1
|
Abdul Rahman M, Tan ML, Johnson SP, Hollows RJ, Chai WL, Mansell JP, Yap LF, Paterson IC. Deregulation of lysophosphatidic acid metabolism in oral cancer promotes cell migration via the up-regulation of COX-2. PeerJ 2020; 8:e10328. [PMID: 33240646 PMCID: PMC7666559 DOI: 10.7717/peerj.10328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide and accounts for 300,000 new cases yearly. The five-year survival rate is approximately 50% and the major challenges to improving patient prognosis include late presentation, treatment resistance, second primary tumours and the lack of targeted therapies. Therefore, there is a compelling need to develop novel therapeutic strategies. In this study, we have examined the effect of lysophosphatidic acid (LPA) on OSCC cell migration, invasion and response to radiation, and investigated the contribution of cyclooxygenase-2 (COX-2) in mediating the tumour promoting effects of LPA. Using the TCGA data set, we show that the expression of the lipid phosphate phosphatases (LPP), LPP1 and LPP3, was significantly down-regulated in OSCC tissues. There was no significant difference in the expression of the ENPP2 gene, which encodes for the enzyme autotaxin (ATX) that produces LPA, between OSCCs and control tissues but ENPP2 levels were elevated in a subgroup of OSCCs. To explore the phenotypic effects of LPA, we treated OSCC cell lines with LPA and showed that the lipid enhanced migration and invasion as well as suppressed the response of the cells to irradiation. We also show that LPA increased COX-2 mRNA and protein levels in OSCC cell lines and inhibition of COX-2 activity with the COX-2 inhibitor, NS398, attenuated LPA-induced OSCC cell migration. Collectively, our data show for the first time that COX-2 mediates some of the pro-tumorigenic effects of LPA in OSCC and identifies the ATX-LPP-LPA-COX-2 pathway as a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Mariati Abdul Rahman
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Department of Craniofacial Diagnostics and Biosciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - May Leng Tan
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Robert J Hollows
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Wen Lin Chai
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Bailey KA, Klymenko Y, Feist PE, Hummon AB, Stack MS, Schultz ZD. Chemical Analysis of Morphological Changes in Lysophosphatidic Acid-Treated Ovarian Cancer Cells. Sci Rep 2017; 7:15295. [PMID: 29127342 PMCID: PMC5681516 DOI: 10.1038/s41598-017-15547-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OvCa) cells are reported to undergo biochemical changes at the cell surface in response to treatment with lysophosphatidic acid (LPA). Here we use scanning electron microscopy (SEM) and multiplex coherent anti-Stokes Raman scattering (CARS) imaging via supercontinuum excitation to probe morphological changes that result from LPA treatment. SEM images show distinct shedding of microvilli-like features upon treatment with LPA. Analysis of multiplex CARS images can distinguish between molecular components, such as lipids and proteins. Our results indicate that OvCa429 and SKOV3ip epithelial ovarian cancer cells undergo similar morphological and chemical responses to treatment with LPA. The microvilli-like structures on the surface of multicellular aggregates (MCAs) are removed by treatment with LPA. The CARS analysis shows a distinct decrease in protein and increase in lipid composition on the surface of LPA-treated cells. Importantly, the CARS signals from cellular sheddings from MCAs with LPA treatment are consistent with cleavage of proteins originally present. Mass spectrometry on the cellular sheddings show that a large number of proteins, both membrane and intracellular, are present. An increased number of peptides are detected for the mesenchymal cell line relative to the epithelial cell indicating a differential response to LPA treatment with cancer progression.
Collapse
Affiliation(s)
- Karen A Bailey
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yuliya Klymenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, 46617, USA
| | - Peter E Feist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, 46617, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, 46617, USA
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, 46617, USA.
| |
Collapse
|
3
|
Burkhalter RJ, Westfall SD, Liu Y, Stack MS. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem 2015; 290:22143-54. [PMID: 26175151 DOI: 10.1074/jbc.m115.641092] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression.
Collapse
Affiliation(s)
- Rebecca J Burkhalter
- From the Departments of Medical Pharmacology and Physiology and the Harper Cancer Research Institute
| | - Suzanne D Westfall
- Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65212 and
| | - Yueying Liu
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| | - M Sharon Stack
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| |
Collapse
|
4
|
Wang H, Jin H, Beauvais DM, Rapraeger AC. Cytoplasmic domain interactions of syndecan-1 and syndecan-4 with α6β4 integrin mediate human epidermal growth factor receptor (HER1 and HER2)-dependent motility and survival. J Biol Chem 2014; 289:30318-30332. [PMID: 25202019 PMCID: PMC4215216 DOI: 10.1074/jbc.m114.586438] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/02/2014] [Indexed: 12/14/2022] Open
Abstract
Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6β4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the β4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the β4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6β4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the β4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. β4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6β4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3β1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6β4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6β4 integrin activation by receptor tyrosine kinases.
Collapse
Affiliation(s)
- Haiyao Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Haining Jin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - DeannaLee M Beauvais
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705; Carbone Cancer Center, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705.
| |
Collapse
|
5
|
Ochiai S, Furuta D, Sugita K, Taniura H, Fujita N. GPR87 mediates lysophosphatidic acid-induced colony dispersal in A431 cells. Eur J Pharmacol 2013; 715:15-20. [PMID: 23831392 DOI: 10.1016/j.ejphar.2013.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023]
Abstract
We have previously reported that an orphan G protein-coupled receptor GPR87 was activated by lysophosphatidic acid (LPA) and that it induced an increase in the intracellular Ca(2+) levels in the CHO cells genetically engineered to express GPR87-Gα16 fusion protein. Because the Ca(2+) response was blocked by the LPA receptor antagonist Ki16425, GPR87 was suggested to be a putative LPA receptor. However, further studies are required to confirm whether GPR87 is an LPA receptor. A previous study showed that colonies of A431 cells treated with LPA showed rapid and synchronized dissociation. Because A431 cells have been shown to express GPR87, we used these cells to examine whether GPR87 acted as an LPA receptor. When A431 cells were treated with gpr87-specific siRNA, the expression of GPR87 was decreased and LPA-induced colony dispersal was significantly reduced. Treatment of the cells with lpa1 siRNA had an additive effect in decrease in the colony dispersal. Studies on the LPA-mediated signaling pathway in A431 cells indicated that transactivation of the epidermal growth factor receptor (EGFR) by LPA led to cell scattering. PD153035, an inhibitor of tyrosine-kinase of EGFR, and BB94, an inhibitor of metalloprotease which produces a ligand for EGFR, significantly prevented the LPA-induced scattering of A431 cells pretreated with lpa1 or gpr87-siRNA. These results strongly suggested that GPR87 acts as an LPA receptor and induces colony dispersal via the transactivation of EGFR in A431 cells.
Collapse
Affiliation(s)
- Shoichi Ochiai
- Laboratory of Pharmacoinformitcs, Graduate School of Ritsumeikan University, and School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | |
Collapse
|
6
|
Baldwin RM, Morettin A, Paris G, Goulet I, Côté J. Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle 2012. [PMID: 23187807 DOI: 10.4161/cc.22871] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and plays an important role in many cellular processes. Aberrant PRMT expression has been observed in several common cancer types; however, their precise contribution to the cell transformation process is not well understood. We previously reported that the PRMT1 gene generates several alternatively spliced isoforms, and our initial biochemical characterization of these isoforms revealed that they exhibit distinct substrate specificity and subcellular localization. We focus here on the PRMT1v2 isoform, which is the only predominantly cytoplasmic isoform, and we have found that its relative expression is increased in breast cancer cell lines and tumors. Specific depletion of PRMT1v2 using RNA interference caused a significant decrease in cancer cell survival due to an induction of apoptosis. Furthermore, depletion of PRMT1v2 in an aggressive cancer cell line significantly decreased cell invasion. We also demonstrate that PRMT1v2 overexpression in a non-aggressive cancer cell line was sufficient to render them more invasive. Importantly, this novel activity is specific to PRMT1v2, as overexpression of other isoforms did not enhance invasion. Moreover, this activity requires both proper subcellular localization and methylase activity. Lastly, PRMT1v2 overexpression altered cell morphology and reduced cell-cell adhesion, a phenomenon that we convincingly linked with reduced β-catenin protein expression. Overall, we demonstrate a specific role for PRMT1v2 in breast cancer cell survival and invasion, underscoring the importance of identifying and characterizing the distinct functional differences between PRMT1 isoforms.
Collapse
Affiliation(s)
- R Mitchell Baldwin
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | | | | | | | | |
Collapse
|
7
|
Liu Y, Burkhalter R, Symowicz J, Chaffin K, Ellerbroek S, Stack MS. Lysophosphatidic Acid disrupts junctional integrity and epithelial cohesion in ovarian cancer cells. JOURNAL OF ONCOLOGY 2012; 2012:501492. [PMID: 22593767 PMCID: PMC3346998 DOI: 10.1155/2012/501492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
Ovarian cancer metastasizes via exfoliation of free-floating cells and multicellular aggregates from the primary tumor to the peritoneal cavity. A key event in EOC metastasis is disruption of cell-cell contacts via modulation of intercellular junctional components including cadherins. Ascites is rich in lysophosphatidic acid (LPA), a bioactive lipid that may promote early events in ovarian cancer dissemination. The objective of this paper was to assess the effect of LPA on E-cadherin junctional integrity. We report a loss of junctional E-cadherin in OVCAR3, OVCA429, and OVCA433 cells exposed to LPA. LPA-induced loss of E-cadherin was concentration and time dependent. LPA increased MMP-9 expression and promoted MMP-9-catalyzed E-cadherin ectodomain shedding. Blocking LPA receptor signaling inhibited MMP-9 expression and restored junctional E-cadherin staining. LPA-treated cells demonstrated a significant decrease in epithelial cohesion. Together these data support a model wherein LPA induces MMP-9 expression and MMP-9-catalyzed E-cadherin ectodomain shedding, resulting in loss of E-cadherin junctional integrity and epithelial cohesion, facilitating metastatic dissemination of ovarian cancer cells.
Collapse
Affiliation(s)
- Yueying Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, 1234 Notre Dame Avenue, A200D Harper Hall, Notre Dame, IN 46557, USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, A200D Harper Hall, Notre Dame, IN 46557, USA
| | - Rebecca Burkhalter
- Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, A200D Harper Hall, Notre Dame, IN 46557, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jaime Symowicz
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Kim Chaffin
- Department of Chemistry, Wartburg College, Waverly, IA 50677, USA
| | - Shawn Ellerbroek
- Department of Chemistry, Wartburg College, Waverly, IA 50677, USA
| | - M. Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, 1234 Notre Dame Avenue, A200D Harper Hall, Notre Dame, IN 46557, USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, A200D Harper Hall, Notre Dame, IN 46557, USA
| |
Collapse
|
8
|
Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 2012; 3:99ra87. [PMID: 21900594 DOI: 10.1126/scitranslmed.3002095] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fetal hydrocephalus (FH), characterized by the accumulation of cerebrospinal fluid, an enlarged head, and neurological dysfunction, is one of the most common neurological disorders of newborns. Although the etiology of FH remains unclear, it is associated with intracranial hemorrhage. Here, we report that lysophosphatidic acid (LPA), a blood-borne lipid that activates signaling through heterotrimeric guanosine 5'-triphosphate-binding protein (G protein)-coupled receptors, provides a molecular explanation for FH associated with hemorrhage. A mouse model of intracranial hemorrhage in which the brains of mouse embryos were exposed to blood or LPA resulted in development of FH. FH development was dependent on the expression of the LPA(1) receptor by neural progenitor cells. Administration of an LPA(1) receptor antagonist blocked development of FH. These findings implicate the LPA signaling pathway in the etiology of FH and suggest new potential targets for developing new treatments for FH.
Collapse
Affiliation(s)
- Yun C Yung
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 2011; 671:7-17. [PMID: 21968138 DOI: 10.1016/j.ejphar.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/23/2011] [Accepted: 09/08/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) acts as a potent stimulator of tumorigenesis. Cell-cell adhesion disassembly, actin cytoskeletal alterations, and increased migratory potential are initial steps of colorectal cancer progression. However, the role that LPA plays in these events in this cancer type is still unknown. We explored this question by using Caco-2 cells, as colon cancer model, and treatment with LPA or pretreatment with different cell signalling inhibitors. Changes in the location of adherent junction proteins were examined by immunofluorescence and immunoblotting. The actin cytoskeleton organisation and focal adhesion were analysed by confocal microscopy. Rho-GTPase activation was analysed by the pull-down assay, FAK and Src activation by immunoblotting, and cell migration by the wound healing technique. We show that LPA induced adherent junction disassembly, perijunctional actin cytoskeletal reorganisation, and increased cell migration. These events were dependent on Src, Rho and Rock because their chemical inhibitors PP2, toxin A and Y27632, respectively, abrogated the effects of LPA. Moreover, we showed that Src acts upstream of RhoA in this signalling cascade and that LPA induces focal adhesion formation and FAK redistribution and activation in confluent monolayers. Focal adhesion formation was also observed in the front of migrating cells in response to LPA, and Rock inhibitor abolished this effect. In conclusion, our findings show that LPA modulates adherent junction disassembly, actin cytoskeletal disorganisation, and focal adhesion formation, conferring a migratory phenotype in colon tumour cells. We suggest a functional regulatory cascade that integrates RhoA-Rock and Src-FAK signalling to control these events during colorectal cancer progression.
Collapse
|
10
|
Lysophosphatidic Acid Upregulates Laminin-332 Expression during A431 Cell Colony Dispersal. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20862207 PMCID: PMC2938436 DOI: 10.1155/2010/107075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/11/2010] [Accepted: 07/02/2010] [Indexed: 01/01/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, survival, wound healing, and tumor invasion through LPA receptors. Previously, we reported that LPA induces A431 colony dispersal, accompanied by disruption of cell-cell contacts and cell migration. However, it remains unclear how LPA affects cell migration and gene expression during A431 colony dispersal. In this paper, we performed cDNA microarray analysis to investigate this question by comparing gene expression between untreated and LPA-treated A431 cells. Interestingly, these results revealed that LPA treatment upregulates several TGF-β1 target genes, including laminin-332 (Ln-332) components (α3, β3, and γ2 chains). Western blot analysis also showed that LPA increased phosphorylation of Smad2, an event that is carried out by TGF-β1 interactions. Among the genes upregulated, we further addressed the role of Ln-332. Real-time PCR analysis confirmed the transcriptional upregulation of all α3, β3, and γ2 chains of Ln-332 by LPA, corresponding to the protein level increases revealed by western blot. Further, the addition of anti-Ln-332 antibody prevented LPA-treated A431 colonies from dispersing. Taken together, our results suggest that LPA-induced Ln-332 plays a significant role in migration of individual cells from A431 colonies.
Collapse
|
11
|
Dietrich C, Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 2010; 31:1319-28. [PMID: 20106901 PMCID: PMC6276890 DOI: 10.1093/carcin/bgq028] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/21/2010] [Accepted: 01/24/2010] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, which is activated by a large group of environmental pollutants including polycyclic aromatic hydrocarbons, dioxins and planar polychlorinated biphenyls. Ligand binding leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes, such as cytochrome P4501A1 and glutathione-S-transferase, respectively. Since phase I enzymes convert inert carcinogens to active genotoxins, the AhR plays a key role in tumor initiation. Besides this classical route, the AhR mediates tumor promotion and recent evidence suggests that the AhR also plays a role in tumor progression. To date, no mechanistic link could be established between the canonical pathway involving xenobiotic metabolism and AhR-dependent tumor promotion and progression. A hallmark of tumor promotion is unbalanced proliferation, whereas tumor progression is characterized by dedifferentiation, increased motility and metastasis of tumor cells. Tumor progression and presumably also tumor promotion are triggered by loss of cell-cell contact. Cell-cell contact is known to be a critical regulator of proliferation, differentiation and cell motility in vitro and in vivo. Increasing evidence suggests that activation of the AhR may lead to deregulation of cell-cell contact, thereby inducing unbalanced proliferation, dedifferentiation and enhanced motility. In line with this is the finding of increased AhR expression and malignancy in some animal and human cancers. Here, we summarize our current knowledge on non-canonical AhR-driven pathways being involved in deregulation of cell-cell contact and discuss the data with respect to tumor initiation, promotion and progression.
Collapse
Affiliation(s)
- Cornelia Dietrich
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
12
|
Liu S, Yamashita H, Weidow B, Weaver AM, Quaranta V. Laminin-332-beta1 integrin interactions negatively regulate invadopodia. J Cell Physiol 2010; 223:134-42. [PMID: 20039268 PMCID: PMC3150482 DOI: 10.1002/jcp.22018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adhesion of epithelial cells to basement membranes (BM) occurs through two major structures: actin-associated focal contacts and keratin-associated hemidesmosomes, both of which form on laminin-332 (Ln-332). In epithelial-derived cancer cells, additional actin-linked structures with putative adhesive properties, invadopodia, are frequently present and mediate BM degradation. A recent study proposed that BM invasion requires a proper combination of focal contacts and invadopodia for invading cells to gain traction through degraded BM, and suggested that these structures may compete for common molecular components such as Src kinase. In this study, we tested the role of the Ln-332 in regulating invadopodia in 804G rat bladder carcinoma cells, a cell line that secretes Ln-332 and forms all three types of adhesions. Expression of shRNA to Ln-332 gamma2 chain (gamma2-kd) led to increased numbers of invadopodia and enhanced extracellular matrix degradation. Replating gamma2-kd cells on Ln-332 or collagen-I fully recovered cell spreading and inhibition of invadopodia. Inhibition of alpha3 or beta1, but not alpha6 or beta4, phenocopied the effect of gamma2-kd, suggesting that alpha3beta1-mediated focal contacts, rather than alpha6beta4-mediated hemidesmosome pathways, intersect with invadopodia regulation. gamma2-kd cells exhibited alterations in focal contact-type structures and in activation of focal adhesion kinase (FAK) and Src kinase. Inhibition of FAK also increased invadopodia number, which was reversible with Src inhibition. These data are consistent with a model whereby actin-based adhesions can limit the availability of active Src that is capable of invadopodia initiation and identifies Ln-332-beta1 interactions as a potent upstream regulator that limits cell invasion.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Hironobu Yamashita
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Brandy Weidow
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alissa M. Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
13
|
Pope MD, Graham NA, Huang BK, Asthagiri AR. Automated quantitative analysis of epithelial cell scatter. Cell Adh Migr 2009; 2:110-6. [PMID: 19271353 DOI: 10.4161/cam.2.2.6218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cell scatter is a well-known in vitro model for the study of epithelial-mesenchymal transition (EMT). Scatter recapitulates many of the events that occur during EMT, including the dissociation of multicellular structures and increased cell motility.Because it has been implicated in tumor invasion and metastasis,much effort has been made to identify the molecular signals that regulate EMT. To better understand the quantitative contributions of these signals, we have developed metrics that quantitatively describe multiple aspects of cell scatter. One metric (cluster size)quantifies the disruption of intercellular adhesions while a second metric (nearest-neighbor distance) quantifies cell dispersion. We demonstrate that these metrics delineate the effects of individual cues and detect synergies between them. Specifically, we find epidermal growth factor (EGF), cholera toxin (CT) and insulin to synergistically reduce cluster sizes and increase nearest-neighbor distances. To facilitate the rapid measurement of our metrics from live-cell images, we have also developed automated techniques to identify cell nuclei and cell clusters in fluorescence images. Taken together, these studies provide broadly applicable quantitative image analysis techniques and insight into the control of epithelial cell scatter, both of which will contribute to the understanding of EMT and metastasis.
Collapse
Affiliation(s)
- Melissa D Pope
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | | | | | | |
Collapse
|
14
|
Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS One 2009; 4:e4580. [PMID: 19238201 PMCID: PMC2640460 DOI: 10.1371/journal.pone.0004580] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/09/2009] [Indexed: 01/07/2023] Open
Abstract
β-catenin is an essential component of two cellular systems: cadherin-based adherens junctions (AJ) and the Wnt signaling pathway. A functional or physical connection between these β-catenin pools has been suggested in previous studies, but not conclusively demonstrated to date. To further examine this intersection, we treated A431 cell colonies with lysophosphatidic acid (LPA), which forces rapid and synchronized dissociation of AJ. A combination of immunostaining, time-lapse microscopy using photoactivatable-GFP-tagged β-catenin, and image analyses indicate that the cadherin-bound pool of β-catenin, internalized together with E-cadherin, accumulates at the perinuclear endocytic recycling compartment (ERC) upon AJ dissociation, and can be translocated into the cell nucleus upon Wnt pathway activation. These results suggest that the ERC may be a site of residence for β-catenin destined to enter the nucleus, and that dissociation of AJ may influence β-catenin levels in the ERC, effectively affecting β-catenin substrate levels available downstream for the Wnt pathway. This intersection provides a mechanism for integrating cell-cell adhesion with Wnt signaling and could be critical in developmental and cancer processes that rely on β-catenin-dependent gene expression.
Collapse
Affiliation(s)
- Yoonseok Kam
- Cancer Biology Department, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Vito Quaranta
- Cancer Biology Department, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Potdar AA, Lu J, Jeon J, Weaver AM, Cummings PT. Bimodal analysis of mammary epithelial cell migration in two dimensions. Ann Biomed Eng 2008; 37:230-45. [PMID: 18982450 DOI: 10.1007/s10439-008-9592-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 10/23/2008] [Indexed: 01/19/2023]
Abstract
Cell migration paths of mammary epithelial cells (expressing different versions of the promigratory tyrosine kinase receptor Her2/Neu) were analyzed within a bimodal framework that is a generalization of the run-and-tumble description applicable to bacterial migration. The mammalian cell trajectories were segregated into two types of alternating modes, namely, the "directional mode" (mode I, the more persistent mode, analogous to the bacterial run phase) and the "re-orientation mode" (mode II, the less persistent mode, analogous to the bacterial tumble phase). Higher resolution (more pixel information, relative to cell size) and smaller sampling intervals (time between images) were found to give a better estimate of the deduced single cell dynamics (such as directional-mode time and turn angle distribution) of the various cell types from the bimodal analysis. The bimodal analysis tool permits the deduction of short-time dynamics of cell motion such as the turn angle distributions and turn frequencies during the course of cell migration compared to standard methods of cell migration analysis. We find that the 2-h mammalian cell tracking data do not fall into the diffusive regime implying that the often-used random motility expressions for mammalian cell motion (based on assuming diffusive motion) are invalid over the time steps (fraction of minute) typically used in modeling mammalian cell migration.
Collapse
Affiliation(s)
- Alka A Potdar
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, USA
| | | | | | | | | |
Collapse
|
16
|
Kam Y, Guess C, Estrada L, Weidow B, Quaranta V. A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer 2008; 8:198. [PMID: 18625060 PMCID: PMC2491634 DOI: 10.1186/1471-2407-8-198] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical in vitro wound-healing assays and other techniques designed to study cell migration and invasion have been used for many years to elucidate the various mechanisms associated with metastasis. However, many of these methods are limited in their ability to achieve reproducible, quantitative results that translate well in vivo. Such techniques are also commonly unable to elucidate single-cell motility mechanisms, an important factor to be considered when studying dissemination. Therefore, we developed and applied a novel in vitro circular invasion assay (CIA) in order to bridge the translational gap between in vitro and in vivo findings, and to distinguish between different modes of invasion. METHOD Our method is a modified version of a standard circular wound-healing assay with an added matrix barrier component (Matrigel), which better mimics those physiological conditions present in vivo. We examined 3 cancer cell lines (MCF-7, SCOV-3, and MDA-MB-231), each with a different established degree of aggressiveness, to test our assay's ability to detect diverse levels of invasiveness. Percent wound closure (or invasion) was measured using time-lapse microscopy and advanced image analysis techniques. We also applied the CIA technique to DLD-1 cells in the presence of lysophosphatidic acid (LPA), a bioactive lipid that was recently shown to stimulate cancer cell colony dispersal into single migratory cells, in order to validate our method's ability to detect collective and individual motility. RESULTS CIA method was found to be highly reproducible, with negligible levels of variance measured. It successfully detected the anticipated low, moderate, and high levels of invasion that correspond to in vivo findings for cell lines tested. It also captured that DLD-1 cells exhibit individual migration upon LPA stimulation, and collective behavior in its absence. CONCLUSION Given its ability to both determine pseudo-realistic invasive cell behavior in vitro and capture subtle differences in cell motility, we propose that our CIA method may shed some light on the cellular mechanisms underlying cancer invasion and deserves inclusion in further studies. The broad implication of this work is the development of a reproducible, quantifiable, high-resolution method that can be applied to various models, to include an unlimited number of parameters and/or agents that may influence invasion.
Collapse
Affiliation(s)
- Yoonseok Kam
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
17
|
Shin KJ, Kim YL, Lee S, Kim DK, Ahn C, Chung J, Seong JY, Hwang JI. Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells. J Cancer Res Clin Oncol 2008; 135:45-52. [PMID: 18592268 DOI: 10.1007/s00432-008-0441-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/16/2008] [Indexed: 01/21/2023]
Abstract
PURPOSE Lysophosphatidic acid (LPA) is a multifunctional lipid mediator involved in triggering tumor cell invasion and metastasis, as well as malignant cell growth. LPA is also known to modulate the colony scattering of epithelial cancers, which is a prerequisite for cell invasion. However, the underlying details of how this is accomplished are not clear. Here we have investigated the roles of specific LPA receptor subtypes in cell scattering. METHODS Gastrointestinal carcinoma cell lines were examined for cell scattering activity in response to LPA, and the expression of LPA receptor subtypes was determined by RT-PCR. The effect of down regulation of each LPA receptor in DLD1 cells was determined using a shRNA-lentivirus system. In addition, the effect of overexpression of LPA receptors on cell scattering was investigated using lentivirus expression constructs. RESULTS The colonies of AGS and DLD1, but not MKN74, cells were dispersed in response to LPA. RT-PCR analysis revealed that the mRNAs of LPA1, LPA2, and LPA3 were present in AGS and DLD1 cells, but only LPA2 mRNA was detected in MKN74 cells. In DLD1 cells, the scattering activity induced by LPA was partially blocked by pretreatment with PP2 and PD98059, inhibitors of src kinase and MEK, respectively. LPA1 knockdown with shRNA decreased the degree of cell scattering induced by LPA. Knockdown of LPA2 or LPA3 had no effect on LPA-induced scattering. In addition, overexpression of LPA1 in DLD1 cells slightly decreased the response time of LPA-induced cell scattering. On the contrary, MKN74 cells expressing exogenous LPA1 did not respond to LPA by scattering. CONCLUSION These results demonstrate that LPA1 mediates LPA-stimulated cell scattering of gastrointestinal carcinomas, but that activation of other intracellular pathways, besides those contributing to ERK phosphorylation, is also necessary for cell scattering in response to LPA.
Collapse
Affiliation(s)
- Kum-Joo Shin
- Department of Biochemistry, College of Medicine and Cancer Research Institute, Seoul National University, Seoul, 110-799, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang RYJ, Wang SM, Hsieh CY, Wu JC. Lysophosphatidic acid induces ovarian cancer cell dispersal by activating Fyn kinase associated with p120-catenin. Int J Cancer 2008; 123:801-9. [DOI: 10.1002/ijc.23579] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia. Exp Cell Res 2007; 314:530-42. [PMID: 18054784 DOI: 10.1016/j.yexcr.2007.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/11/2007] [Accepted: 10/29/2007] [Indexed: 01/06/2023]
Abstract
Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at significant levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-gamma 1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-gamma 1 and villin, both of which participate in the initiation of protrusion.
Collapse
|
20
|
Man YG. Focal degeneration of aged or injured myoepithelial cells and the resultant auto-immunoreactions are trigger factors for breast tumor invasion. Med Hypotheses 2007; 69:1340-57. [PMID: 17493765 DOI: 10.1016/j.mehy.2007.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
The development of breast cancer is believed to be a multi-step process, sequentially progressing from normal to hyperplastic, to in situ, and to invasive stages. The progression from the in situ to invasive stage is believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes by cancer cells, which cause degradation of the basement membrane. This theory is consistent with data derived from studies with cell cultures or animal models, while results from recent worldwide clinical trials with a variety of proteolytic enzyme inhibitors have been very disappointing, casting doubt on the validity of the enzyme theory. Based on our recent studies, we propose that breast tumor invasion is triggered by the following mechanisms and events: (1) the predisposition of genetic abnormalities in ME cell replenishment-related genes or other insults results in elevated focal degeneration of ME cells in some individuals; (2) the degradation products of ME cells or diffusible molecules of epithelial cells attract infiltration of immunoreactive cells (IRC) into the affected sites; (3) the direct physical contact between IRC and degenerated ME cells results in the discharge of digestive enzymes from IRC, causing focal disruptions in the ME cell layer; (4) focal disruptions in a given ME cell layer result in a localized loss of tumor suppressors and paracrine inhibitory function, a focal increase of permeability for oxygen, nutrients, and growth factors, and a localized increase of leukocyte infiltration, which facilitate the monoclonal proliferation of tumor progenitors, forming a biologically more aggressive cell cluster overlying the disrupted ME cell layer; (5) the direct physical contact between the newly formed cell cluster and stromal cells stimulates the production of tenascin and other invasion-associated molecules that facilitate tissue remodeling, angiogenesis, and epithelial-mesenchymal transition, providing a favorable micro-environment for proliferation and invasion. Our hypothesis differs from the enzyme theory in the stage of tumor invasion, the cellular origin of invasive lesions, the significance of IRC and stromal cells, and the potential approaches for treatment and prevention. If confirmed, our hypothesis could facilitate the early detection of specific individuals at increased risk to develop invasive breast cancer. More importantly, our hypothesis may facilitate development of novel approaches, including stimulating ME cell growth, neutralizing ME cell degradation products, manipulating the types and extent of IRC infiltration, and controlling the extent of stromal reactions, to combat tumor invasion.
Collapse
Affiliation(s)
- Yan-gao Man
- Gynecologic and Breast Research Laboratory, Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, United States.
| |
Collapse
|
21
|
Chiang KP, Niessen S, Saghatelian A, Cravatt BF. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. ACTA ACUST UNITED AC 2006; 13:1041-50. [PMID: 17052608 DOI: 10.1016/j.chembiol.2006.08.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/22/2006] [Indexed: 12/21/2022]
Abstract
Hundreds, if not thousands, of uncharacterized enzymes currently populate the human proteome. Assembly of these proteins into the metabolic and signaling pathways that govern cell physiology and pathology constitutes a grand experimental challenge. Here, we address this problem by using a multidimensional profiling strategy that combines activity-based proteomics and metabolomics. This approach determined that KIAA1363, an uncharacterized enzyme highly elevated in aggressive cancer cells, serves as a central node in an ether lipid signaling network that bridges platelet-activating factor and lysophosphatidic acid. Biochemical studies confirmed that KIAA1363 regulates this pathway by hydrolyzing the metabolic intermediate 2-acetyl monoalkylglycerol. Inactivation of KIAA1363 disrupted ether lipid metabolism in cancer cells and impaired cell migration and tumor growth in vivo. The integrated molecular profiling method described herein should facilitate the functional annotation of metabolic enzymes in any living system.
Collapse
Affiliation(s)
- Kyle P Chiang
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|