1
|
Rodrigues BM, Mathias LS, Deprá IDC, Cury SS, de Oliveira M, Olimpio RMC, De Sibio MT, Gonçalves BM, Nogueira CR. Effects of Triiodothyronine on Human Osteoblast-Like Cells: Novel Insights From a Global Transcriptome Analysis. Front Cell Dev Biol 2022; 10:886136. [PMID: 35784485 PMCID: PMC9248766 DOI: 10.3389/fcell.2022.886136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear.Methods: To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and differentially expressed genes (DEGs) were identified from the raw data using Kallisto and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology Consortium database for BP terms using the R package clusterProfiler and protein network analysis by STRING.Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several independent BP terms related to bone metabolism were significantly enriched, with a number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1, S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of genes suggests that both T3 doses are unfavorable for osteoblast development, mainly hindering BMP and canonical and non-canonical WNT signaling.Conclusions: Therefore, this study provides new directions toward the elucidation of the mechanisms of T3 action on osteoblast metabolism, with potential future implications for the treatment of endocrine-related bone pathologies.
Collapse
Affiliation(s)
- Bruna Moretto Rodrigues
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Solla Mathias
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Igor de Carvalho Deprá
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Maria Teresa De Sibio
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Bianca Mariani Gonçalves
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Célia Regina Nogueira
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Célia Regina Nogueira,
| |
Collapse
|
2
|
Heo JW, Lee EG, Gil B, Kang HS, Kim YH. Tracheobronchopathia Osteochondroplastica Associated with Fibrotic Interstitial Lung Disease. Intern Med 2021; 60:3463-3467. [PMID: 34719627 PMCID: PMC8627817 DOI: 10.2169/internalmedicine.6682-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tracheobronchopathia osteochondroplastica (TPO) is a very rare, benign disorder involving the lumen of the trachea-bronchial tree. However, its etiology is unknown. In our first case, observation for several years showed that TPO worsened as interstitial lung disease was aggravated. In the second case, the lung parenchymal lesion on computed tomography (CT) was found to be compatible with interstitial lung abnormality (ILA). We believe that our cases suggest a common pathogenetic relationship between TPO and fibrotic interstitial lung disease. TGF-β is likely a common factor in the pathogenesis of TPO and fibrotic interstitial lung disease.
Collapse
Affiliation(s)
- Jung Won Heo
- Department of Internal Medicine, Chung-Ang University H.C.S Hyundae Hospital, Republic of Korea
| | - Eung Gu Lee
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Bomi Gil
- Department of Radiology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yong Hyun Kim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| |
Collapse
|
3
|
B7-H3 in Medulloblastoma-Derived Exosomes; A Novel Tumorigenic Role. Int J Mol Sci 2020; 21:ijms21197050. [PMID: 32992699 PMCID: PMC7583814 DOI: 10.3390/ijms21197050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Aim: Medulloblastoma is the most common aggressive pediatric cancer of the central nervous system. Improved therapies are necessary to improve life outcomes for medulloblastoma patients. Exosomes are a subset of extracellular vesicles that are excreted outside of the cell, and can transport nucleic acids and proteins from donor cells to nearby recipient cells of the same or dissimilar tissues. Few publications exist exploring the role that exosomes play in medulloblastoma pathogenesis. In this study, we found B7-H3, an immunosuppressive immune checkpoint, present in D283 cell-derived exosomes. (2) Methods: Utilizing mass spectrometry and immunoblotting, the presence of B7-H3 in D283 control and B7-H3 overexpressing exosomes was confirmed. Exosomes were isolated by Systems Biosciences from cultured cells as well as with an isolation kit that included ultracentrifugation steps. Overlay experiments were performed to determine mechanistic impact of exosomes on recipient cells by incubating isolated exosomes in serum-free media with target cells. Impact of D283 exosome incubation on endothelial and UW228 medulloblastoma cells was assessed by immunoblotting. Immunocytochemistry was employed to visualize exosome fusion with recipient cells. (3) Results: Overexpressing B7-H3 in D283 cells increases exosomal production and size distribution. Mass spectrometry revealed a host of novel, pathogenic molecules associated with B7-H3 in these exosomes including STAT3, CCL5, MMP9, and PI3K pathway molecules. Additionally, endothelial and UW228 cells incubated with D283-derived B7-H3-overexpressing exosomes induced B7-H3 expression while pSTAT1 levels decreased in UW228 cells. (4) Conclusions: In total, our results reveal a novel role in exosome production and packaging for B7-H3 that may contribute to medulloblastoma progression.
Collapse
|
4
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
5
|
FK506 Induces Ligand-Independent Activation of the Bone Morphogenetic Protein Pathway and Osteogenesis. Int J Mol Sci 2019; 20:ijms20081900. [PMID: 30999619 PMCID: PMC6515024 DOI: 10.3390/ijms20081900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023] Open
Abstract
Osteoinductive bone morphogenetic proteins (BMPs), including BMP-2, have a unique capability of mediating bone formation both in orthotopic and ectopic locations. Immunosuppresive macrolides have been shown to potentiate BMP-2 activity through FKBP12, but these have yet to translate to effective osteoinductive therapies. Herein, we show the osteogenic activity of FK506 as a stand-alone agent in direct comparison to BMP-2 both in vitro and in vivo. FK506 was capable of producing stand-alone alkaline phosphatase induction in C2C12 cells comparable to that seen with rhBMP-2. FK506 treatment activated the BMP receptor, as shown by increased pSmad1/5 levels, and produced significantly higher mRNA levels of the early response genes in BMP and TGF-β pathways. Additionally, the FK506 induction of alkaline phosphatase was shown to be resistant to Noggin treatment. In vivo osteogenic activity of FK506 was tested by local delivery on a collagen sponge in an ectopic subcutaneous implantation model in the rat. Dose responses of FK506 showed increasing levels of ectopic mineralization comparable to the mineral volume produced by BMP-2 delivery. These findings suggest that the use of FK506 can enhance osteoblastic differentiation in vitro and can induce mineralization when delivered locally in vivo.
Collapse
|
6
|
Huang B, Wu Z, Ding S, Yuan Y, Liu C. Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomater 2018; 71:184-199. [PMID: 29355717 DOI: 10.1016/j.actbio.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Localization of recombinant human bone morphogenetic protein-2 (rhBMP-2) with continuous and effective osteogenic stimulation is still a great challenge in the field of bone regeneration. To achieve this aim, rhBMP-2 was tethered on chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) scaffolds through specific noncovalent interactions. CS, one of the core glycosaminoglycans, was covalently conjugated onto CPC scaffolds with the assistance of polydopamine (PDA) and further immobilized rhBMP-2 in a biomimetic form. The CPC-PDA-CS scaffolds not only controlled the release kinetics and presentation state of rhBMP-2 but also effectively increased the expression levels of bone morphogenetic protein receptors (BMPRs) and enhanced the recognitions of the remaining rhBMP-2 to BMPRs. Strikingly, the rhBMP-2-loaded CPC-PDA-CS significantly promoted the cellular surface translocation of BMPRs (especially BMPR-IA). In vivo studies demonstrated that, compared with the rhBMP-2 upon CPC and CPC-PDA, the rhBMP-2 upon CPC-PDA-CS exhibited sustained release and induced high quality and more ectopic bone formation. Collectively, these results suggest that rhBMP-2 can be localized within CS-functionalized CPC scaffolds and exert continuous, long-term, and effective osteogenic stimulation. Thus, this work could provide new avenues in mimicking bone extracellular matrix microenvironment and localizing growth factor activity for enhanced bone regeneration. STATEMENT OF SIGNIFICANCE A bioinspired chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) platform was developed to tether recombinant human bone morphogenetic protein-2 (rhBMP-2), which could exhibit continuous, long-term, and effective osteogenic stimulation in bone tissue engineering. Compared with rhBMP-2-loaded CPC, the rhBMP-2-loaded CPC-polydopamine-CS scaffolds induced higher expression of bone morphogenetic protein receptors (BMPRs), greater cellular surface translocation of bone morphogenetic protein receptor-IA, higher binding affinity of BMPRs/rhBMP-2, and thus higher activation of the drosophila gene mothers against decapentaplegic protein-1/5/8 (Smad1/5/8) and extracellular-regulated protein kinases-1/2 (ERK1/2) signaling. This work can provide new guidelines for the design of BMP-2-based bioactive materials for bone regeneration.
Collapse
|
7
|
Gronowicz G, Jacobs E, Peng T, Zhu L, Hurley M, Kuhn LT. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer. Tissue Eng Part A 2017; 23:1490-1501. [PMID: 28946792 DOI: 10.1089/ten.tea.2017.0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in response to BMP-2, leading to improved bone defect healing.
Collapse
Affiliation(s)
- Gloria Gronowicz
- 1 Department of Surgery, University of Connecticut Health Center , Farmington, Connecticut
| | - Emily Jacobs
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Tao Peng
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Li Zhu
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Marja Hurley
- 3 Department of Medicine, University of Connecticut Health Center , Farmington, Connecticut
| | - Liisa T Kuhn
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
8
|
Ouyang L, Zhang K, Chen J, Wang J, Huang H. Roles of platelet-derived growth factor in vascular calcification. J Cell Physiol 2017; 233:2804-2814. [PMID: 28467642 DOI: 10.1002/jcp.25985] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is prevalent in aging, and patients with hypertension, chronic kidney disease (CKD), or diabetes. VC is regarded as an active and complex process that involves multiple mechanisms responsible for calcium deposition in vessel wall. In light of the complicated pathogenesis of VC, effective therapy for ameliorating VC is limited. Thus, it is urgent to explore the potential mechanisms and find new targets for the therapy of VC. Platelet-derived growth factor (PDGF), a potent mitogen, and chemoattractant have been found to disturb the vascular homeostasis by inducing inflammation, oxidative stress, and phenotype transition, all of which accelerate the process of VC. The aim of current review is to present a review about the roles of PDGF in affecting VC and to establish a potential target for treating VC.
Collapse
Affiliation(s)
- Liu Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family. Biomaterials 2016; 104:279-96. [DOI: 10.1016/j.biomaterials.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/28/2022]
|
10
|
Wang T, He J, Zhang Y, Shi W, Dong J, Pei M, Zhu L. A Selective Cell Population from Dermis Strengthens Bone Regeneration. Stem Cells Transl Med 2016; 6:306-315. [PMID: 28170187 PMCID: PMC5442747 DOI: 10.5966/sctm.2015-0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/22/2016] [Indexed: 11/16/2022] Open
Abstract
Finding appropriate seed cells for bone tissue engineering remains a significant challenge. Considering that skin is the largest organ, we hypothesized that human bone morphogenetic protein receptor type IB (BmprIB)+ dermal cells could have enhanced osteogenic capacity in the healing of critical-sized calvarial defects in an immunodeficient mouse model. In this study, immunohistochemical staining revealed that BmprIB was expressed throughout reticular dermal cells; the positive expression rate of BmprIB was 3.5% ± 0.4% in freshly separated dermal cells, by flow cytometry. Furthermore, in vitro osteogenic capacity of BmprIB+ cells was confirmed by osteogenic-related staining and marker gene expression compared with unsorted dermal cells. In vivo osteogenic capacity was demonstrated by implantation of human BmprIB+ cell/coral constructs in the treatment of 4-mm diameter calvarial defects in an immunodeficient mouse model compared with implantation of unsorted cell/coral constructs and coral scaffold alone. These results indicate that the selective cell population BmprIB from human dermis is a promising osteogenic progenitor cell that can be a large-quantity and high-quality cell source for bone tissue engineering and regeneration. Stem Cells Translational Medicine 2017;6:306-315.
Collapse
Affiliation(s)
- Tingliang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinguang He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjun Shi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiasheng Dong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, and Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth. BIOMED RESEARCH INTERNATIONAL 2015; 2015:281909. [PMID: 26539477 PMCID: PMC4619782 DOI: 10.1155/2015/281909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 02/05/2023]
Abstract
Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future.
Collapse
|
12
|
Huang RL, Chen G, Wang W, Herller T, Xie Y, Gu B, Li Q. Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation. Biomaterials 2015; 67:308-22. [PMID: 26232880 DOI: 10.1016/j.biomaterials.2015.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/13/2023]
Abstract
Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Tanja Herller
- Department of General, Trauma, Hand, and Plastic Surgery, University of Munich, Munich, Germany
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
13
|
Shibasaki S, Kitano S, Karasaki M, Tsunemi S, Sano H, Iwasaki T. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation. FEBS Open Bio 2015; 5:341-7. [PMID: 25941631 PMCID: PMC4415006 DOI: 10.1016/j.fob.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/02/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Role of c-Met signaling in osteoblast differentiation was investigated. Osteoblast differentiation was determined by ALP and osteocalcin production by C2C12 and MC3T3-E1 cells. c-Met signaling negatively regulates osteoblast differentiation. Blocking c-Met signaling might serve as a therapeutic strategy for rheumatoid arthritis.
We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3K-AKT-Smad pathways. Therefore, blocking c-Met signaling might serve as a therapeutic strategy for the repair of destructed bone in patients with RA.
Collapse
Affiliation(s)
- Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan ; Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachie Kitano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Miki Karasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Tsunemi
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Hajime Sano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan ; Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
14
|
Charles LF, Woodman JL, Ueno D, Gronowicz G, Hurley MM, Kuhn LT. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp Gerontol 2015; 64:62-9. [PMID: 25681640 DOI: 10.1016/j.exger.2015.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
There is an age-associated reduction in the bone healing activity of bone morphogenetic protein-2 (BMP-2) that is currently addressed by administering higher doses of BMP-2 in elderly patients. The unwanted medical complications from high dose BMP-2 motivated this investigation to determine whether the addition of a low dose of fibroblast growth factor 2 (FGF-2) could enhance the ability of a lower dose of BMP-2 to heal calvarial bone defects in old mice (18-20 months old). FGF-2 (5 ng) and BMP-2 (2 μg) were administered by a controlled release two-phase biomaterial scaffold placed into the bone defect. FGF-2 released more rapidly and completely in vitro than BMP-2 (40% vs 2%). In vivo, both BMP-2 and FGF-2+BMP-2 groups formed more new bone in calvarial defects than scaffold alone (p < 0.001) or FGF-2 only groups (p < 0.01). The overall total volume of new bone was not statistically increased by the addition of FGF-2 to BMP-2 as measured by microCT, but the pattern of bone deposition was different. In old mice, but not young, there was enhanced bony fill in the central bone defect area when the BMP-2 was supplemented with FGF-2. Histological analysis of the center of the defect revealed an increased bone volume (%BV/TV (p = 0.004)) from the addition of FGF-2. These studies suggest that combining a low dose of FGF-2 with a low dose of BMP-2 has the potential to increase bone healing in old mice relative to BMP-2 alone.
Collapse
Affiliation(s)
- Lyndon F Charles
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jessica L Woodman
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Daisuke Ueno
- Unit of Oral and Maxillofacial Implantology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Gloria Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Marja M Hurley
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
15
|
Masuda T, Otsu K, Kumakami-Sakano M, Fujiwara N, Ema M, Hitomi J, Sugiyama Y, Harada H. Combined Administration of BMP-2 and HGF Facilitate Bone Regeneration through Angiogenic Mechanisms. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tomoyuki Masuda
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Masatsugu Ema
- Research Center for Animal Life Science, Department of Stem Cells and Human Disease Models, Shiga University of Medical Science
| | - Jiro Hitomi
- Division of Human Embryology, Department of Anatomy, Iwate Medical University
| | - Yoshiki Sugiyama
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| |
Collapse
|
16
|
|
17
|
McArdle A, Chung MT, Paik KJ, Duldulao C, Chan C, Rennert R, Walmsley GG, Senarath-Yapa K, Hu M, Seo E, Lee M, Wan DC, Longaker MT. Positive selection for bone morphogenetic protein receptor type-IB promotes differentiation and specification of human adipose-derived stromal cells toward an osteogenic lineage. Tissue Eng Part A 2014; 20:3031-40. [PMID: 24854876 DOI: 10.1089/ten.tea.2014.0101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose tissue represents an abundant and easily accessible source of multipotent cells that may serve as an excellent building block for tissue engineering. However, adipose-derived stromal cells (ASCs) are a heterogeneous group and subpopulations may be identified with enhanced osteogenic potential. METHODS Human ASC subpopulations were prospectively isolated based on expression of bone morphogenetic protein receptor type-IB (BMPR-IB). Unsorted, BMPR-IB(+), and BMPR-IB(-) cells were analyzed for their osteogenic capacity through histological staining and gene expression. To evaluate their in vivo osteogenic potential, critical-sized calvarial defects were created in immunocompromised mice and treated with unsorted, BMPR-IB(+), or BMPR-IB(-) cells. Healing was assessed using microcomputed tomography and pentachrome staining of specimens at 8 weeks. RESULTS Increased osteogenic differentiation was noted in the BMPR-IB(+) subpopulation, as demonstrated by alkaline phosphatase staining at day 7 and extracellular matrix mineralization with Alizarin red staining at day 14. This was also associated with increased expression for osteocalcin, a late marker of osteogenesis. Radiographic analysis demonstrated significantly enhanced healing of critical-sized calvarial defects treated with BMPR-IB(+) ASCs compared with unsorted or BMPR-IB(-) cells. This was confirmed through pentachrome staining, which revealed more robust bone regeneration in the BMPR-IB(+) group. CONCLUSION BMPR-IB(+) human ASCs have an enhanced ability to form bone both in vitro and in vivo. These data suggest that positive selection for BMPR-IB(+) and manipulation of the BMP pathway in these cells may yield a highly osteogenic subpopulation of cells for bone tissue engineering.
Collapse
Affiliation(s)
- Adrian McArdle
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014; 71:113-42. [PMID: 23568025 PMCID: PMC11113514 DOI: 10.1007/s00018-013-1326-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/04/2023]
Abstract
Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
Collapse
Affiliation(s)
- P. Chatakun
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Police General Hospital, Bangkok, Thailand
| | - R. Núñez-Toldrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. J. Díaz López
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - C. Gil-Recio
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Martínez-Sarrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - F. Hernández-Alfaro
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Ferrés-Padró
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Oral and Maxillofacial Surgery Department, Fundacio Hospital de Nens de Barcelona, Barcelona, Spain
| | - L. Giner-Tarrida
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M. Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
19
|
Arphavasin S, Singhatanadgit W, Ngamviriyavong P, Janvikul W, Meesap P, Patntirapong S. Enhanced osteogenic activity of a poly(butylene succinate)/calcium phosphate composite by simple alkaline hydrolysis. Biomed Mater 2013; 8:055008. [DOI: 10.1088/1748-6041/8/5/055008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 2012; 423:200-5. [PMID: 22659743 DOI: 10.1016/j.bbrc.2012.05.130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 02/05/2023]
Abstract
We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.
Collapse
Affiliation(s)
- Chieri Sato
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Amin HD, Olsen I, Knowles JC, Donos N. Differential effect of amelogenin peptides on osteogenic differentiation in vitro: identification of possible new drugs for bone repair and regeneration. Tissue Eng Part A 2012; 18:1193-202. [PMID: 22320389 DOI: 10.1089/ten.tea.2011.0375] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enamel matrix proteins (EMP) have been shown to promote regeneration of periodontal ligament and root cementum, and sometimes to enhance the differentiation of bone-forming cells in vitro and new bone growth in vivo. However, the inconsistent and unpredictable effects of EMP that have been reported for bone regeneration may be due to the highly variable composition of this heterogeneous material, which is comprised mainly of amelogenin and amelogenin-derived peptides. The present study has therefore examined the effects of naturally occurring low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions of Emdogain(®) (EMD; Institut Straumann, Basel, Switzerland), a commercially available form of EMP, on osteogenic differentiation of bone precursor cells in vitro. In addition, the effects of chemically synthesized specific components of LMW and HMW-namely, the tyrosine-rich amelogenin peptide (TRAP), a specific amelogenin isoform derived by proteolytic clipping, and a leucine-rich amelogenin peptide (LRAP), an isoform derived by alternative splicing-on bone-forming cell activity were also investigated. Our findings demonstrate that while TRAP suppressed the formation of bone-like mineralized nodules, LRAP upregulated osteogenic differentiation. Furthermore, synthetically produced TRAP and its unique C-terminal 12 amino acid sequence (TCT) also suppressed bone-forming cells, whereas LRAP and its unique C-terminal 23 amino acid sequence (LCT) markedly enhanced terminal differentiation of bone-forming cells. These findings suggest that the differential effects of amelogenin-derived peptide sequences present in EMP could be of potential clinical value, with the novel bioactive TCT peptide as a useful tool for limiting pathological bone cell growth and the unique LCT sequence having therapeutic benefits in the treatment of periodontal and orthopedic diseases.
Collapse
Affiliation(s)
- Harsh D Amin
- Periodontology Unit, Department of Clinical Research, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
22
|
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8:272-88. [PMID: 22298955 PMCID: PMC3269610 DOI: 10.7150/ijbs.2929] [Citation(s) in RCA: 1222] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 12/29/2011] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Guiqian Chen
- Institute of Genetics, Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou 310058, China
| | | | | |
Collapse
|
23
|
Osteogenic potency of stem cell-based genetic engineering targeting Wnt3a and Wnt9a. Open Life Sci 2011. [DOI: 10.2478/s11535-011-0079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBone engineering is a promising therapeutic approach to correct skeletal defects, and genetically-modified stem cells have been implicated in engineering new bone. However, the use of genetically-modified human mesenchymal stem cells targeting an osteogenic growth factor Wnt is not yet investigated. In the present study, a proliferation assay and the alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) and osteocalcin (OC) transcripts were investigated to examine the effect of Wnt2 overexpression, Wnt3a overexpression, and Wnt9a knockdown on cell proliferation and osteoblast differentiation of bone marrowderived mesenchymal stem cells (BMSCs). The results showed that the expression of Wnt2 and Wnt3a was up-regulated throughout the osteoblast differentiation period of BMSCs, whereas that of Wnt9a was down-regulated. Overexpression of Wnt3a stimulated cell proliferation while knockdown of Wnt9a increased the ALP activity and the expression of Runx2 and OC. Double transfection producing Wnt3a overexpression and Wnt9a knockdown simultaneously resulted in up-regulation of osteoblast differentiation markers, i.e., the ALP activity and the Runx2 expression. In conclusion, simultaneous genetic modification of Wnt3a overexpression and Wnt9a knockdown enhances osteoblast differentiation of BMSCs, suggesting its osteogenic potency to regenerate new bone in vivo.
Collapse
|
24
|
Jang WG, Kim EJ, Lee KN, Son HJ, Koh JT. AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun 2010; 404:1004-9. [PMID: 21187071 DOI: 10.1016/j.bbrc.2010.12.099] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
Abstract
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.
Collapse
Affiliation(s)
- Won Gu Jang
- Department of Pharmacology and Dental Therapeutics and BK21, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | |
Collapse
|
25
|
Endogenous BMPR-IB signaling is required for early osteoblast differentiation of human bone cells. In Vitro Cell Dev Biol Anim 2010; 47:251-9. [DOI: 10.1007/s11626-010-9378-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023]
|
26
|
Kempen DH, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ, Dhert WJ. Growth Factor Interactions in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:551-66. [DOI: 10.1089/ten.teb.2010.0176] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Lichun Lu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Abraham J. Verbout
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Michael J. Yaszemski
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Wouter J.A. Dhert
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Zhang H, Migneco F, Lin CY, Hollister SJ. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 2010; 16:3441-8. [PMID: 20560772 DOI: 10.1089/ten.tea.2010.0132] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) has received considerable attention in bone tissue engineering. However, the lack of osteoinductive ability of PCL limits its application. The aim of this study was to directly attach bone morphogenetic protein-2 (BMP-2) to PCL scaffolds by a crosslinking conjugation method and to investigate whether the bound BMP-2 maintained bioactivity in vitro. Immunofluorescent staining against BMP-2 and quantitative enzyme-linked immunosorbent assay measurements demonstrated that BMP-2 was successfully immobilized on the PCL three-dimensional scaffold by aminolysis and subsequent chemical conjugation. Conjugation produced much higher immobilization efficiency than the physical adsorption. Conjugated BMP-2 release from the PCL scaffolds was significantly slower than that from BMP-2-adsorbed PCL scaffolds over 15 days, which resulted in more BMP-2 locally retained on the conjugated scaffold. Further, the downstream Smads pathway was upregulated in bone marrow stromal cells cultured on the BMP-2-conjugated PCL scaffolds. Finally, gene expression of osteogenic markers (alkaline phosphatase, osteoclacin, and type I collagen) was upregulated in bone marrow stromal cells cultured on the PCL scaffolds with BMP-2 conjugation, but not on PCL scaffolds after BMP-2 adsorption. Therefore, our finding demonstrated that BMP-2 conjugation on polyester scaffolds is a feasible way to impart scaffolds with osteoinductive capability.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
28
|
Chang PC, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res 2010; 21:1-12. [PMID: 20070743 DOI: 10.1111/j.1600-0501.2009.01826.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this paper is to review current investigations on functional assessments of osseointegration and assess correlations to the peri-implant structure. MATERIAL AND METHODS The literature was electronically searched for studies of promoting dental implant osseointegration, functional assessments of implant stability, and finite element (FE) analyses in the field of implant dentistry, and any references regarding biological events during osseointegration were also cited as background information. RESULTS Osseointegration involves a cascade of protein and cell apposition, vascular invasion, de novo bone formation and maturation to achieve the primary and secondary dental implant stability. This process may be accelerated by alteration of the implant surface roughness, developing a biomimetric interface, or local delivery of growth-promoting factors. The current available pre-clinical and clinical biomechanical assessments demonstrated a variety of correlations to the peri-implant structural parameters, and functionally integrated peri-implant structure through FE optimization can offer strong correlation to the interfacial biomechanics. CONCLUSIONS The progression of osseointegration may be accelerated by alteration of the implant interface as well as growth factor applications, and functional integration of peri-implant structure may be feasible to predict the implant function during osseointegration. More research in this field is still needed.
Collapse
Affiliation(s)
- Po-Chun Chang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
29
|
Wang L, Huang Y, Pan K, Jiang X, Liu C. Osteogenic Responses to Different Concentrations/Ratios of BMP-2 and bFGF in Bone Formation. Ann Biomed Eng 2009; 38:77-87. [DOI: 10.1007/s10439-009-9841-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 11/06/2009] [Indexed: 12/22/2022]
|
30
|
Kawasaki T, Niki Y, Miyamoto T, Horiuchi K, Matsumoto M, Aizawa M, Toyama Y. The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation. Biomaterials 2009; 31:1191-8. [PMID: 19913294 DOI: 10.1016/j.biomaterials.2009.10.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 12/21/2022]
Abstract
Development of bone morphogenetic protein (BMP) signaling modulators may provide useful therapeutic options for the treatment of large bony defects in clinical settings. Controversy remains over whether hepatocyte growth factor (HGF) is a positive or negative modulator of BMP-induced osteogenesis. This study analyzed osteogenic properties of HGF, particularly during BMP-2-induced bone formation. Using a mouse model of ectopic bone formation, HGF-impregnated gelatin sponges displayed significantly reduced bone formation induced by BMP-2, both radiologically and histologically. Abrogation of endogenous HGF production by knockdown of HGF mRNA resulted in upregulation of BMP-2-induced ALP activity for C2C12 myoblasts in vitro. In contrast, addition of exogenous HGF inhibited BMP-2-induced ALP activity and osteocalcin production by mouse embryonic fibroblasts (MEFs) through HGF-c-Met interactions. Inhibition of ALP activity by HGF was rescued by U0126, a MEK1/2 inhibitor, indicating that HGF suppresses the BMP-2-Smad axis via activation of ERK1/2. Importantly, treatment with HGF prior to administration of BMP-2 induced cellular proliferation of MEFs and did not influence subsequent osteoblast differentiation induced by BMP-2. The effects of HGF may differ according to the differentiation stage of mesenchymal stem cells, which would explain the inconsistencies seen in osteogenic properties of HGF in previous reports. The timing of HGF treatment is critical and should be carefully determined for successful induction of bone formation by BMPs.
Collapse
Affiliation(s)
- Toshiki Kawasaki
- Department of Orthopaedic Surgery, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Singhatanadgit W, Donos N, Olsen I. Isolation and characterization of stem cell clones from adult human ligament. Tissue Eng Part A 2009; 15:2625-36. [PMID: 19207044 DOI: 10.1089/ten.tea.2008.0442] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics and to play an important part in re-building damaged tissue, including alveolar bone. However, these populations have been heterogeneous, and thus far no highly purified periodontal stem cell (PSC) clone has yet been established from adult human PDL tissue. The present study was therefore carried out to isolate single cell-derived PDL clones and to delineate their phenotypic and functional characteristics. In this report we have obtained four homogeneous and distinct clones--namely, C5, C6, C7, and C8--and have found these to be highly proliferative and to express the stromal cell markers CD29 and CD44. In particular, C7 showed stem cell-like characteristics of small cell size with reduced cytoplasm, clonogenicity, and multilineage potential, including osteogenic activity in forming bone-like tissue in organoid micromass cultures. Clones C5 and C6 possessed osteoprogenitor features with mineralized matrix-forming activity, whereas C8 did not undergo osteogenic, adipogenic, or chondrogenic differentiation. The present study thus reports, for the first time, the isolation and cellular and molecular characterization of highly purified putative PSC and osteoprogenitors in adult human PDL, based on clonogenicity and multilineage differentiation potential, with PSC-C7 capable of bone formation in vitro, suggesting that such cells may have potential value for stem cell-based bone tissue engineering in vivo.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Periodontology Unit, Division of Clinical Research, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | | | | |
Collapse
|
32
|
Li BC, Zhang JJ, Xu C, Zhang LC, Kang JY, Zhao H. Treatment of rabbit femoral defect by firearm with BMP-4 gene combined with TGF-beta1. ACTA ACUST UNITED AC 2009; 66:450-6. [PMID: 19204520 DOI: 10.1097/ta.0b013e3181848cd6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Firearm bone fractures are difficult to treat compared with general ones as both soft tissue and bone are injured more extensively and severely with contamination in the wound track. The bone morphogenetic protein (BMP) and transforming growth factor (TGF)-beta play an important role in bone fracture healing. Therefore, BMP-4 combined with TGF-beta1 was used to improve and accelerate the repair of rabbit femoral defect resulting from firearm. METHODS Femoral defect was made with 0.375 g steel ball fired at 350 m/s. At 6 hours after wounding, the debridement and irrigation were performed, followed by trimming the ends of defected bone at day 7. Plasmid-encoded BMP-4 gene identified in vitro and TGF-beta1 were injected into the tissue of upper and lower parts and the epicenter of the defected area at 2 weeks after wounding, again TGF-beta1 was given at 5 weeks. At 3, 7, 11, and 15 weeks after wounding, the expression of mRNA and protein of BMP-4 were detected by reverse transcription-polymerase chain reaction and Western blot. The activity of alkaline phosphatase and calcium content were measured for describing osteogenetic ability. The course and quality of osteogenesis were determined quantitatively by pathohistological and X-ray examinations. RESULTS In vivo BMP-4 mRNA and protein could be continually expressed for 8 weeks. The determination of alkaline phosphatase activity and calcium content showed osteogenetic ability was significantly enhanced by BMP-4 gene combined with TGF-beta1. The pathohistological and X-ray examinations revealed that osteogenetic speed was prominently accelerated, and the quality was improved after the treatment. CONCLUSION The repair of rabbit femoral defect resulting from firearm can be significantly improved and accelerated by BMP-4 gene combined with TGF-beta1.
Collapse
Affiliation(s)
- Bing Cang Li
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
33
|
Lavery K, Swain P, Falb D, Alaoui-Ismaili MH. BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 2008; 283:20948-58. [PMID: 18436533 PMCID: PMC3258927 DOI: 10.1074/jbc.m800850200] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/23/2008] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of growth factors and are used clinically to induce new bone formation. The purpose of this study was to evaluate receptor utilization by BMP-2, BMP-4, BMP-6, and BMP-7 in primary human mesenchymal stem cells (hMSC), a physiologically relevant cell type that probably mediates the in vivo effects of BMPs. RNA interference-mediated gene knockdown revealed that osteoinductive BMP activities in hMSC are elicited through the type I receptors ACVR1A and BMPR1A and the type II receptors ACVR2A and BMPR2. BMPR1B and ACVR2B were expressed at low levels and were not found to play a significant role in signaling by any of the BMPs evaluated in this study. Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7. A greater reliance on BMPR2 was observed for BMP-2/4 relative to BMP-6/7, whereas ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4. Significant differences were also observed for the type I receptors. Although BMP-2/4 used predominantly BMPR1A for signaling, ACVR1A was the preferred type I receptor for BMP-6/7. Signaling by both BMP-2/4 and BMP-6/7 was mediated by homodimers of ACVR1A or BMPR1A. A portion of BMP-2/4 signaling also required concurrent BMPR1A and ACVR1A expression, suggesting that BMP-2/4 signal in part through ACVR1A/BMPR1A heterodimers. The capacity of ACVR1A and BMPR1A to form homodimers and heterodimers was confirmed by bioluminescence resonance energy transfer analyses. These results suggest different mechanisms for BMP-2/4- and BMP-6/7-induced osteoblastic differentiation in primary hMSC.
Collapse
|
34
|
Singhatanadgit W, Mordan N, Salih V, Olsen I. Changes in bone morphogenetic protein receptor-IB localisation regulate osteogenic responses of human bone cells to bone morphogenetic protein-2. Int J Biochem Cell Biol 2008; 40:2854-64. [PMID: 18619554 DOI: 10.1016/j.biocel.2008.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 12/20/2022]
Abstract
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor beta1 (TGF-beta1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-beta1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-beta1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | | | | | | |
Collapse
|
35
|
|
36
|
Lehnerdt G, Metz KA, Trellakis S, Jahnke K, Neumann A. Signaling by way of type IB and II bone morphogenetic protein receptors regulates bone formation in otospongiosis. Laryngoscope 2007; 117:812-6. [PMID: 17473674 DOI: 10.1097/mlg.0b013e31803300a2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The main goal of this study was to perform an immunohistologic analysis of bone morphogenetic protein receptors (BMPR) in otospongiosis. BACKGROUND BMP-2, -4, and -7 play an essential role in bone formation and repair. They do so as well in otosclerosis. It has been shown that these BMPs are traceable in osteocytes and osteoclasts in the active phase of otosclerosis (otospongiosis). The role of the different BMP receptors in otosclerotic bone transformation has not been previously analyzed. METHODS The posterior parts of the stapes footplates, collected during partial stapedectomies in 35 patients with clinical otosclerosis, were analyzed for histologic otosclerotic lesions after hematoxylin staining. Immunohistochemical analysis was performed using polyclonal immunoglobulin G antibodies for BMPR-IA, -IB, and -II, as well as biotinylated secondary antibodies, avidin-biotin-peroxidase complex reaction, and alkaline phosphatase staining with nitroblue-tetrazolium-chloride. RESULTS Seventeen of 35 (49%) specimens contained otosclerosis, but only 5 of these exhibited an otospongiotic phase. The abundant osteoblasts and osteoclasts in these cases showed distinct immunochemical staining for BMP-2, -4, and -7. In two cases, there could also be found an immense positive staining for BMPR-IB and modest staining for BMPR-II, whereas BMPR-1A always remained negative. CONCLUSION It was demonstrated for the first time that in otospongiosis, the actions of the BMPs are mediated through BMPR-IB and BMPR-II. To determine this role in detail, further investigations, especially for the phosphorylated Smad proteins within the BMP dependent mediator cascade, will be necessary.
Collapse
Affiliation(s)
- Goetz Lehnerdt
- Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|