1
|
Becchetti A, Duranti C, Arcangeli A. Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. Am J Physiol Cell Physiol 2022; 322:C1138-C1150. [PMID: 35442831 DOI: 10.1152/ajpcell.00107.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cellular functions are regulated by a complex interplay of diffuse and local signals. Experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multi-enzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulate the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response is essential in growth and development and has innumerable pathological implications. The process involves bidirectional signal transduction by complex supra-molecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements and other regulatory elements. The dynamics of such complexes is only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to re-assume functions, such as controlling cell proliferation/differentiation, apoptosis and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| |
Collapse
|
2
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int J Mol Sci 2021; 22:ijms221910366. [PMID: 34638705 PMCID: PMC8508623 DOI: 10.3390/ijms221910366] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Rue St Denis, Montreal, QC H2X 0A9, Canada
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| | - Yulia Ezhova
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| |
Collapse
|
4
|
BEX1 and BEX4 Induce GBM Progression through Regulation of Actin Polymerization and Activation of YAP/TAZ Signaling. Int J Mol Sci 2021; 22:ijms22189845. [PMID: 34576008 PMCID: PMC8471324 DOI: 10.3390/ijms22189845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
GBM is a high-grade cancer that originates from glial cells and has a poor prognosis. Although a combination of surgery, radiotherapy, and chemotherapy is prescribed to patients, GBM is highly resistant to therapies, and surviving cells show increased aggressiveness. In this study, we investigated the molecular mechanism underlying GBM progression after radiotherapy by establishing a GBM orthotopic xenograft mouse model. Based on transcriptomic analysis, we found that the expression of BEX1 and BEX4 was upregulated in GBM cells surviving radiotherapy. We also found that upregulated expression of BEX1 and BEX4 was involved in the formation of the filamentous cytoskeleton and altered mechanotransduction, which resulted in the activation of the YAP/TAZ signaling pathway. BEX1- and BEX4-mediated YAP/TAZ activation enhanced the tumor formation, growth, and radioresistance of GBM cells. Additionally, latrunculin B inhibited GBM progression after radiotherapy by suppressing actin polymerization in an orthotopic xenograft mouse model. Taken together, we suggest the involvement of cytoskeleton formation in radiation-induced GBM progression and latrunculin B as a GBM radiosensitizer.
Collapse
|
5
|
Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem Biophys Res Commun 2018; 506:361-371. [DOI: 10.1016/j.bbrc.2018.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023]
|
6
|
Stippick TW, Sheller MR. Combined magnetic fields provide robust coverage for interbody and posterolateral lumbar spinal fusion sites. Med Biol Eng Comput 2016; 54:113-22. [PMID: 26044553 PMCID: PMC4779460 DOI: 10.1007/s11517-015-1319-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
Abstract
Electromagnetic fields generated by spinal bone growth stimulation devices have been computationally modelled to determine coverage of the lumbar spinal vertebrae. The underlying assumption of these models was that the electric field, but not the magnetic field, was therapeutically relevant. However, there are no published studies examining the therapeutic coverage of spinal fusion sites by stimulators utilizing combined magnetic fields. To assess the coverage, an anatomical model of the vertebrae and discs of the lumbar spine was developed to represent interbody and posterolateral fusion sites. Computer simulations of the induced electromagnetic fields were analysed to determine coverage of the fusion sites. For both interbody and posterolateral fusion models, combined magnetic fields provided 100% coverage of the fusion sites for all intervertebral disc spaces and for all posterior planes from L1 to L5, respectively. Within the vertebral column, the magnitude of the electric field reached a maximum value of 3.6 × 10(-4) V/m, which is several orders of magnitude less than any reported study demonstrating a biological effect. Given its clinical efficacy, a bone growth stimulator utilizing combined magnetic fields must rely on the action of its magnetic field rather than its electric field for a therapeutic effect.
Collapse
|
7
|
Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L924-41. [DOI: 10.1152/ajplung.00146.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Morphological selection techniques of gametes and embryos are of current interest to clinical practice in ART. Although intracytoplasmic morphologically selected sperm injection (IMSI), time lapse imaging morphometry (TLIM) or quantification of chromosome numbers (PGS) are potentially useful in research, they have not been shown to be of statistically predictive value and, thus, have only limited clinical usefulness. We make the point that morphological markers alone cannot predict the success of the early embryo, which depends on the correct orchestration of a myriad of physiological and biochemical activation events that progress independently of the maternal or zygotic genome. Since previous attempts to identify metabolic markers for embryo quality have failed and there is no evidence that the intrinsic nature of gametes and embryos can be improved in the laboratory, embryologists can only minimize environmental or operator induced damage while these cells are manipulated ex vivo.
Collapse
|
9
|
Chun JT, Limatola N, Vasilev F, Santella L. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem Biophys Res Commun 2014; 450:1166-74. [DOI: 10.1016/j.bbrc.2014.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
10
|
Wu X, Cao MP, Shen YY, Chu KP, Tao WB, Song WT, Liu LP, Wang XH, Zheng YF, Chen SD, Zeng QL, Xia RH. Weak power frequency magnetic field acting similarly to EGF stimulation, induces acute activations of the EGFR sensitive actin cytoskeleton motility in human amniotic cells. PLoS One 2014; 9:e87626. [PMID: 24505297 PMCID: PMC3914819 DOI: 10.1371/journal.pone.0087626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Mei-Ping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Yun-Yun Shen
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ke-Ping Chu
- Physics Department, East China Normal University, Shanghai, China
| | - Wu-Bin Tao
- Physics Department, East China Normal University, Shanghai, China
| | - Wei-Tao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Li-Ping Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiang-Hui Wang
- Physics Department, East China Normal University, Shanghai, China
| | - Yu-Fang Zheng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shu-De Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Qun-Li Zeng
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ruo-Hong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Holm A, Vikström E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:309. [PMID: 25018766 PMCID: PMC4071818 DOI: 10.3389/fpls.2014.00309] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/10/2014] [Indexed: 05/10/2023]
Abstract
Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation, and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g., to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P. aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL). We focus on how this conversation changes the behavior and function of neutrophils, macrophages, and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.
Collapse
Affiliation(s)
| | - Elena Vikström
- *Correspondence: Elena Vikström, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping SE-58185, Sweden e-mail:
| |
Collapse
|
12
|
Chun JT, Vasilev F, Santella L. Antibody against the actin-binding protein depactin attenuates Ca2+ signaling in starfish eggs. Biochem Biophys Res Commun 2013; 441:301-7. [DOI: 10.1016/j.bbrc.2013.09.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
13
|
Hafke JB, Ehlers K, Föller J, Höll SR, Becker S, van Bel AJE. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks. PLANT PHYSIOLOGY 2013; 162:707-19. [PMID: 23624858 PMCID: PMC3668064 DOI: 10.1104/pp.113.216218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).
Collapse
Affiliation(s)
- Jens B Hafke
- Plant Cell Physiology Group, Institute of Plant Physiology, Justus-Liebig-University, D-35390 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Gerber A, Esnault C, Aubert G, Treisman R, Pralong F, Schibler U. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 2013; 152:492-503. [PMID: 23374345 DOI: 10.1016/j.cell.2012.12.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/08/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022]
Abstract
In peripheral tissues circadian gene expression can be driven either by local oscillators or by cyclic systemic cues controlled by the master clock in the brain's suprachiasmatic nucleus. In the latter case, systemic signals can activate immediate early transcription factors (IETFs) and thereby control rhythmic transcription. In order to identify IETFs induced by diurnal blood-borne signals, we developed an unbiased experimental strategy, dubbed Synthetic TAndem Repeat PROMoter (STAR-PROM) screening. This technique relies on the observation that most transcription factor binding sites exist at a relatively high frequency in random DNA sequences. Using STAR-PROM we identified serum response factor (SRF) as an IETF responding to oscillating signaling proteins present in human and rodent sera. Our data suggest that in mouse liver SRF is regulated via dramatic diurnal changes of actin dynamics, leading to the rhythmic translocation of the SRF coactivator Myocardin-related transcription factor-B (MRTF-B) into the nucleus.
Collapse
Affiliation(s)
- Alan Gerber
- Department of Molecular Biology, Sciences III, University of Geneva, and National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Lamoral-Theys D, Wauthoz N, Heffeter P, Mathieu V, Jungwirth U, Lefranc F, Nève J, Dubois J, Dufrasne F, Amighi K, Berger W, Gailly P, Kiss R. Trivanillic polyphenols with anticancer cytostatic effects through the targeting of multiple kinases and intracellular Ca2+ release. J Cell Mol Med 2012; 16:1421-34. [PMID: 21810170 PMCID: PMC3823212 DOI: 10.1111/j.1582-4934.2011.01403.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs.
Collapse
Affiliation(s)
- Delphine Lamoral-Theys
- Laboratoire de Chimie BioAnalytique, Toxicologie et Chimie Physique Appliquée, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
17
|
Violaceols function as actin inhibitors inducing cell shape elongation in fibroblast cells. Biosci Biotechnol Biochem 2012; 76:1431-7. [PMID: 22878183 DOI: 10.1271/bbb.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Violaceol-I and -II were isolated from a fractionated library of marine-derived fungal metabolites. These compounds increased the calcium ion concentration inside the cell and caused F-actin aggregation in rat fibroblast 3Y1 cells within 3 h resulting in cell shape elongation. Calcium chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) inhibited violaceol-I and -II induced F-actin aggregation in 3Y1 cells, and hence violaceol-I and -II act in a calcium dependent manner. Violaceol-I and -II inhibited G-actin polymerization in vitro in a dose-dependent manner and strongly associated with G-actin, at dissociation equilibrium constants of 1.44 × 10(-8) M and 2.52 × 10(-9) M respectively. Here we report the identification of a novel function of violaceol-I and -II as actin inhibitors. Violaceol-I and -II induced cell shape elongation through F-actin aggregation in 3Y1 fibroblasts. These compounds may give researchers new insights into the role of actin in tumorigenesis and lead to the development of additional anti-tumor drugs.
Collapse
|
18
|
Vasilev F, Chun JT, Gragnaniello G, Garante E, Santella L. Effects of ionomycin on egg activation and early development in starfish. PLoS One 2012; 7:e39231. [PMID: 22723970 PMCID: PMC3377674 DOI: 10.1371/journal.pone.0039231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/21/2012] [Indexed: 11/21/2022] Open
Abstract
Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation.
Collapse
Affiliation(s)
- Filip Vasilev
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Jong T. Chun
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Giovanni Gragnaniello
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Ezio Garante
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Luigia Santella
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail:
| |
Collapse
|
19
|
Sedlmair J, Gleber SC, Mert SÖ, Bertilson M, von Hofsten O, Thieme J, Pfohl T. Imaging of vascular smooth muscle cells with soft X-ray spectromicroscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:991-1001. [PMID: 22067812 DOI: 10.1017/s1431927611012165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using X-ray microscopy and spectromicroscopy, vascular smooth muscle cells (VSMCs) were imaged, prepared without using additional embedding material or staining, but by applying simple, noncryo fixation techniques. The cells were imaged with a compact source transmission X-ray microscope and a scanning transmission X-ray microscope (STXM). With the STXM, spectromicroscopy was performed at the C K-edge and the Ca L(III,II)-edges. VSMCs were chosen because of their high amount of actin stress fibers, so that the actin cytoskeleton should be visible. Other parts of the cell, such as the nucleus and organelles, were also identified from the micrographs. Both in the spectra and the images, the effects of the different preparation procedures were observable. Furthermore, Ca hotspots were detected and their density is determined.
Collapse
Affiliation(s)
- Julia Sedlmair
- Institute for X-Ray Physics, Georg-August-University Göttingen, Friedrich-Hund-Pl. 1, D-37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Actin, more than just a housekeeping protein at the scene of fertilization. SCIENCE CHINA-LIFE SCIENCES 2011; 54:733-43. [DOI: 10.1007/s11427-011-4202-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
21
|
The biphasic increase of PIP2 in the fertilized eggs of starfish: new roles in actin polymerization and Ca2+ signaling. PLoS One 2010; 5:e14100. [PMID: 21124897 PMCID: PMC2990714 DOI: 10.1371/journal.pone.0014100] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/01/2010] [Indexed: 12/17/2022] Open
Abstract
Background Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP3) and also regulates actin-binding proteins, PIP2 might be involved in these two processes. Methodology/Principal Findings In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE). These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization. Conclusions/Significance Our results suggest that PIP2 plays comprehensive roles in shaping Ca2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule exocytosis.
Collapse
|
22
|
Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. Eur J Cell Biol 2010; 89:584-97. [DOI: 10.1016/j.ejcb.2010.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/21/2022] Open
|
23
|
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 2010; 226:896-927. [PMID: 20607764 DOI: 10.1002/jcp.22302] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Kerem A, Yin J, Kaestle SM, Hoffmann J, Schoene AM, Singh B, Kuppe H, Borst MM, Kuebler WM. Lung Endothelial Dysfunction in Congestive Heart Failure. Circ Res 2010; 106:1103-16. [DOI: 10.1161/circresaha.109.210542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rationale
:
Congestive heart failure (CHF) frequently results in remodeling and increased tone of pulmonary resistance vessels. This adaptive response, which aggravates pulmonary hypertension and thus, promotes right ventricular failure, has been attributed to lung endothelial dysfunction.
Objective
:
We applied real-time fluorescence imaging to identify endothelial dysfunction and underlying molecular mechanisms in an experimental model of CHF induced by supracoronary aortic banding in rats.
Methods and Results
:
Endothelial dysfunction was evident in lungs of CHF rats as impaired endothelium-dependent vasodilation and lack of endothelial NO synthesis in response to mechanical stress, acetylcholine, or histamine. This effect was not attributable to downregulation of endothelial NO synthase. Imaging of the cytosolic Ca
2+
concentration ([Ca
2+
]
i
) revealed a singular impairment of endothelial [Ca
2+
]
i
homeostasis and signaling characterized by a lack of [Ca
2+
]
i
oscillations and deficient or attenuated [Ca
2+
]
i
responses to mechanical stress, histamine, acetylcholine, or thapsigargin. Reconstitution of a [Ca
2+
]
i
signal by ionophore treatment restored endothelial NO production, but lack of endothelial responsiveness was not primarily attributable to downregulation of Ca
2+
influx channels in CHF. Rather, we identified a massive remodeling of the endothelial cytoskeleton in the form of an increased expression of β-actin and F-actin formation which contributed critically to endothelial dysfunction in CHF because cytoskeletal disruption by cytochalasin D largely reconstituted endothelial [Ca
2+
]
i
signaling and NO production.
Conclusions
:
Our findings characterize a unique scenario of endothelial dysfunction in CHF that is caused by a singular impairment of [Ca
2+
]
i
signaling, and identify cytoskeletal reorganization as a major regulator of endothelial signaling and function.
Collapse
Affiliation(s)
- Alexander Kerem
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Jun Yin
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Stephanie M. Kaestle
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Julia Hoffmann
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Axel M. Schoene
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Baljit Singh
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Hermann Kuppe
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Mathias M. Borst
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Wolfgang M. Kuebler
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| |
Collapse
|
25
|
Resnick A. Use of optical tweezers to probe epithelial mechanosensation. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:015005. [PMID: 20210445 PMCID: PMC2839798 DOI: 10.1117/1.3316378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 11/11/2009] [Accepted: 12/23/2009] [Indexed: 05/28/2023]
Abstract
Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the "ciliary hypothesis" has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.
Collapse
Affiliation(s)
- Andrew Resnick
- Cleveland State University, Department of Physics, Cleveland, Ohio 44115, USA.
| |
Collapse
|
26
|
Newman SA. E.E. Just's “independent irritability” revisited: The activated egg as excitable soft matter. Mol Reprod Dev 2009; 76:966-74. [DOI: 10.1002/mrd.21094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Abstract
Starfish oocytes undergo massive intracellular Ca2+ signalling during meiotic maturation and fertilization. Although the igniting stimulus of Ca2+ mobilization may differ in different cell contexts, its final leverage is usually the Ca2+-releasing second messengers such as InsP3, cADPr and NAADP. The general scheme of intracellular Ca2+ release is that the corresponding receptors for these molecules serve as ion channels to release free Ca2+ from its internal stores such as the lumen of the endoplasmic reticulum. However, a growing body of evidence has suggested that intracellular Ca2+ release can be strongly modulated by the actin cytoskeleton. Although it is known that Ca2+ contributes to remodelling of the actin cytoskeleton, whether the actin cytoskeleton modulates Ca2+ signalling in return has not been much explored. An emerging candidate to answer to this reciprocal causality of Ca2+ and the actin cytoskeleton may be actin-binding proteins. In this review, we discuss how the actin cytoskeleton may fit into the known mechanisms of intracellular Ca2+ release, and propose two models to explain the experimental data.
Collapse
Affiliation(s)
- J T Chun
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | |
Collapse
|
28
|
Pritchard S, Votta BJ, Kumar S, Guilak F. Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes. Osteoarthritis Cartilage 2008; 16:1466-73. [PMID: 18495501 PMCID: PMC3217044 DOI: 10.1016/j.joca.2008.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/04/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocytes respond to osmotic stress with transient changes in cell volume and the intracellular concentration of calcium ion ([Ca(2+)](i)). The goal of this study was to examine the hypothesis that interleukin-1 (IL-1), a pro-inflammatory cytokine associated with osteoarthritis, influences osmotically induced Ca(2+) signaling. METHODS Fluorescence ratio imaging was used to measure [Ca(2+)](i) and cell volume in response to hypo- or hyper-osmotic stress in isolated porcine chondrocytes, with or without pre-exposure to 10-ng/ml IL-1alpha. Inhibitors of IL-1 (IL-1 receptor antagonist, IL-1Ra), Ca(2+) mobilization (thapsigargin, an inhibitor of Ca-ATPases), and cytoskeletal remodeling (toxin B, an inhibitor of the Rho family of small GTPases) were used to determine the mechanisms involved in increased [Ca(2+)](i), F-actin remodeling, volume adaptation and active volume recovery. RESULTS In response to osmotic stress, chondrocytes exhibited transient increases in [Ca(2+)](i), generally followed by decaying oscillations. Pre-exposure to IL-1 significantly inhibited regulatory volume decrease (RVD) following hypo-osmotic swelling and reduced the change in cell volume and the time to peak [Ca(2+)](i) in response to hyper-osmotic stress, but did not affect the peak magnitudes of [Ca(2+)](i) in those cells that did respond. Co-treatment with IL-1Ra, thapsigargin, or toxin B restored these responses to control levels. The effects were associated with alterations in F-actin organization. CONCLUSIONS IL-1 alters the normal volumetric and Ca(2+) signaling response of chondrocytes to osmotic stress through mechanisms involving F-actin remodeling via small Rho GTPases. These findings provide further insights into the mechanisms by which IL-1 may interfere with normal physiologic processes in the chondrocyte, such as the adaptation or regulatory responses to mechanical or osmotic loading.
Collapse
Affiliation(s)
- Scott Pritchard
- Department of Surgery, Duke University Medical Center Durham, North Carolina, 27710 USA,Department of Biomedical Engineering, Duke University Medical Center Durham, North Carolina, 27710 USA
| | - Bartholomew J. Votta
- Department of Musculoskeletal Disease GlaxoSmithKline, Inc. 1250 S. Collegeville Rd, P.O. Box 5089 Collegeville, PA 19426-0989 USA
| | - Sanjay Kumar
- Department of Musculoskeletal Disease GlaxoSmithKline, Inc. 1250 S. Collegeville Rd, P.O. Box 5089 Collegeville, PA 19426-0989 USA
| | - Farshid Guilak
- Department of Surgery, Duke University Medical Center Durham, North Carolina, 27710 USA,Department of Biomedical Engineering, Duke University Medical Center Durham, North Carolina, 27710 USA
| |
Collapse
|
29
|
Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 2008; 320:426-35. [DOI: 10.1016/j.ydbio.2008.05.549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
30
|
Abstract
Ferritin is an iron storage protein expressed in varying concentrations in mammalian cells. The deposition of ferric iron in the core of ferritin makes it a magnetic resonance imaging contrast agent, and ferritin has recently been proposed as a gene expression reporter protein for magnetic resonance imaging. To date, ferritin has been overexpressed in vivo and has been coexpressed with transferrin receptor to increase iron loading in cells. However, ferritin has a relatively low T(2) relaxivity (R(2) approximately 1 mM(-1)s(-1)) at typical magnetic field strengths and so requires high levels of expression to be detected. One way to modulate the transverse relaxivity of a superparamagnetic agent is to cause it to aggregate, thereby manipulating the magnetic field gradients through which water diffuses. In this work, it is demonstrated by computer simulation and in vitro that aggregation of ferritin can alter relaxivity. The effects of aggregate size and intraaggregate perturber spacing on R(2) are studied. Computer modeling indicates that the optimal spacing of the ferritin molecules in aggregate for increasing R(2) is 100-200 nm for a typical range of water diffusion rates. Chemical cross-linking of ferritin at 12 A spacing led to a 70% increase in R(2) compared to uncross-linked ferritin controls. To modulate ferritin aggregation in a potentially biologically relevant manner, ferritin was attached to actin and polymerized in vitro. The polymerization of ferritin-F-actin caused a 20% increase in R(2) compared to unpolymerized ferritin-G-actin. The R(2)-value was increased by another 10% by spacing the ferritin farther apart on the actin filaments. The modulation of ferritin aggregation by binding to cytoskeletal elements may be a useful strategy to make a functional reporter gene for magnetic resonance imaging.
Collapse
|
31
|
de Souza MG, Grossi AL, Pereira ELB, da Cruz CO, Mendes FM, Cameron LC, Paiva CLA. Actin immobilization on chitin for purifying myosin II: A laboratory exercise that integrates concepts of molecular cell biology and protein chemistry. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:55-60. [PMID: 21591160 DOI: 10.1002/bmb.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying skeletal myosin II. It favors the active learning of protein extraction and purification, the learning of concepts such as muscle contraction, cytoskeleton structure, and its importance for the living cell. This laboratory exercise also promotes learning biotechnological applications of chitin and the applications of protein immobilization in different industrial fields. Furthermore, the activities target the development of laboratorial abilities, problem-solving skills, and the ability to write a scientific report, following the model of a scientific article. The trials are mainly proposed for either an undergraduate project for advanced students in the life sciences or a postgraduate practical training course. In both the cases, the students must have had biochemistry as part of their regular curriculum. Alternatively, the affinity chromatography method can fit in any regular biochemistry course if active chitin, F-actin, and a myosin II extract are provided. It is very important to mention that this laboratory exercise can be used even in places where a facility such as ultracentrifugation is lacking. For that, the steps of actin purification are skipped, and actin is commercially obtained. Therefore, it is an adequate approach for the active learning of biochemical and molecular cell biology principles and techniques even in poor countries.
Collapse
Affiliation(s)
- Marcelle Gomes de Souza
- Laboratory of Protein Biochemistry and Laboratory of Molecular Biology, Genetics and Molecular Biology Unit-Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Tobin VA, Ludwig M. The role of the actin cytoskeleton in oxytocin and vasopressin release from rat supraoptic nucleus neurons. J Physiol 2007; 582:1337-48. [PMID: 17478532 PMCID: PMC2075266 DOI: 10.1113/jphysiol.2007.132639] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Magnocellular neurons of the supraoptic nucleus (SON) can differentially control peptide release from the somato/dendritic and axon terminal compartment. Dendritic release can be selectively regulated through activation of intracellular calcium stores by calcium mobilizers such as thapsigargin (TG), resulting in preparation (priming) of somato/dendritic peptide pools for subsequent activity-dependent release. As dynamic modulation of the actin cytoskeleton is implicated in secretion from synaptic terminals and from several types of neuroendocrine cells, we studied its involvement in oxytocin and vasopressin release from SON neurons. Confocal image analysis of the somata revealed that the normally continuous cortical band of F-actin is disrupted after high potassium (K(+), 50 mm) or TG (200 nm) stimulation. The functional importance of actin remodelling was studied using cell-permeable actin polymerizing (jasplakinolide, 2 microm) or depolymerizing agents (latrunculin B, 5 microm) to treat SON and neural lobe (NL) explants in vitro and measure high K(+)-induced oxytocin and vasopressin release. Latrunculin significantly enhanced, and jasplakinolide inhibited, high-K(+)-evoked somato/dendritic peptide release, while release from axon terminals was not altered, suggesting that high-K(+)-evoked release in the SON, but not the NL, requires depolymerization of the actin cytoskeleton. TG-induced priming of somato/dendritic release was also blocked by jasplakinolide and latrunculin, suggesting that priming involves changes in actin remodelling.
Collapse
Affiliation(s)
- Vicky A Tobin
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|