1
|
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, Casar JC, Brandan E. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol 2023; 119:57-81. [PMID: 37137584 DOI: 10.1016/j.matbio.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.
Collapse
Affiliation(s)
- Meilyn Cruz-Soca
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Adriana Córdova-Casanova
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
2
|
Wang R, Wang S, Li Z, Luo Y, Zhao Y, Han Q, Rong XZ, Guo YX, Liu Y. PLEKHH2 binds β-arrestin1 through its FERM domain, activates FAK/PI3K/AKT phosphorylation, and promotes the malignant phenotype of non-small cell lung cancer. Cell Death Dis 2022; 13:858. [PMID: 36209201 PMCID: PMC9547923 DOI: 10.1038/s41419-022-05307-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
PLEKHH2 is an important FERM domain containing-protein. However, the role of PLEKHH2 in human solid tumors has not been reported yet. We report that PLEKHH2 showed enhanced cytoplasmic expression in non-small cell lung cancer (NSCLC). Its overexpression was positively correlated with high TNM stage, low differentiation, lymphatic node metastasis, and poor prognosis. In A549 and H1299 cells, high expression of PLEKHH2 significantly promoted cell proliferation, migration, invasion, and increased the expression of proliferation- and invasion-related proteins. It also enhanced the phosphorylation of FAK and promoted the activity of the PI3K/AKT pathway. Immunofluorescence and co-immunoprecipitation analyses were performed to elucidate the molecular mechanism underlying PLEKHH2-mediated regulation of proliferation and invasion in lung cancer cells. Upon transfection of full length PLEKHH2 or its FERM domain, we observed enhanced binding of PLEKHH2 to β-arrestin1, whereas FAK- β-arrestin1 binding was diminished and this led to an increase in FAK phosphorylation. PLEKHH2-mutant plasmids without the FERM domain could not effectively promote its binding to β-arrestin1, activation of FAK phosphorylation, PI3K/AKT activation, or the malignant phenotype. Our findings suggested that PLEKHH2 is an important oncogene in NSCLC. PLEKHH2 binding to β-arrestin1 through the FERM domain competitively inhibits β-arrestin1 binding to FAK, which causes the dissociation of FAK from the FAK-β-arrestin1 complex. Furthermore, the dissociation of FAK promotes its autophosphorylation, activates the PI3K/AKT signaling pathway, and subsequently promotes lung cancer cell proliferation, migration, and invasion. These results provide evidence for the potential use of PLEKHH2 inhibition as an anticancer therapy.
Collapse
Affiliation(s)
- Rui Wang
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Si Wang
- grid.412449.e0000 0000 9678 1884Department of Medical Microbiology and Human Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122 P. R. China
| | - Zhen Li
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yuan Luo
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yue Zhao
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Qiang Han
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Xue-Zhu Rong
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yao-Xing Guo
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| | - Yang Liu
- grid.412636.40000 0004 1757 9485Department of Pathology, College of Basic Medical Sciences and the First Hospital of China Medical University, Shenyang, 110122 P. R. China
| |
Collapse
|
3
|
Small molecule FAK activator promotes human intestinal epithelial monolayer wound closure and mouse ulcer healing. Sci Rep 2019; 9:14669. [PMID: 31604999 PMCID: PMC6789032 DOI: 10.1038/s41598-019-51183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023] Open
Abstract
GI mucosal healing requires epithelial sheet migration. The non-receptor tyrosine kinase focal adhesion kinase (FAK) stimulates epithelial motility. A virtual screen identified the small drug-like FAK mimic ZINC40099027, which activates FAK. We assessed whether ZINC40099027 promotes FAK-Tyr-397 phosphorylation and wound healing in Caco-2 monolayers and two mouse intestinal injury models. Murine small bowel ulcers were generated by topical serosal acetic acid or subcutaneous indomethacin in C57BL/6J mice. One day later, we began treatment with ZINC40099027 or DMSO, staining the mucosa for phosphorylated FAK and Ki-67 and measuring mucosal ulcer area, serum creatinine, ALT, and body weight at day 4. ZINC40099027 (10–1000 nM) dose-dependently activated FAK phosphorylation, without activating Pyk2-Tyr-402 or Src-Tyr-419. ZINC40099027 did not stimulate proliferation, and stimulated wound closure independently of proliferation. The FAK inhibitor PF-573228 prevented ZINC40099027-stimulated wound closure. In both mouse ulcer models, ZINC40099027accelerated mucosal wound healing. FAK phosphorylation was increased in jejunal epithelium at the ulcer edge, and Ki-67 staining was unchanged in jejunal mucosa. ZINC40099027 serum concentration at sacrifice resembled the effective concentration in vitro. Weight, creatinine and ALT did not differ between groups. Small molecule FAK activators can specifically promote epithelial restitution and mucosal healing and may be useful to treat gut mucosal injury.
Collapse
|
4
|
Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res 2014; 333:201-207. [PMID: 25433271 DOI: 10.1016/j.yexcr.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that modulates a wide variety of cellular functions. Elevated LPA signaling has been reported in patients with colorectal cancer or inflammatory bowel diseases, and the tumorigenic role of LPA has been demonstrated in experimental models of colon cancer. However, emerging evidence indicates the importance of LPA signaling in epithelial wound healing and regulation of intestinal electrolyte transport. Here, we briefly review current knowledge of the biological roles of LPA signaling in the intestinal tract.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | - Ajay Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Koppel AC, Kiss A, Hindes A, Burns CJ, Marmer BL, Goldberg G, Blumenberg M, Efimova T. Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. Am J Physiol Cell Physiol 2014; 306:C899-909. [PMID: 24598361 DOI: 10.1152/ajpcell.00331.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.
Collapse
Affiliation(s)
- Aaron C Koppel
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Alexi Kiss
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Anna Hindes
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Carole J Burns
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Barry L Marmer
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Gregory Goldberg
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Miroslav Blumenberg
- R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York
| | - Tatiana Efimova
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
6
|
Lysophosphatidic acid stimulates activation of focal adhesion kinase and paxillin and promotes cell motility, via LPA1-3, in human pancreatic cancer. Dig Dis Sci 2013; 58:3524-33. [PMID: 24061591 DOI: 10.1007/s10620-013-2878-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pancreatic cancer is highly metastatic and with poor prognosis. In previous studies, lysophosphatidic acid (LPA) was shown to be a critical component of ascites which promoted the invasion and metastasis of pancreatic cancer. Two focal adhesion proteins, focal adhesion kinase (FAK) and paxillin, were crucially involved in cell migration, cytoskeleton reorganization, and the dynamics of focal adhesion. OBJECTIVES This study examined the involvement of LPA1-3 in LPA-induced activation of FAK and paxillin, and in cell motility, in pancreatic cancer PANC-1 cells. METHODS Reverse transcriptase polymerase chain reaction analysis was used to examine mRNA expression of LPA receptors in PANC-1. Cellular protein expression of FAK and paxillin was analyzed by western blotting. The subcellular location of FAK and paxillin was visualized by immunofluorescence. Cell migration was measured by use of a transwell migration chamber. RESULTS Three LPA receptors (LPA1, LPA2, and LPA3) were significantly expressed in PANC-1 cells. Treatment with LPA induced both time and dose-dependent tyrosine phosphorylation of FAK and paxillin. LPA also affected translocation of FAK and paxillin from cytoplasm to focal adhesions at the cell periphery and enhanced cell motility of PANC-1. Pretreatment with 3-(4-(4-((1-(2-chlorophenyl)ethoxy)carbonyl amino)-3-methyl-5-isoxazolyl)benzylsulfanyl)propanoic acid (Ki16425), an antagonist of LPA1 and LPA3, before LPA attenuated the LPA-induced tyrosine phosphorylation and redistribution of FAK and paxillin and abrogated LPA-induced cellular migration activity. CONCLUSIONS These results suggest LPA induces activation of FAK and paxillin via LPA1-3, which may contribute to the increased cell motility in human pancreatic cancer PANC-1 cells. Thus, an understanding of the regulation by LPA of cell motility in pancreatic cancer could identify novel targets for therapy.
Collapse
|
7
|
McGinnis LK, Luo J, Kinsey WH. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption. Mol Reprod Dev 2013; 80:260-72. [PMID: 23401167 DOI: 10.1002/mrd.22160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
8
|
Young SH, Rozengurt N, Sinnett-Smith J, Rozengurt E. Rapid protein kinase D1 signaling promotes migration of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G356-66. [PMID: 22595992 PMCID: PMC3423107 DOI: 10.1152/ajpgi.00025.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser(916), an autophosphorylation site. An increase in PKD1 phosphorylation at Ser(916) was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser(916) was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.
Collapse
Affiliation(s)
- Steven H. Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Nora Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 2011; 671:7-17. [PMID: 21968138 DOI: 10.1016/j.ejphar.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/23/2011] [Accepted: 09/08/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) acts as a potent stimulator of tumorigenesis. Cell-cell adhesion disassembly, actin cytoskeletal alterations, and increased migratory potential are initial steps of colorectal cancer progression. However, the role that LPA plays in these events in this cancer type is still unknown. We explored this question by using Caco-2 cells, as colon cancer model, and treatment with LPA or pretreatment with different cell signalling inhibitors. Changes in the location of adherent junction proteins were examined by immunofluorescence and immunoblotting. The actin cytoskeleton organisation and focal adhesion were analysed by confocal microscopy. Rho-GTPase activation was analysed by the pull-down assay, FAK and Src activation by immunoblotting, and cell migration by the wound healing technique. We show that LPA induced adherent junction disassembly, perijunctional actin cytoskeletal reorganisation, and increased cell migration. These events were dependent on Src, Rho and Rock because their chemical inhibitors PP2, toxin A and Y27632, respectively, abrogated the effects of LPA. Moreover, we showed that Src acts upstream of RhoA in this signalling cascade and that LPA induces focal adhesion formation and FAK redistribution and activation in confluent monolayers. Focal adhesion formation was also observed in the front of migrating cells in response to LPA, and Rock inhibitor abolished this effect. In conclusion, our findings show that LPA modulates adherent junction disassembly, actin cytoskeletal disorganisation, and focal adhesion formation, conferring a migratory phenotype in colon tumour cells. We suggest a functional regulatory cascade that integrates RhoA-Rock and Src-FAK signalling to control these events during colorectal cancer progression.
Collapse
|
10
|
|
11
|
Vomaske J, Varnum S, Melnychuk R, Smith P, Pasa-Tolic L, Shutthanandan JI, Streblow DN. HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase. HERPESVIRIDAE 2010; 1:2. [PMID: 21429240 PMCID: PMC3050435 DOI: 10.1186/2042-4280-1-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 12/07/2010] [Indexed: 12/20/2022]
Abstract
Background Human Cytomegalovirus (HCMV) has been implicated in the acceleration of vascular disease and chronic allograft rejection. Recently, the virus has been associated with glioblastoma and other tumors. We have previously shown that the HCMV-encoded chemokine receptor pUS28 mediates smooth muscle cell (SMC) and macrophage motility and this activity has been implicated in the acceleration of vascular disease. pUS28 induced SMC migration involves the activation of the protein tyrosine kinases (PTKs) Src and Focal adhesion kinase as well as the small GTPase RhoA. The PTK Pyk2 has been shown to play a role in cellular migration and formation of cancer, especially glioblastoma. The role of Pyk2 in pUS28 signaling and migration are unknown. Methods In the current study, we examined the involvement of the PTK Pyk2 in pUS28-induced cellular motility. We utilized in vitro migration of SMC to determine the requirements for Pyk2 in pUS28 pro-migratory signaling. We performed biochemical analysis of Pyk2 signaling in response to pUS28 activation to determine the mechanisms involved in pUS28 migration. We performed mass spectrometric analysis of Pyk2 complexes to identify novel Pyk2 binding partners. Results Expression of a mutant form of Pyk2 lacking the autophosphorylation site (Tyr-402) blocks pUS28-mediated SMC migration in response to CCL5, while the kinase-inactive Pyk2 mutant failed to elicit the same negative effect on migration. pUS28 stimulation with CCL5 results in ligand-dependent and calcium-dependent phosphorylation of Pyk2 Tyr-402 and induced the formation of an active Pyk2 kinase complex containing several novel Pyk2 binding proteins. Expression of the autophosphorylation null mutant Pyk2 F402Y did not abrogate the formation of an active Pyk2 kinase complex, but instead prevented pUS28-mediated activation of RhoA. Additionally, pUS28 activated RhoA via Pyk2 in the U373 glioblastoma cells. Interestingly, the Pyk2 kinase complex in U373 contained several proteins known to participate in glioma tumorigenesis. Conclusions These findings represent the first demonstration that pUS28 signals through Pyk2 and that this PTK participates in pUS28-mediated cellular motility via activation of RhoA. Furthermore, these results provide a potential mechanistic link between HCMV-pUS28 and glioblastoma cell activation.
Collapse
Affiliation(s)
- Jennifer Vomaske
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton OR 97006 USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hao HF, Naomoto Y, Bao XH, Watanabe N, Sakurama K, Noma K, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M. Progress in researches about focal adhesion kinase in gastrointestinal tract. World J Gastroenterol 2009; 15:5916-23. [PMID: 20014455 PMCID: PMC2795178 DOI: 10.3748/wjg.15.5916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is over-expressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.
Collapse
|
13
|
Lee M, Choi S, Halldén G, Yo SJ, Schichnes D, Aponte GW. P2Y5 is a G(alpha)i, G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol 2009; 297:G641-54. [PMID: 19679818 PMCID: PMC2763810 DOI: 10.1152/ajpgi.00191.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca(2+)](i)) when the cells concurrently expressed G(alpha)(Delta6qi5myr). P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca(2+)](i) and ERK1/2 phosphorylation through G(alpha)(i). We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca(2+)](i). The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of G(alpha)(12/13), Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity.
Collapse
Affiliation(s)
- Mike Lee
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sungwon Choi
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Gunnel Halldén
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sek Jin Yo
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Denise Schichnes
- 2College of Natural Resources Biological Imaging Facility, University of California at Berkeley, Berkeley, California
| | - Gregory W. Aponte
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| |
Collapse
|
14
|
Lumican core protein inhibits melanoma cell migration via alterations of focal adhesion complexes. Cancer Lett 2009; 283:92-100. [DOI: 10.1016/j.canlet.2009.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/23/2022]
|
15
|
Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS. Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 2009; 296:H627-38. [PMID: 19136609 PMCID: PMC2660223 DOI: 10.1152/ajpheart.00444.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/05/2009] [Indexed: 01/18/2023]
Abstract
Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAK(flox/flox) CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.
Collapse
Affiliation(s)
- Ana Maria Manso
- Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S, Tsukada T, Miura K, Saito K, Furuta E, Liu W, Xing F, Okuda H, Kobayashi A, Watabe K. RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Res 2008; 68:7613-20. [PMID: 18794150 DOI: 10.1158/0008-5472.can-07-6700] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RhoC is a member of the Ras-homologous family of genes which have been implicated in tumorigenesis and tumor progression. However, the exact role of RhoC is controversial and is yet to be clarified. We have examined the effect of RhoC on prostate tumor cells and found that RhoC had no effect on cell proliferation in vitro or on tumor growth in mice. However, RhoC significantly enhanced the metastatic ability of the tumor cells in these animals, suggesting that RhoC affects only the metastasis but not the growth of prostate tumor cells. The results of our immunohistochemical analyses on tumor specimens from 63 patients with prostate cancer indicate that RhoC expression had no significant correlation with Gleason grade. However, the expression of RhoC showed significant positive correlation with both lymph node and distant metastasis, and it was inversely correlated with patient survival. We also found that RhoC significantly augmented the invasion and motility of prostate tumor cells by activating matrix metalloproteinases 2 and 9 (MMP2 and MMP9) in vitro. The results of our antibody array analysis for signal molecules revealed that RhoC significantly activated kinases including mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), Akt, and Pyk2. Inhibition of Pyk2 kinase blocked the RhoC-dependent activation of FAK, MAPK, and Akt, followed by the suppression of MMP2 and MMP9. Inhibitors of both MAPK and Akt also significantly blocked the activities of these MMPs. Therefore, our results indicate that RhoC promotes tumor metastasis in prostate cancer by sequential activation of Pyk2, FAK, MAPK, and Akt followed by the up-regulation of MMP2 and MMP9, which results in the stimulation of invasiveness of tumor cells.
Collapse
Affiliation(s)
- Megumi Iiizumi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Altered transforming growth factor-beta (TGFbeta) expression may contribute to inflammatory bowel disease and modulate epithelial cell restitution. Interference with TGFbeta-mediated signaling inhibits excisional skin wound healing, but accelerates healing of incisional cutaneous wounds and wounds in some other tissues. Therefore, we sought to clarify the potential role of Smad3-dependent TGFbeta signaling in intestinal mucosal healing in Smad3 null mice. Jejunal serosal application of filter disks saturated with 75% acetic acid yielded a circumscribed reproducible ischemic mucosal ulcer 1 day later. We compared ulcer area at 3 and 5 days to day 1 in Smad3 knockout mice and syngeneic wild-type mice, and evaluated mucosal immunoreactivity at the ulcer edge for TGFbeta, phosphorylated (activated) focal adhesion kinase (pFAK), phosphorylated extracellular signal-related kinase (pERK), proliferating cell nuclear antigen and apoptosis by TUNEL. Ulcer healing in Smad3 null mice was 17% less at day 3 (n=14, P=0.022) and 15% less at day 5 (n=14, P=0.004) than in wild-type littermates. In wild-type mice, pFAK, pERK and TGFbeta immunoreactivity were elevated in epithelium immediately adjacent to the ulcer compared with more distant mucosa. However, this pattern of immunoreactivity for pFAK, pERK and TGFbeta was not observed in Smad3 null mice. Smad3 null mice exhibited increased epithelial proliferation and no differences in apoptotic cell death compared with wild types, suggesting that ulcer healing may reflect differences in restitutive cell migration. Thus, Smad3-dependent disruption of the TGFbeta signaling pathway impairs the healing of murine intestinal mucosal ulcers and alters patterns of activated FAK and ERK immunoreactivity important for cell migration at the ulcer edge. These studies suggest a significant role for Smad3-dependent TGFbeta signaling in intestinal mucosal healing.
Collapse
|
18
|
MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway. Biochem Biophys Res Commun 2008; 369:781-7. [PMID: 18312854 DOI: 10.1016/j.bbrc.2008.02.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 11/24/2022]
Abstract
The aim of this study was to characterize the interaction between mTOR and ERK in primary endothelial cells (EC) following MHC class I and integrin ligation. Ligation of MHC class I molecules or integrins on the surface of EC leads to phosphorylation of ERK at Thr202/Tyr204. We utilized small interfering RNA (siRNA) blockade of mTOR and proteins involved in mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) to define a relationship between mTOR and ERK following MHC class I signaling. We found mTORC2 was responsible for MHC class I and integrin induced phosphorylation of ERK at Thr202/Tyr204. We corroborated these results demonstrating that long-term exposure to rapamycin also inhibited ERK pathway activation in response to MHC class I signaling. Our results demonstrate, for the first time, that engagement of either MHC class I or integrin on the surface of EC leads to ERK activation through an mTORC2-dependent pathway.
Collapse
|
19
|
Jindra PT, Jin YP, Rozengurt E, Reed EF. HLA Class I Antibody-Mediated Endothelial Cell Proliferation via the mTOR Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 180:2357-66. [DOI: 10.4049/jimmunol.180.4.2357] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
21
|
Jin YP, Korin Y, Zhang X, Jindra PT, Rozengurt E, Reed EF. RNA interference elucidates the role of focal adhesion kinase in HLA class I-mediated focal adhesion complex formation and proliferation in human endothelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:7911-22. [PMID: 17548629 DOI: 10.4049/jimmunol.178.12.7911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ligation of class I molecules by anti-HLA Ab stimulates an intracellular signaling cascade resulting in endothelial cell (EC) survival and proliferation, and has been implicated in the process of chronic allograft rejection and transplant-associated vasculopathy. In this study, we used small interfering RNA blockade of focal adhesion kinase (FAK) protein to determine its role in class I-mediated organization of the actin cytoskeleton, cell survival, and cell proliferation in primary cultures of human aortic EC. Knockdown of FAK appreciably inhibited class I-mediated phosphorylation of Src at Tyr(418), p85 PI3K, and Akt at both Thr(308) and Ser(473) sites. FAK knockdown also reduced class I-mediated phosphorylation of paxillin at Try(118) and blocked class I-induced paxillin assembly into focal contacts. FAK small interfering RNA completely abrogated class I-mediated formation of actin stress fibers. Interestingly, FAK knockdown did not modify fibroblast growth factor receptor expression induced by class I ligation. However, FAK knockdown blocked HLA class I-stimulated cell cycle proliferation in the presence and absence of basic fibroblast growth factor. This study shows that FAK plays a critical role in class I-induced cell proliferation, cell survival, and focal adhesion assembly in EC and may promote the development of transplant-associated vasculopathy.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
22
|
Santiskulvong C, Rozengurt E. Protein kinase Calpha mediates feedback inhibition of EGF receptor transactivation induced by Gq-coupled receptor agonists. Cell Signal 2007; 19:1348-57. [PMID: 17307332 DOI: 10.1016/j.cellsig.2007.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
While a great deal of attention has been focused on G-protein-coupled receptor (GPCR)-induced epidermal growth factor receptor (EGFR) transactivation, it has been known for many years that the tyrosine kinase activity of the EGFR is inhibited in cells treated with tumor-promoting phorbol esters, a process termed EGFR transmodulation. Because many GPCR agonists that elicit EGFR transactivation also stimulate the Gq/phospholipase C (PLC)/protein kinase C (PKC) pathway, we hypothesized that PKC-mediated inhibition of EGFR transactivation operates physiologically as a feedback loop that regulates the intensity and/or duration of GPCR-elicited EGFR transactivation. In support of this hypothesis, we found that treatment of intestinal epithelial IEC-18 cells with the PKC inhibitors GF 109203X or Ro 31-8220 or chronic exposure of these cells to phorbol-12,13-dibutyrate (PDB) to downregulate PKCs, markedly enhanced the increase in EGFR tyrosine phosphorylation induced by angiotensin II or vasopressin in these cells. Similarly, PKC inhibition enhanced EGFR transactivation in human colonic epithelial T84 cells stimulated with carbachol, as well as in bombesin-stimulated Rat-1 fibroblasts stably transfected with the bombesin receptor. Furthermore, cell treatment with inhibitors with greater specificity towards PKCalpha, including Gö6976, Ro 31-7549 or Ro 32-0432, also increased GPCR-induced EGFR transactivation in IEC-18, T84 and Rat-1 cells. Transfection of siRNAs targeting PKCalpha also enhanced bombesin-induced EGFR tyrosine phosphorylation in Rat-1 cells. Thus, multiple lines of evidence support the hypothesis that conventional PKC isoforms, especially PKCalpha, mediate feedback inhibition of GPCR-induced EGFR transactivation.
Collapse
Affiliation(s)
- Chintda Santiskulvong
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1786, United States
| | | |
Collapse
|
23
|
Jiang X, Sinnett-Smith J, Rozengurt E. Differential FAK phosphorylation at Ser-910, Ser-843 and Tyr-397 induced by angiotensin II, LPA and EGF in intestinal epithelial cells. Cell Signal 2006; 19:1000-10. [PMID: 17240116 PMCID: PMC1868572 DOI: 10.1016/j.cellsig.2006.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/13/2006] [Accepted: 11/16/2006] [Indexed: 12/20/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of the non-receptor tyrosine kinase FAK is a prominent early event in fibroblasts stimulated by a variety of signaling molecules. However, a variety of epithelial cells, including intestinal epithelial cells, show a high basal level of tyrosine phosphorylated FAK that is only slightly further increased by addition of G protein-coupled receptor (GPCR) agonists or growth factors. In this study, we determined whether these stimuli could elicit FAK phosphorylation at serine residues, including Ser-910 and Ser-843. Our results show that multiple agonists including angiotensin II (ANGII), lysophosphatidic acid (LPA), phorbol esters and EGF induced a striking stimulation of FAK phosphorylation at Ser-910 in rat intestinal epithelial IEC-18 cells via an ERK-dependent pathway. In striking contrast, none of these stimuli promoted a significant further increase in FAK phosphorylation at Tyr-397 in these cells. These results were extended using cultures of polarized human colonic epithelial T84 cells. We found that either carbachol or EGF promoted a striking ERK-dependent phosphorylation of FAK at Ser-910, but these agonists caused only slight stimulation of FAK at Tyr-397 in T84 cells. In addition, we demonstrated that GPCR agonists also induced a dramatic increase of FAK phosphorylation at Ser-843 in either IEC-18 or T84 cells. Our results indicate that Ser-910 and Ser-843, rather than Tyr-397, are prominent sites differentially phosphorylated in response to neurotransmitters, bioactive lipids, tumor promoters and growth factors in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095-178622, USA
| | | | | |
Collapse
|
24
|
de Amicis F, Lanzino M, Kisslinger A, Calì G, Chieffi P, Andò S, Mancini FP, Tramontano D. Loss of proline-rich tyrosine kinase 2 function induces spreading and motility of epithelial prostate cells. J Cell Physiol 2006; 209:74-80. [PMID: 16783820 DOI: 10.1002/jcp.20709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.
Collapse
Affiliation(s)
- Francesca de Amicis
- Dipartimento Farmaco-Biologico, Università della Calabria Arcavacata, Cosenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Owen KA, Thomas KS, Bouton AH. The differential expression of Yersinia pseudotuberculosis adhesins determines the requirement for FAK and/or Pyk2 during bacterial phagocytosis by macrophages. Cell Microbiol 2006; 9:596-609. [PMID: 16987330 DOI: 10.1111/j.1462-5822.2006.00811.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phagocytosis of Yersinia pseudotuberculosis by macrophages is initiated by interactions between host cell integrin receptors and the bacterial adhesins, invasin and YadA. Two non-receptor protein tyrosine kinases, FAK and Pyk2, have been implicated in this process. In this study, we investigated the mechanisms of activation and functional requirements for these kinases during phagocytosis. A panel of Yersinia strains that differentially express invasin and YadA were used to infect cells in which FAK and/or Pyk2 expression was reduced by RNA interference. Bacterial strains that simultaneously express invasin and YadA activated FAK and Pyk2 signalling pathways that perform non-redundant functions required for Yersinia internalization. In contrast, FAK activation was found to be sufficient for phagocytosis of bacteria expressing invasin alone, and Pyk2 activation was sufficient when YadA was expressed in the absence of invasin. Based on these data, we suggest that the activation states of FAK and Pyk2, as well as the subsequent signalling events that lead to phagocytosis, are differentially regulated through the unique mechanisms of integrin engagement utilized by invasin and YadA. These findings lend insight into the molecular events that control bacterial phagocytosis as well as other integrin-based processes such as cell adhesion and migration.
Collapse
Affiliation(s)
- Katherine A Owen
- Department of Microbiology, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | | | | |
Collapse
|
26
|
Le Boeuf F, Houle F, Sussman M, Huot J. Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol Biol Cell 2006; 17:3508-20. [PMID: 16760434 PMCID: PMC1525237 DOI: 10.1091/mbc.e05-12-1158] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| | - François Houle
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| | - Mark Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182
| | - Jacques Huot
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| |
Collapse
|
27
|
Jacamo R, Jiang X, Lunn JA, Rozengurt E. FAK phosphorylation at Ser-843 inhibits Tyr-397 phosphorylation, cell spreading and migration. J Cell Physiol 2006; 210:436-44. [PMID: 17096371 DOI: 10.1002/jcp.20870] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple stimuli promote the tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which ultimately facilitates migration. Little is known about the effect of adhesion-dependent signals and cytoskeleton organization on the regulation of FAK phosphorylation at serine sites, or about the role of FAK serine phosphorylation in cell migration. Here, we show that FAK phosphorylation at Ser-843 is strikingly increased when adherent cells are removed from the substratum and held in suspension or by treatment of adherent cells with cytochalasin D, conditions that disrupt the F-actin cytoskeleton and promote focal adhesion disassembly. Notably, the increase in Ser-843 phosphorylation was accompanied by a concomitant sharp decrease in Tyr-397 phosphorylation. To further examine the cause-effect relationship between these two phosphorylation sites we generated Ser-843 phosphorylation-deficient and phosphorylation-mimicking FAK mutants. We found that mutation of Ser-843 to aspartic acid (FAK[S843D]) markedly decreased FAK Tyr-397 phosphorylation in integrin-stimulated cells. While the migratory defect of FAK-deficient fibroblasts was rescued by stable re-expression of WT FAK or FAK[S843A], stable re-expression of FAK[S843D] failed to restore the ability of the cells to migrate into the denuded area of a wound. Our results indicate that increased FAK phosphorylation at Ser-843 represses FAK phosphorylation at Tyr-397, thus suggesting a mechanism of cross-talk between these phosphorylation sites that could regulate FAK-mediated cell shape and migration.
Collapse
Affiliation(s)
- Rodrigo Jacamo
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|