application of either NT or EGF. Inhibition of the EGF-R with AG1487 also inhibited proliferation and this effect could not be recovered with NT. Knockdown of NHERF-1 significantly altered the expression of the EGF-R, and almost completely abolished the NT-mediated increases in intracellular free Ca(2+). Knockdown of NHERF-1 also attenuated UTP-mediated purinergic Ca(2+) signalling. Taken together, these data suggest that NHERF-1 plays a more central role in cell proliferation by modulating Gq-mediated signalling pathways.
Collapse
Affiliation(s)
- Wade A Kruger
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | | | | |
Collapse
|
20
|
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 2013; 8:e57289. [PMID: 23437362 PMCID: PMC3578870 DOI: 10.1371/journal.pone.0057289] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser(473) while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser(473) and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Feedback, Physiological/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Indoles/pharmacology
- Insulin/pharmacology
- Metformin/pharmacology
- Morpholines/pharmacology
- Neurotensin/pharmacology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Purines/pharmacology
- Pyrimidines/pharmacology
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Heloisa P. Soares
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Hematology-Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yang Ni
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Krisztina Kisfalvi
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Sinnett-Smith J, Kisfalvi K, Kui R, Rozengurt E. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: dependence on glucose concentration and role of AMPK. Biochem Biophys Res Commun 2012; 430:352-7. [PMID: 23159620 DOI: 10.1016/j.bbrc.2012.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 12/17/2022]
Abstract
Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser(79) and Raptor at Ser(792), was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α(1) and α(2) catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA, USA
| | | | | | | |
Collapse
|
22
|
Tveteraas IH, Müller KM, Aasrum M, Ødegård J, Dajani O, Guren T, Sandnes D, Christoffersen T. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:72. [PMID: 22967907 PMCID: PMC3542006 DOI: 10.1186/1756-9966-31-72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/01/2012] [Indexed: 12/31/2022]
Abstract
Background It is important to understand the mechanisms by which the cells integrate signals from different receptors. Several lines of evidence implicate epidermal growth factor (EGF) receptor (EGFR) in the pathophysiology of hepatocarcinomas. Data also suggest a role of prostaglandins in some of these tumours, through their receptors of the G protein-coupled receptor (GPCR) family. In this study we have investigated mechanisms of interaction between signalling from prostaglandin receptors and EGFR in hepatocarcinoma cells. Methods The rat hepatocarcinoma cell line MH1C1 and normal rat hepatocytes in primary culture were stimulated with EGF or prostaglandin E2 (PGE2) and in some experiments also PGF2α. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA, phosphorylation of proteins in signalling pathways was assessed by Western blotting, mRNA expression of prostaglandin receptors was determined using qRT-PCR, accumulation of inositol phosphates was measured by incorporation of radiolabelled inositol, and cAMP was determined by radioimmunoassay. Results In the MH1C1 hepatocarcinoma cells, stimulation with PGE2 or PGF2α caused phosphorylation of the EGFR, Akt, and ERK, which could be blocked by the EGFR tyrosine kinase inhibitor gefitinib. This did not occur in primary hepatocytes. qRT-PCR revealed expression of EP1, EP4, and FP receptor mRNA in MH1C1 cells. PGE2 stimulated accumulation of inositol phosphates but not cAMP in these cells, suggesting signalling via PLCβ. While pretreatment with EP1 and EP4 receptor antagonists did not inhibit the effect of PGE2, pretreatment with an FP receptor antagonist blocked the phosphorylation of EGFR, Akt and ERK. Further studies suggested that the PGE2-induced signal was mediated via Ca2+ release and not PKC activation, and that it proceeded through Src and shedding of membrane-bound EGFR ligand precursors by proteinases of the ADAM family. Conclusion The results indicate that in MH1C1 cells, unlike normal hepatocytes, PGE2 activates the MEK/ERK and PI3K/Akt pathways by transactivation of the EGFR, thus diversifying the GPCR-mediated signal. The data also suggest that the underlying mechanisms in these cells involve FP receptors, PLCβ, Ca2+, Src, and proteinase-mediated release of membrane-associated EGFR ligand(s).
Collapse
Affiliation(s)
- Ingun Heiene Tveteraas
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P,O,Box 1057 Blindern, N-0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mazella J, Béraud-Dufour S, Devader C, Massa F, Coppola T. Neurotensin and its receptors in the control of glucose homeostasis. Front Endocrinol (Lausanne) 2012; 3:143. [PMID: 23230428 PMCID: PMC3515879 DOI: 10.3389/fendo.2012.00143] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/05/2012] [Indexed: 01/05/2023] Open
Abstract
The pharmacological roles of the neuropeptide neurotensin through its three known receptors are various and complex. Neurotensin is involved in several important biological functions including analgesia and hypothermia in the central nervous system and also food intake and glucose homeostasis in the periphery. This review focuses on recent works dealing with molecular mechanisms regulating blood glucose level and insulin secretion upon neurotensin action. Investigations on crucial cellular components involved in the protective effect of the peptide on beta cells are also detailed. The role of xenin, a neurotensin-related peptide, on the regulation of insulin release by glucose-dependent insulinotropic polypeptide is summarized. The last section comments on the future research areas which should be developed to address the function of new effectors of the neurotensinergic system in the endocrine pancreas.
Collapse
Affiliation(s)
- Jean Mazella
- *Correspondence: Jean Mazella and Thierry Coppola, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France. e-mail: ;
| | | | | | | | | |
Collapse
|
24
|
Müller KM, Tveteraas IH, Aasrum M, Ødegård J, Dawood M, Dajani O, Christoffersen T, Sandnes DL. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer 2011; 11:421. [PMID: 21961726 PMCID: PMC3196723 DOI: 10.1186/1471-2407-11-421] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/02/2011] [Indexed: 12/19/2022] Open
Abstract
Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.
Collapse
Affiliation(s)
- Kristin M Müller
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine and Oslo University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. ACTA ACUST UNITED AC 2011; 170:7-17. [DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
|
26
|
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011; 26:23-33. [PMID: 21357900 DOI: 10.1152/physiol.00037.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily conserved protein kinase family with structural, enzymological, and regulatory properties different from the PKC family members. Signaling through PKD is induced by a remarkable number of stimuli, including G-protein-coupled receptor agonists and polypeptide growth factors. PKD1, the most studied member of the family, is increasingly implicated in the regulation of a complex array of fundamental biological processes, including signal transduction, cell proliferation and differentiation, membrane trafficking, secretion, immune regulation, cardiac hypertrophy and contraction, angiogenesis, and cancer. PKD mediates such a diverse array of normal and abnormal biological functions via dynamic changes in its spatial and temporal localization, combined with its distinct substrate specificity. Studies on PKD thus far indicate a striking diversity of both its signal generation and distribution and its potential for complex regulatory interactions with multiple downstream pathways, often regulating the subcellular localization of its targets.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
27
|
Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 2011; 93:1369-78. [PMID: 21605619 DOI: 10.1016/j.biochi.2011.04.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/30/2011] [Indexed: 02/07/2023]
Abstract
A growing challenge in medicine today, is the need to improve the suitability of drug treatments for cancer patients. In this field, biomarkers have become the "flags" to provide additional information in tumor biology. They are a relay between the patient and practitioner and consequently, aid in the diagnosis, providing information for prognosis, or in some cases predicting the response to specific therapies. In addition to being markers, these tumor "flags" can also be major participants in the process of carcinogenesis. Neurotensin receptor 1 (NTSR1) was recently identified as a prognosis marker in breast, lung, and head and neck squamous carcinomas. Neurotensin (NTS) was also shown to exert numerous oncogenic effects involved in tumor growth and metastatic spread. These effects were mostly mediated by NTSR1, making the NTS/NTSR1 complex an actor in cancer progression. In this review, we gather information on the oncogenic effects of the NTS/NTSR1 complex and its associated signaling pathways in order to illuminate its significant role in tumor progression and its potential as a biomarker and a therapeutic target in some tumors.
Collapse
Affiliation(s)
- Sandra Dupouy
- INSERM-UPMC UMR_S938, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Wang JG, Li NN, Li HN, Cui L, Wang P. Pancreatic cancer bears overexpression of neurotensin and neurotensin receptor subtype-1 and SR 48692 counteracts neurotensin induced cell proliferation in human pancreatic ductal carcinoma cell line PANC-1. Neuropeptides 2011; 45:151-6. [PMID: 21272935 DOI: 10.1016/j.npep.2011.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 01/22/2023]
Abstract
The presence of neurotensin and neurotensin receptors has been demonstrated in human pancreatic carcinomas using autoradiography and Northern blot analysis. In vitro studies have reported that the neurotensin antagonist SR 48692 could inhibit the growth of MIA PaCa-2 cells in a neurotensin mediated fashion, and neurotensin could overcome this inhibition or stimulate proliferation. However, it is currently unknown whether such actions are exerted on PANC-1 cells. In addition, the immunolocation of neurotensin and neurotensin receptors is still unclear in human pancreatic ductal carcinoma tissues. Immunohistochemistry was applied to detect the distribution of neurotensin and neurotensin receptor subtype-1 in human pancreatic ductal carcinoma and normal pancreatic tissues. Furthermore, an in vitro study was carried out to test the pharmacological profile of neurotensin and SR 48692 in human pancreatic ductal carcinoma cell line PANC-1. Compared with normal pancreatic tissues, pancreatic ductal carcinoma tissues have higher neurotensin and neurotensin receptor subtype-1 expression rates. Pancreatic ductal carcinomas (32/40) bear the expression of both neurotensin and neurotensin receptor subtype-1. We observed that neurotensin (10⁻¹¹-10⁻⁷ M) significantly stimulated the proliferation of PANC-1 and SR 48692 (10⁻¹¹-10⁻⁷ M) alone had no effect on the growth of PANC-1 cells; however, SR 48692 (10⁻¹⁰-10⁻⁶ M) inhibited the stimulatory effect of neurotensin (10⁻⁹ M). Considering the overexpression of both neurotensin and neurotensin receptor subtype-1 in pancreatic ductal carcinomas, it could enable us to develop markers for pancreatic cancer diagnosis. As SR 48692 could inhibit neurotensin induced cell growth, neurotensin receptor subtype-1 may serve as a therapeutic target for the therapy of pancreatic carcinomas. Furthermore, our study indicates that the counteraction of neurotensin and neurotensin receptor subtype-1 regulates the genesis and development of pancreatic carcinomas.
Collapse
Affiliation(s)
- Ji-Gang Wang
- Department of Pathology, The Affiliated Hospital of Medical College, Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266003, China
| | | | | | | | | |
Collapse
|
29
|
Ochi N, Tanasanvimon S, Matsuo Y, Tong Z, Sung B, Aggarwal BB, Sinnett-Smith J, Rozengurt E, Guha S. Protein kinase D1 promotes anchorage-independent growth, invasion, and angiogenesis by human pancreatic cancer cells. J Cell Physiol 2011; 226:1074-81. [PMID: 20857418 DOI: 10.1002/jcp.22421] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Novel molecularly targeted therapies are urgently needed. Here, we extended our studies on the role of protein kinase D1 (PKD1) in PDAC cell lines. Given that Panc-1 express moderate levels of PKD1, we used retroviral-mediated gene transfer to create a Panc-1 derivative that stably over-expresses PKD1 (Panc-1-PKD1). Reciprocally, we used shRNA targeting PKD1 in Panc-28 to produce a PKD1 under-expressing Panc-28 derivative (Panc-28-shPKD1). Our results demonstrate that Panc-1-PKD1 cells exhibit significantly increased anchorage-independent growth in soft agar and increased in vitro invasion compared with Panc-1-mock. Reciprocally, Panc-28-shPKD1 cells show a significant decrease in anchorage-independent growth and invasiveness, as compared with Panc-28-mock cells. The selective PKD family inhibitor CRT0066101 markedly decreased colony-forming ability and invasiveness by either Panc-1-PKD1 or Panc-28-mock cells. Secretion of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and CXC chemokines (CXCL8) was significantly elevated by PKD1 over-expression in Panc-1 cells and reduced either by depletion of PKD1 via shRNA in Panc-28 cells or by addition of CRT0066101 to either Panc-1-PKD1 or Panc-28-mock cells. Furthermore, human umbilical vein endothelial cell (HUVEC) tube formation was significantly enhanced by co-culture with Panc-1-PKD1 compared with Panc-1-mock in an angiogenesis assay in vitro. Conversely, PKD1 depletion in Panc-28 cells decreased their ability to induce endotube formation by HUVECs. PDAC-induced angiogenesis in vitro and in vivo was markedly inhibited by CRT0066101. Our results lend further support to the hypothesis that PKD family members provide a novel target for PDAC therapy.
Collapse
Affiliation(s)
- Nobuo Ochi
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Young SH, Rozengurt E. Crosstalk between insulin receptor and G protein-coupled receptor signaling systems leads to Ca²+ oscillations in pancreatic cancer PANC-1 cells. Biochem Biophys Res Commun 2010; 401:154-8. [PMID: 20849815 DOI: 10.1016/j.bbrc.2010.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/08/2010] [Indexed: 02/08/2023]
Abstract
We examined crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways in individual human pancreatic cancer PANC-1 cells. Treatment of cells with insulin (10 ng/ml) for 5 min markedly enhanced the proportion of cells that display an increase in intracellular [Ca²+] induced by picomolar concentrations of the GPCR agonist neurotensin. Interestingly, insulin increased the proportion of a subpopulation of cells that exhibit intracellular [Ca²+] oscillations in response to neurotensin at concentrations as low as 50-200 pM. Insulin enhanced GPCR-induced Ca²+ signaling in a time- and dose-dependent manner; a marked potentiation was obtained after an exposure to a concentration of 10 ng/ml for 5 min. Treatment with the mTORC1 inhibitor rapamycin abrogated the increase in GPCR-induced [Ca²+](i) oscillations produced by insulin. Our results identify a novel aspect in the crosstalk between insulin receptor and GPCR signaling systems in pancreatic cancer cells, namely that insulin increases the number of [Ca²+](i) oscillating cells induced by physiological concentrations of GPCR agonists through an mTORC1-dependent pathway.
Collapse
Affiliation(s)
- Steven H Young
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1786, USA
| | | |
Collapse
|
31
|
Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 2010; 80:1946-54. [PMID: 20621068 DOI: 10.1016/j.bcp.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglycerol (DAG). One of the prominent intracellular targets of DAG is the protein kinase C (PKC) family. However, the mechanisms by which PKC-mediated signals are decoded by the cell remain incompletely understood. Protein kinase D1 (PKD or PKD1, initially called atypical PKCμ), is the founding member of a novel protein kinase family that includes two additional protein kinases that share extensive overall homology with PKD, termed PKD2, and PKD3. The PKD family occupies a unique position in the signal transduction pathways initiated by DAG and PKC. PKD lies downstream of PKCs in a novel signal transduction pathway implicated in the regulation of multiple fundamental biological processes. We and others have shown that PKD-mediated signaling pathways promote mitogenesis and angiogenesis in PDAC. Our recent observations demonstrate that PKD also potentiates chemoresistance and invasive potential of PDAC cells. This review will briefly highlight diverse biological roles of PKD family in multiple neoplasias including PDAC. Further, this review will underscore our latest advancement with the development of a potent PKD family inhibitor and its effect both in vitro and in vivo in PDAC.
Collapse
|
32
|
Kisfalvi K, Hurd C, Guha S, Rozengurt E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. J Cell Physiol 2010; 223:309-16. [PMID: 20082306 DOI: 10.1002/jcp.22036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.
Collapse
Affiliation(s)
- Krisztina Kisfalvi
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
33
|
Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 2010; 16:2505-11. [PMID: 20388847 DOI: 10.1158/1078-0432.ccr-09-2229] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin/insulin-like growth factor 1(IGF-1) receptors and G protein-coupled receptors (GPCR) signaling systems are implicated in autocrine-paracrine stimulation of a variety of malignancies, including ductal adenocarcinoma of the pancreas, one of the most lethal human diseases. Novel targets for pancreatic cancer therapy are urgently needed. We identified a crosstalk between insulin/IGF-1 receptors and GPCR signaling systems in pancreatic cancer cells, leading to enhanced signaling, DNA synthesis, and proliferation. Crosstalk between these signaling systems depends on mammalian target of rapamycin (mTOR) complex 1 (mTORC1). Metformin, the most widely used drug in the treatment of type 2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTORC1. Recent results show that metformin-induced activation of AMPK disrupts crosstalk between insulin/IGF-1 receptor and GPCR signaling in pancreatic cancer cells and inhibits the growth of these cells in xenograft models. Given that insulin/IGF-1 and GPCRs are implicated in other malignancies, a similar crosstalk mechanism may be operative in other cancer cell types. Recent epidemiological studies linked administration of metformin with a reduced risk of pancreatic, breast, and prostate cancer in diabetic patients. We posit that crosstalk between insulin/IGF-1 receptor and GPCR signaling is a mechanism for promoting the development of certain types of cancer and a target for the prevention and therapy of these diseases via metformin administration.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| | | | | |
Collapse
|
34
|
Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 2009; 69:6539-45. [PMID: 19679549 DOI: 10.1158/0008-5472.can-09-0418] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, we identified a novel crosstalk between insulin and G protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type 2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whether metformin disrupts the crosstalk between insulin receptor and GPCR signaling in pancreatic cancer cells. Treatment of human pancreatic cancer cells (PANC-1, MIAPaCa-2, and BxPC-3) with insulin (10 ng/mL) for 5 minutes markedly enhanced the increase in intracellular [Ca(2+)] induced by GPCR agonists (e.g., neurotensin, bradykinin, and angiotensin II). Metformin pretreatment completely abrogated insulin-induced potentiation of Ca(2+) signaling but did not interfere with the effect of GPCR agonists alone. Insulin also enhanced GPCR agonist-induced growth, measured by DNA synthesis, and the number of cells cultured in adherent or nonadherent conditions. Low doses of metformin (0.1-0.5 mmol/L) blocked the stimulation of DNA synthesis, and the anchorage-dependent and anchorage-independent growth induced by insulin and GPCR agonists. Treatment with metformin induced striking and sustained increase in the phosphorylation of AMPK at Thr(172) and a selective AMPK inhibitor (compound C, at 5 micromol/L) reversed the effects of metformin on [Ca(2+)](i) and DNA synthesis, indicating that metformin acts through AMPK activation. In view of these results, we tested whether metformin inhibits pancreatic cancer growth. Administration of metformin significantly decreased the growth of MIAPaCa-2 and PANC-1 cells xenografted on the flank of nude mice. These results raise the possibility that metformin could be a potential candidate in novel treatment strategies for human pancreatic cancer.
Collapse
Affiliation(s)
- Krisztina Kisfalvi
- Departments of Medicine, CURE, Digestive Diseases Research Center, Molecular Biology Institute, University of California at Los Angeles, 90095-1786, USA
| | | | | | | |
Collapse
|
35
|
Yuan J, Rozengurt E. PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem 2008; 103:648-62. [PMID: 17570131 DOI: 10.1002/jcb.21439] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely recognized that Hsp27 is a downstream substrate of the p38 MAPK cascade whereas the role of PKD family members in mediating receptor-stimulated Hsp27 Ser-82 phosphorylation has not been evaluated. Here, we show that neurotensin induced a rapid and striking increase in Hsp27 Ser-82 phosphorylation in PANC-1 cells, which was closely correlated with stimulation of activation loop phosphorylation of PKDs and p38 MAPK Thr180/Tyr182 phosphorylation. Treatment of PANC-1 cells with either the selective PKC inhibitor GF-I or the p38 MAPK inhibitor SB202190 partially reduced neurotensin-induced Hsp27 Ser-82 phosphorylation. However, treatment of the cells with a combination of GF-I and SB202190 virtually abolished neurotensin-induced Hsp27 Ser-82 phosphorylation. Overexpression of PKD in stably transfected PANC-1 cells increased the magnitude and prolonged the duration of Hsp27 Ser-82 phosphorylation in response to neurotensin. Either PKD or PKD2 gene silencing utilizing siRNAs targeting distinct PKD or PKD2 sequences reduced neurotensin-stimulated Hsp27 Ser-82 phosphorylation, but cotransfection of siRNAs targeting both, PKD and PKD2, markedly decreased neurotensin-induced Hsp27 Ser-82 phosphorylation. Knockdown of PKD and PKD2 abolished Hsp27 phosphorylation in cells treated with SB202190. Thus, neurotensin induces Hsp27 Ser-82 phosphorylation through p38 MAPK- and PKC/PKD-dependent pathways in PANC-1 cells. Our results demonstrate, for the first time, that neurotensin induces a striking increase in Hsp27 phosphorylation on Ser-82 in PANC-1 cells through convergent p38 MAPK, PKD, and PKD2 signaling.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine; CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
36
|
Novak I. Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 2007; 4:237-53. [PMID: 18368520 DOI: 10.1007/s11302-007-9087-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022] Open
Abstract
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.
Collapse
Affiliation(s)
- I Novak
- Department of Biosciences, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark,
| |
Collapse
|
37
|
Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 2007; 133:1637-48. [PMID: 17983808 DOI: 10.1053/j.gastro.2007.08.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 07/26/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Growth factors, such as insulin-like growth factor-1 (IGF-I), protect pancreatic cancer (PaCa) cells from death. We recently showed that reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase Nox4 mediate the antiapoptotic effect of growth factors. Here, we examine the mechanisms of the antiapoptotic role of NADPH oxidase. We hypothesized that ROSs produced by NADPH oxidase inhibit key protein tyrosine phosphatases (PTPs) and thus sustain the activation of kinases mediating antiapoptotic pathways in PaCa cells. METHODS Transfections and pharmacologic inhibition were used to assess the effects of NADPH oxidase on Janus kinase 2 (JAK2) kinase, the low molecular weight-protein tyrosine phosphatase (LMW-PTP), and apoptosis. RESULTS We found that 1 target of ROSs is JAK2, an important antiapoptotic kinase in PaCa cells. Both serum-induced and IGF-I biphasic JAK2 phosphorylation, with a rapid (minutes) and transient first phase, and a slow and sustained (24-72 hours) second phase. Nox4 mediated the sustained phase of JAK2 phosphorylation, which was required for the antiapoptotic effects of IGF-I and serum. Transfection experiments identified the LMW-PTP as a negative regulator of sustained JAK2 phosphorylation. Growth factors inhibited LMW-PTP through its oxidation by NADPH oxidase. LMW-PTP colocalizes with Nox4 both in PaCa cells and in human pancreatic adenocarcinoma. CONCLUSIONS The results suggest a novel signaling pathway, in which NADPH oxidase activation results in inhibition of PTPs, such as LMW-PTP, leading, in turn, to enhanced and sustained phosphorylation of kinases, such as JAK2, and suppression of apoptosis. This pathway mediates the prosurvival effect of ROSs and suggests new targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jong Kyun Lee
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Santiskulvong C, Rozengurt E. Protein kinase Calpha mediates feedback inhibition of EGF receptor transactivation induced by Gq-coupled receptor agonists. Cell Signal 2007; 19:1348-57. [PMID: 17307332 DOI: 10.1016/j.cellsig.2007.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
While a great deal of attention has been focused on G-protein-coupled receptor (GPCR)-induced epidermal growth factor receptor (EGFR) transactivation, it has been known for many years that the tyrosine kinase activity of the EGFR is inhibited in cells treated with tumor-promoting phorbol esters, a process termed EGFR transmodulation. Because many GPCR agonists that elicit EGFR transactivation also stimulate the Gq/phospholipase C (PLC)/protein kinase C (PKC) pathway, we hypothesized that PKC-mediated inhibition of EGFR transactivation operates physiologically as a feedback loop that regulates the intensity and/or duration of GPCR-elicited EGFR transactivation. In support of this hypothesis, we found that treatment of intestinal epithelial IEC-18 cells with the PKC inhibitors GF 109203X or Ro 31-8220 or chronic exposure of these cells to phorbol-12,13-dibutyrate (PDB) to downregulate PKCs, markedly enhanced the increase in EGFR tyrosine phosphorylation induced by angiotensin II or vasopressin in these cells. Similarly, PKC inhibition enhanced EGFR transactivation in human colonic epithelial T84 cells stimulated with carbachol, as well as in bombesin-stimulated Rat-1 fibroblasts stably transfected with the bombesin receptor. Furthermore, cell treatment with inhibitors with greater specificity towards PKCalpha, including Gö6976, Ro 31-7549 or Ro 32-0432, also increased GPCR-induced EGFR transactivation in IEC-18, T84 and Rat-1 cells. Transfection of siRNAs targeting PKCalpha also enhanced bombesin-induced EGFR tyrosine phosphorylation in Rat-1 cells. Thus, multiple lines of evidence support the hypothesis that conventional PKC isoforms, especially PKCalpha, mediate feedback inhibition of GPCR-induced EGFR transactivation.
Collapse
Affiliation(s)
- Chintda Santiskulvong
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1786, United States
| | | |
Collapse
|
39
|
Rácz GZ, Szucs A, Szlávik V, Vág J, Burghardt B, Elliott AC, Varga G. Possible role of duration of PKC-induced ERK activation in the effects of agonists and phorbol esters on DNA synthesis in Panc-1 cells. J Cell Biochem 2006; 98:1667-80. [PMID: 16637058 DOI: 10.1002/jcb.20913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) have been implicated in the effects of regulatory peptides on proliferation. We studied how ERK was activated by PKC following regulatory peptide or phorbol ester stimulation and we also investigated the effect of ERK activation on proliferation in Panc-1 cells. Panc-1 cells transfected with CCK1 receptors were treated with cholecystokinin (CCK), neurotensin (NT), or phorbol 12-myristate 13-acetate (PMA). DNA synthesis was studied by measuring tritiated thymidine incorporation. PKC isoforms were selectively inhibited with Gö6983 and 200 nM Ro-32-0432, their translocation was detected by confocal microscopy and by subcellular fractionation followed by immunoblotting. ERK cascade activation was detected with phosphoERK immunoblotting and inhibited with 20 microM PD98059. PMA and CCK inhibited, NT stimulated DNA synthesis. These effects were inhibited by Ro-32-0432 but not by Gö6983 suggesting the involvement of PKCepsilon in proliferation control. Confocal microscopy and subcellular fractionation demonstrated that PMA, CCK, and NT caused cytosol to membrane translocation of PKCepsilon and ERK activation that was inhibited by Ro-32-0432 but not by Gö6983. ERK activation was prolonged following PMA and CCK, but transient after NT treatment. PMA, CCK, and NT all activated cyclinD1, while p21CIP1 expression was increased by only PMA and CCK, but not by NT; each of these effects is inhibited by PD98059. In conclusion, our results provide evidence for PKCepsilon-mediated differential ERK activation and growth regulation in Panc-1C cells. Identification of the mechanisms by which these key signaling pathways are modulated could provide a basis for the development of novel therapeutic interventions to treat pancreatic cancer.
Collapse
Affiliation(s)
- Gábor Z Rácz
- Molecular Oral Biology Research Group, Department of Oral Biology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
40
|
Souazé F, Viardot-Foucault V, Roullet N, Toy-Miou-Leong M, Gompel A, Bruyneel E, Comperat E, Faux MC, Mareel M, Rostène W, Fléjou JF, Gespach C, Forgez P. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas. Carcinogenesis 2005; 27:708-16. [PMID: 16299383 DOI: 10.1093/carcin/bgi269] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.
Collapse
Affiliation(s)
- Frédérique Souazé
- INSERM U673-UPMC, Department of Pathology, 184 Rue Du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scarpa RC, Carraway RE, Cochrane DE. Insulin-like growth factor (IGF) induced proliferation of human lung fibroblasts is enhanced by neurotensin. Peptides 2005; 26:2201-10. [PMID: 16269351 DOI: 10.1016/j.peptides.2005.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/18/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
Fibroblasts are key cells in tissue repair and important contributors to the inflammatory response. Insulin-like growth factors (IGFs) have been shown to participate in growth, in immune responses and in tissue repair where they stimulate cell growth. Neurotensin (NT) has been suggested to participate in inflammation and in tissue repair and is an autocrine or paracrine growth factor for several cancer cell types. Here we show that IGF-induced proliferation of fibroblasts is enhanced by NT in a concentration and type 1 NT-receptor dependent manner. This action of NT was blocked by inhibitors of phospholipase C and protein kinase C but not by inhibitors of phosphoinositide-3-kinase. An inhibitor of MEK 1/2 significantly reduced the proliferative effects of the IGFs but NT's ability to enhance IGF-induced proliferation was not effected. The ability of NT to enhance IGF-induced proliferation did not involve an autocrine factor. These results suggest that interactions between NT and the IGFs may contribute to the regulation of fibroblasts in for example, inflamed or injured tissues.
Collapse
Affiliation(s)
- Richard C Scarpa
- Department of Biology, Tufts University, 117 Barnum Hall, Medford, MA 02155, USA
| | | | | |
Collapse
|
42
|
Chao C, Tallman ML, Ives KL, Townsend CM, Hellmich MR. Gastrointestinal hormone receptors in primary human colorectal carcinomas. J Surg Res 2005; 129:313-21. [PMID: 16051276 DOI: 10.1016/j.jss.2005.04.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND In this study, the prevalence and identity of the cells expressing functional receptors for the gastrointestinal (GI) peptide hormones: gastrin, bombesin, and neurotensin in dissociated cells from 20 freshly resected human primary colorectal carcinomas were determined. MATERIALS AND METHODS GI peptide hormone-induced increases in the concentration of free intracellular Ca(2+) ([Ca(2+)](i)) were used as an assay for the detection of functional receptors. Reverse-transcription polymerase chain reaction (RT-PCR) was performed in a subset of tumor samples. Agonist-responsive cells were identified as either of epithelial or stromal origin by immunocytochemistry with cytokeratin and vimentin antibodies, respectively. RESULTS Overall, expression of GI peptide hormone receptors was more frequent in stromal cells when compared to epithelial cells. Of the three receptors, expression of bombesin receptor (95%) was most prevalent in vimentin-positive (stromal) cells; whereas, gastrin receptor expression by cytokeratin-positive (epithelial) cells was more common (39%). A single gastrin receptor splice variant differentially regulates [Ca(2+)](i) in a cell-type specific manner. The gastrin receptor-expression profile in the 11 colon cancer-derived cell lines did not reflect the prevalence of expression in primary human cancers. CONCLUSIONS The Ca(2+) assay is a sensitive method for detecting functional GI peptide hormone receptor expression by colon cancer cells. Because this approach utilizes living cells, it is amenable to further functional analyses of signal transduction mechanisms at the single cell level. Importantly, our data provide a rationale for examining of the role of these GI peptide hormones and their cognate receptors in mesenchymal cell biology.
Collapse
Affiliation(s)
- Celia Chao
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
43
|
Guha S, Eibl G, Kisfalvi K, Fan RS, Burdick M, Reber H, Hines OJ, Strieter R, Rozengurt E. Broad-spectrum G protein-coupled receptor antagonist, [D-Arg1,D-Trp5,7,9,Leu11]SP: a dual inhibitor of growth and angiogenesis in pancreatic cancer. Cancer Res 2005; 65:2738-45. [PMID: 15805273 DOI: 10.1158/0008-5472.can-04-3197] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substance P analogues, including [D-Arg(1),D-Trp(5,7,9),Leu(11)]SP (SPA) are broad-spectrum G protein-coupled receptor (GPCR) antagonists that have potential antitumorigenic activities, although the mechanism(s) are not completely understood. Here, we examined the effects of SPA in ductal pancreatic cancers that express multiple GPCRs for mitogenic agonists and also produce proangiogenic chemokines. Using HPAF-II, a well-differentiated pancreatic cancer cell line as our model system, we showed that SPA inhibited multiple neuropeptide-induced Ca(2+) mobilization, DNA synthesis, and anchorage-independent growth in vitro. SPA also significantly attenuated the growth of HPAF-II tumor xenografts in nude mice beyond the treatment period. Interestingly, SPA markedly increased apoptosis but moderately decreased proliferation marker, Ki-67 in the tumor xenografts implying additional mechanism(s) for the significant growth inhibitory effect observed in vivo. HPAF-II cells express ELR(+) CXC chemokines, including IL-8/CXCL8, which bind to CXCR2 (a member of GPCR superfamily) and promote angiogenesis in multiple cancers, including pancreatic cancer. SPA inhibited CXCR2-mediated Ca(2+) mobilization and blocked specifically IL-8/CXCL8-induced angiogenesis in rat corneal micropocket assay in vivo. A salient feature of the results presented here is that SPA markedly reduced tumor-associated angiogenesis in the HPAF-II xenografts in vivo. Our results show that SPA, a broad-spectrum GPCR antagonist attenuates tumor growth in pancreatic cancer via a dual mechanism involving both the antiproliferative and antiangiogenic properties. We conclude that this novel dual-inhibitory property of SPA could be of significant therapeutic value in pancreatic cancer, when used in combination with other antiproliferative and/or antiangiogenic agents.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/blood supply
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Cell Growth Processes/drug effects
- Cornea/blood supply
- DNA, Neoplasm/biosynthesis
- Humans
- Interleukin-8/antagonists & inhibitors
- Ki-67 Antigen/biosynthesis
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/drug effects
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Rats
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Substance P/analogs & derivatives
- Substance P/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sushovan Guha
- Department of Medicine, Division of Digestive Diseases, and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, 90095-1786, USA
| | | | | | | | | | | | | | | | | |
Collapse
|