1
|
Lu X, Wang T, Hou B, Han N, Li H, Wang X, Xin J, He Y, Zhang D, Jia Z, Wei C. Shensong yangxin, a multi-functional traditional Chinese medicine for arrhythmia: A review of components, pharmacological mechanisms, and clinical applications. Heliyon 2024; 10:e35560. [PMID: 39224243 PMCID: PMC11367280 DOI: 10.1016/j.heliyon.2024.e35560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
As a common cardiovascular disease (CVD), Arrhythmia refers to any abnormality in the origin, frequency, rhythm, conduction velocity, timing, pathway, sequence, or other aspect of cardiac impulses, and it is one of the common cardiovascular diseases in clinical practice. At present, various ion channel blockers are used for treatment of arrhythmia that include Na+ ion channel blockers, K+ ion channel blockers and Ca2+ ion channel blockers. While these drugs offer benefits, they have led to a gradual increase in drug-related adverse reactions across various systems. As a result, the quest for safe and effective antiarrhythmic drugs is pressing. Recent years have seen some advancements in the treatment of ventricular arrhythmias using traditional Chinese medicine(TCM). The theory of Luobing in TCM has proposed a new drug intervention strategy of "fast and slow treatment, integrated regulation" leading to a shift in mindset from "antiarrhythmic" to "rhythm-regulating". Guided by this theory, the development of Shen Song Yang Xin Capsules (SSYX) has involved various Chinese medicinal ingredients that comprehensively regulate the myocardial electrophysiological mechanism, exerting antiarrhythmic effects on multiple ion channels and non-ion channels. Similarly, in clinical studies, evidence-based research has confirmed that SSYX combined with conventional antiarrhythmic drugs can more effectively reduce the occurrence of arrhythmias. Therefore, this article provides a comprehensive review of the composition and mechanisms of action, pharmacological components, network pharmacology analysis, and clinical applications of SSYX guided by the theory of Luobing, aiming to offer valuable insights for improved clinical management of arrhythmias and related research.
Collapse
Affiliation(s)
- Xuan Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Bin Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Ningxin Han
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Hongrong Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Jingjing Xin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Yanling He
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Dan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Cong Wei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, 050035, China
| |
Collapse
|
2
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
3
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
4
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
5
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
6
|
Kuzmin VS, Ivanova AD, Filatova TS, Pustovit KB, Kobylina AA, Atkinson AJ, Petkova M, Voronkov YI, Abramochkin DV, Dobrzynski H. Micro-RNA 133a-3p induces repolarization abnormalities in atrial myocardium and modulates ventricular electrophysiology affecting I Ca,L and Ito currents. Eur J Pharmacol 2021; 908:174369. [PMID: 34310913 DOI: 10.1016/j.ejphar.2021.174369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Mir-133a-3p is the most abundant myocardial microRNA. The impact of mir-133a-3p on cardiac electrophysiology is poorly explored. In this study, we investigated the effects of mir-133a-3p on the main ionic currents critical for action potential (AP) generation and electrical activity of the heart. We used conventional ECG, sharp microelectrodes and patch-clamp to clarify a role of mir-133a-3p in normal cardiac electrophysiology in rats after in vivo and in vitro transfection. Mir-133a-3p caused no changes to pacemaker APs and automaticity in the sinoatrial node. No significant changes in heart rate (HR) were observed in vivo; however, miR transfection facilitated HR increase in response to β-adrenergic stimulation. Mir-133a-3p induced repolarization abnormalities in the atrial working myocardium and the L-type calcium current (ICa,L) was significantly increased. The main repolarization currents, including the transient outward (Ito), ultra-rapid (IK,ur), and inward rectifier (IK1) remained unaffected in atrial cardiomyocytes. Mir-133a-3p affected both ICa,L and Ito in ventricular cardiomyocytes. Systemic administration of mir-133a-3p induced QT-interval prolongation. Bioinformatic analysis revealed protein phosphatase 2 (PPP2CA/B) and Kcnd3 (encoding Kv4.3 channels generating Ito) as the main miR-133a-3p targets in the heart. No changes in mRNA expression of Cacna1c (encoding Cav1.2 channels generating ICa,L) and Kcnd3 were seen in mir-133a-3p treated rats. However, the expression of Ppp2cA, encoding PPP2CA, and Kcnip2 encoding KChIP2, a Kv4.3 regulatory protein, were significantly decreased. The accumulation of mir-133a-3p in cardiac myocytes causes chamber-specific electrophysiological changes. The suppression of PPP2CA, involved in adrenergic signal transduction, and Kchip2 may indirectly mediate mir-133a-3p-induced augmentation of ICa,L and attenuation of Ito.
Collapse
Affiliation(s)
- Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia.
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Anastasia A Kobylina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Andrew J Atkinson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Petkova
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yurij I Voronkov
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
7
|
Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102922. [PMID: 33050637 PMCID: PMC7600069 DOI: 10.3390/cancers12102922] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary By the virtue of targeting multiple genes, a microRNA (miRNA) can infer variable consequences on tumorigenesis by appearing as both a tumour suppressor and oncogene. miRNAs can regulate gene expression by modulating genome-wide epigenetic status of genes that are involved in various cancers. These miRNAs perform direct inhibition of key mediators of the epigenetic machinery, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) genes. Along with miRNAs gene expression, similar to other protein-coding genes, miRNAs are also controlled by epigenetic mechanisms. Overall, this reciprocal interaction between the miRNAs and the epigenetic architecture is significantly implicated in the aberrant expression of miRNAs detected in various human cancers. Comprehensive knowledge of the miRNA-epigenetic dynamics in cancer is essential for the discovery of novel anticancer therapeutics. Abstract Initiation and progression of cancer are under both genetic and epigenetic regulation. Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing a trilateral regulatory “epi–miR–epi” feedback circuit. The intricate association between miRNAs and the epigenetic architecture is an important feature through which to monitor gene expression profiles in cancer. This review summarises the involvement of epigenetically regulated miRNAs and miRNA-mediated epigenetic modulations in various cancers. In addition, the application of bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of these factors can be translated into diagnostic and therapeutic tool development.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
9
|
microRNAs in the Antitumor Immune Response and in Bone Metastasis of Breast Cancer: From Biological Mechanisms to Therapeutics. Int J Mol Sci 2020; 21:ijms21082805. [PMID: 32316552 PMCID: PMC7216039 DOI: 10.3390/ijms21082805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common type of cancer in women, and the occurrence of metastasis drastically worsens the prognosis and reduces overall survival. Understanding the biological mechanisms that regulate the transformation of malignant cells, the consequent metastatic transformation, and the immune surveillance in the tumor progression would contribute to the development of more effective and targeted treatments. In this context, microRNAs (miRNAs) have proven to be key regulators of the tumor-immune cells crosstalk for the hijack of the immunosurveillance to promote tumor cells immune escape and cancer progression, as well as modulators of the metastasis formation process, ranging from the preparation of the metastatic site to the transformation into the migrating phenotype of tumor cells. In particular, their deregulated expression has been linked to the aberrant expression of oncogenes and tumor suppressor genes to promote tumorigenesis. This review aims at summarizing the role and functions of miRNAs involved in antitumor immune response and in the metastasis formation process in breast cancer. Additionally, miRNAs are promising targets for gene therapy as their modulation has the potential to support or inhibit specific mechanisms to negatively affect tumorigenesis. With this perspective, the most recent strategies developed for miRNA-based therapeutics are illustrated.
Collapse
|
10
|
Nader J, Metzinger L, Maitrias P, Caus T, Metzinger-Le Meuth V. Aortic valve calcification in the era of non-coding RNAs: The revolution to come in aortic stenosis management? Noncoding RNA Res 2020; 5:41-47. [PMID: 32195449 PMCID: PMC7075756 DOI: 10.1016/j.ncrna.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Aortic valve stenosis remains the most frequent structural heart disease, especially in the elderly. During the last decade, we noticed an important consideration and a huge number of publications related to the medical and surgical treatment of this disease. However, the molecular aspect of this degenerative issue has also been more widely studied recently. As evidenced in oncologic but also cardiac research fields, the emergence of microRNAs in the molecular screening and follow-up makes them potential biomarkers in the future, for the diagnosis, follow-up and treatment of aortic stenosis. Herein, we present a review on the implication of microRNAs in the aortic valve disease management. After listing and describing the main miRNAs of interest in the field, we provide an outline to develop miRNAs as innovative biomarkers and innovative therapeutic strategies, and describe a groundbreaking pre-clinical study using inhibitors of miR-34a in a pre-clinical model of aortic valve stenosis.
Collapse
Affiliation(s)
- Joseph Nader
- Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Laurent Metzinger
- HEMATIM EA4666, C.U.R.S, Université de Picardie Jules Verne, 80025, AMIENS Cedex 1, France
| | - Pierre Maitrias
- Department of Vascular Surgery, Polyclinique Saint Côme, Compiègne, France
| | - Thierry Caus
- Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Valérie Metzinger-Le Meuth
- HEMATIM EA4666, C.U.R.S, Université de Picardie Jules Verne, 80025, AMIENS Cedex 1, France.,INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13-Sorbonne Paris Cité, 93017, BOBIGNY CEDEX, France
| |
Collapse
|
11
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
12
|
Patutina OA, Miroshnichenko SK, Mironova NL, Sen'kova AV, Bichenkova EV, Clarke DJ, Vlassov VV, Zenkova MA. Catalytic Knockdown of miR-21 by Artificial Ribonuclease: Biological Performance in Tumor Model. Front Pharmacol 2019; 10:879. [PMID: 31456683 PMCID: PMC6698794 DOI: 10.3389/fphar.2019.00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Control of the expression of oncogenic small non-coding RNAs, notably microRNAs (miRNAs), is an attractive therapeutic approach. We report a design platform for catalytic knockdown of miRNA targets with artificial, sequence-specific ribonucleases. miRNases comprise a peptide [(LeuArg)2Gly]2 capable of RNA cleavage conjugated to the miRNA-targeted oligodeoxyribonucleotide, which becomes nuclease-resistant within the conjugate design, without resort to chemically modified nucleotides. Our data presented here showed for the first time a truly catalytic character of our miR-21-miRNase and its ability to cleave miR-21 in a multiple catalytic turnover mode. We demonstrate that miRNase targeted to miR-21 (miR-21-miRNase) knocked down malignant behavior of tumor cells, including induction of apoptosis, inhibition of cell invasiveness, and retardation of tumor growth, which persisted on transplantation into mice of tumor cells treated once with miR-21-miRNase. Crucially, we discover that the high biological activity of miR-21-miRNase can be directly related not only to its truly catalytic sequence-specific cleavage of miRNA but also to its ability to recruit the non-sequence specific RNase H found in most cells to elevate catalytic turnover further. miR-21-miRNase worked synergistically even with low levels of RNase H. Estimated degradation in the presence of RNase H exceeded 103 miRNA target molecules per hour for each miR-21-miRNase molecule, which provides the potency to minimize delivery requirements to a few molecules per cell. In contrast to the comparatively high doses required for the simple steric block of antisense oligonucleotides, truly catalytic inactivation of miRNA offers more effective, irreversible, and persistent suppression of many copy target sequences. miRNase design can be readily adapted to target other pathogenic microRNAs overexpressed in many disease states.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Aleksandra V Sen'kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
13
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
14
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
15
|
Arora S, Pandey DK, Chaudhary B. Target-mimicry based diminution of miRNA167 reinforced flowering-time phenotypes in tobacco via spatial-transcriptional biases of flowering-associated miRNAs. Gene 2019; 682:67-80. [PMID: 30292869 DOI: 10.1016/j.gene.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/29/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Evolutionarily conserved microRNAs such as miR156, miR159, miR167 and miR172 tightly regulate the extensive array of gene expression during flowering in plants, through instant and long-term alterations in the expression of their target genes. Here we employed a novel target-mimicry approach for the diminution of auxin signalling regulator miRNA167 by developing mimic-transgenic lines in tobacco, to investigate the transcriptional biases of flowering-associated miRNAs in apical and floral meristematic tissues and their phenotypic implications. Recorded morpho-alterations such as uneven flowering-time phenotypes, anomalous floral organ formation, and large variations in the seed forming characteristics permitted us to determine the consequence of the extent of miR167 expression diminution accompanying the transcriptional biases of interrelated miRNAs. We demonstrate that percent diminution of miR167 gene expression is proportionally associated with both early and late flowering-time phenotypes in mimic lines. Also, the associated miRNAs, miR156, miR159, and miR172 showed >90% transcriptional diminution in at least 'early-flowering' miR167 mimic lines. On contrary, low percentages of their respective diminution were recorded in 'late-flowering' lines. Evidently, the misexpression of miR156, miR159, and miR172 led to the over-expression of their respective target genes SPL9, AtMYB33-like and AP2 genes in mimic lines which resulted in assorted phenotypes. We describe the scope of spatial regulation of these microRNAs in floral bud tissues of mimic lines which showed negative- or very low (<25%) misexpression levels in early/late-flowering lines highlighting their roles in the acquisition of flowering mechanism. To our knowledge, this study represents the first characterization of transcriptional biases of flowering associated miRNAs in miR167-mimic lines and certainly augments our understanding of the importance of microRNA-mediated regulation of flowering in plants.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India
| | - Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India.
| |
Collapse
|
16
|
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology 2019; 71:411-425. [PMID: 30600466 DOI: 10.1007/s10616-018-0291-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are non-coding, which regulate gene expression in the post-transcriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies.
Collapse
Affiliation(s)
- Gizem Ors-Kumoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Biomedical Technologies Graduate Programme, Institute of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Romano FJ, Montanari M, La Mantia E, Piscitelli R, Nocerino F, Cappuccio F, Grimaldi G, Izzo A, Castaldo L, Pepe MF, Malzone MG, Iovane G, Ametrano G, Stiuso P, Quagliuolo L, Barberio D, Perdonà S, Muto P, Montella M, Maiolino P, Veneziani BM, Botti G, Caraglia M, Facchini G. Micrornas in prostate cancer: an overview. Oncotarget 2018; 8:50240-50251. [PMID: 28445135 PMCID: PMC5564846 DOI: 10.18632/oncotarget.16933] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second highest cause of cancer mortality after lung tumours. In USA it affects about 2.8 million men and the incidence increases with age in many countries. Therefore, early diagnosis is a very important step for patient clinical evaluation and for a selective and efficient therapy. The study of miRNAs' functions and molecular mechanisms has brought new knowledge in biological processes of cancer. In prostate cancer there is a deregulation of several miRNAs that may function as tumour suppressors or oncogenes. The aim of this review is to analyze the progress made to our understanding of the role of miRNA dysregulation in prostate cancer tumourigenesis.
Collapse
Affiliation(s)
- Daniela Vanacore
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Elvira La Mantia
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Flavia Nocerino
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Giovanni Grimaldi
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Alessandro Izzo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maria Gabriella Malzone
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Barberio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Directorate, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| |
Collapse
|
18
|
Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation. Biomed Pharmacother 2018; 99:65-71. [PMID: 29324314 DOI: 10.1016/j.biopha.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of physiologic and pathologic conditions of the heart. Animal models of heart diseases have shown that miRNAs may contribute to the development of arrhythmias. However, little is known about the expression of muscle- and cardiac-specific miRNAs in patients with myocardial infarction (MI) who have developed ventricular fibrillation (VF). Our study included 47 patients who had died from myocardial infarction (MI), 23 with clinically proven VF and 24 without VF. Autopsy samples of infarcted tissue and remote myocardium were available (n = 94). Heart tissue from 8 healthy trauma victims was included as control. Expression of miR-1, miR-133a/b and miR-208 was analyzed using real-time PCR (qPCR). In patients with MI with VF, we observed down-regulation of miR-133a/b, and this down-regulation was even stronger 2-7 days after MI. miR-208 was up-regulated in remote myocardium irrespective of the presence of VF. Deregulation of miR-1 and miR-208 was not related to the presence of VF. Our results suggest that down-regulation of miR-133a/b might contribute to the development of VF in patients with MI. However, up-regulation of miR-1 and miR-208 in remote myocardium might play a role in cardiac remodeling after MI, at least to certain degree.
Collapse
|
19
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
20
|
Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol 2017; 95:1236-1244. [PMID: 28679064 DOI: 10.1139/cjpp-2016-0741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiotherapy is the most commonly used methodology to treat oncological disease, one of the most widespread causes of death worldwide. Oncological patients cured by radiotherapy applied to the mediastinal area have been shown to suffer from cardiovascular disease. The increase in the prevalence of radiation-induced heart disease has emphasized the need to seek new therapeutic targets to mitigate the negative impact of radiation on the heart. In this regard, microRNAs (miRNAs) have received considerable interest. miRNAs regulate post-transcriptional gene expression by their ability to target various mRNA sequences because of their imperfect pairing with mRNAs. It has been recognized that miRNAs modulate a diverse spectrum of cardiac functions with developmental, pathophysiological, and clinical implications. This makes them promising potential targets for diagnosis and treatment. This review summarizes the recent findings about the possible involvement of miRNAs in radiation-induced heart disease and their potential use as diagnostic or treatment targets in this respect.
Collapse
Affiliation(s)
- Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| | - Pavel Babal
- b Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| |
Collapse
|
21
|
Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clinical application. Clin Chem Lab Med 2017; 55:687-704. [PMID: 27914211 DOI: 10.1515/cclm-2016-0576] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are well-known, powerful regulators of gene expression, and their potential to serve as circulating biomarkers is widely accepted. In cardiovascular disease (CVD), numerous studies have suggested miRNAs as strong circulating biomarkers with high diagnostic as well as prognostic power. In coronary artery disease (CAD) and heart failure (HF), miRNAs have been suggested as reliable biomarkers matching up to established protein-based such as cardiac troponins (cT) or natriuretic peptides. Also, in other CVD entities, miRNAs were identified as surprisingly specific biomarkers - with great potential for clinical applicability, especially in those entities that lack specific protein-based biomarkers such as atrial fibrillation (AF) and acute pulmonary embolism (APE). In this regard, miRNA signatures, comprising a set of miRNAs, yield high sensitivity and specificity. Attempts to utilize miRNAs as therapeutic agents have led to promising results. In this article, we review the clinical applicability of circulating miRNAs in CVD. We are giving an overview of miRNAs as biomarkers in numerous CVD entities to depict the variety of their potential clinical deployment. We illustrate the function of miRNAs by means of single miRNA examples in CVD.
Collapse
Affiliation(s)
- Christian Schulte
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| | - Mahir Karakas
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| |
Collapse
|
22
|
Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, Bryce RA, Vlassov VV, Zenkova MA. miRNases: Novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials 2017; 122:163-178. [PMID: 28126663 DOI: 10.1016/j.biomaterials.2017.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Linda T Trivoluzzi
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
23
|
Liao C, Gui Y, Guo Y, Xu D. The regulatory function of microRNA-1 in arrhythmias. MOLECULAR BIOSYSTEMS 2016; 12:328-33. [PMID: 26671473 DOI: 10.1039/c5mb00806a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrhythmia, the basis of which is cardiomyocyte ion channel abnormalities, poses a serious threat to human health. A large number of studies have demonstrated that miRNA-1(miR-1) is involved in the occurrence of arrhythmia in many myocardial pathological conditions by post-transcriptionally regulating a variety of ion channels and proteins related to cardiac electrical activity. We aim at emphasizing the relationship between miR-1 and ion channels and proteins involved in the process of arrhythmia. In addition, we will pay attention to its future therapeutic prospects.
Collapse
Affiliation(s)
- Caixiu Liao
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yajun Gui
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yuan Guo
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
24
|
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 2016; 12:34-42. [PMID: 27720213 PMCID: PMC5078622 DOI: 10.1016/j.ebiom.2016.09.017] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are an evolutionarily conserved class of small, regulatory non-coding RNAs that negatively regulate protein coding gene and other non-coding transcripts expression. miRNAs have been established as master regulators of cellular processes, and they play a vital role in tumor initiation, progression and metastasis. Further, widespread deregulation of microRNAs have been reported in several cancers, with several microRNAs playing oncogenic and tumor suppressive roles. Based on these, miRNAs have emerged as promising therapeutic tools for cancer management. In this review, we have focused on the roles of miRNAs in tumorigenesis, the miRNA-based therapeutic strategies currently being evaluated for use in cancer, and the advantages and current challenges to their use in the clinic. miRNAs can act as oncogenes or tumor suppressors depending on the specific tissue/cancer targets. miRNAs can be used as drugs or can be targets for drugs. Clinical trials using miRNA mimetics or anti-miRNAs as therapeutic targets are currently underway and show promising results.
Collapse
Affiliation(s)
- Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Li X, Zhong H. The diagnosis, prognosis, and therapeutic application of MicroRNAs in haematological malignancies. ACTA ACUST UNITED AC 2016; 21:263-71. [PMID: 26907667 DOI: 10.1080/10245332.2015.1114766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are small noncoding RNA molecules that participate in vital cell processes such as proliferation, apoptosis, and differentiation. In recent years, they have been proven to play vital roles in haematological malignancies. In this review we briefly introduce some basic knowledge of microRNAs and summarize their ectopic expression in haematological malignancies, especially in leukaemia. We will also discuss the potential of microRNAs in the diagnosis of leukaemia, in the determination of the clinical prognosis of diverse subtypes, and in targeted therapy. DISCUSSION Despite current adoption of novel biological agents combining traditional chemotherapy regimens, leukaemia remains to have undesirable clinical outcomes due to inaccurate diagnosis, invasiveness of the disease, and patients' intolerance to chemotherapy, thus brand new therapeutic directions are urgently needed. MiRNAs regulate gene expression by means of binding to the 3'-untranslated regions of corresponding mRNAs, leading to the degradation of targeted mRNA or the inhibition of translation. It has been confirmed that they can either function as tumour inhibitors, or may trigger tumourigenesis in certain situations, this specific dual characteristic undoubtedly attract scientists to explore their roles in haematological malignancies. It is of great necessity to summarize the roles of miRNAs in haematological malignancies diagnosis, prognosis evaluation, and clinical treatment. CONCLUSIONS Future studies may take full advantage of miRNAs detection in diagnosing, in choosing targeted biological therapy, and in avoiding predictable side effect, thus the overall survival rate and cure efficiency of leukaemia should improve.
Collapse
Affiliation(s)
- Xin Li
- a Department of Hematology, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , P.R. China
| | - Hua Zhong
- a Department of Hematology, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , P.R. China
| |
Collapse
|
26
|
Basak I, Patil KS, Alves G, Larsen JP, Møller SG. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 2016; 73:811-27. [PMID: 26608596 PMCID: PMC11108480 DOI: 10.1007/s00018-015-2093-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 11/09/2015] [Indexed: 01/03/2023]
Abstract
The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA
| | - Ketan S Patil
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA
| | - Guido Alves
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Jan Petter Larsen
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Simon Geir Møller
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA.
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway.
| |
Collapse
|
27
|
Schulte C, Westermann D, Blankenberg S, Zeller T. Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 2015; 7:843-860. [PMID: 26730290 PMCID: PMC4691811 DOI: 10.4330/wjc.v7.i12.843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are powerful regulators of posttranscriptional gene expression and play an important role in pathophysiological processes. Circulating miRNAs can be quantified in body liquids and are promising biomarkers in numerous diseases. In cardiovascular disease miRNAs have been proven to be reliable diagnostic biomarkers for different disease entities. In cardiac fibrosis (CF) and heart failure (HF) dysregulated circulating miRNAs have been identified, indicating their promising applicability as diagnostic biomarkers. Some miRNAs were successfully tested in risk stratification of HF implementing their potential use as prognostic biomarkers. In this respect miRNAs might soon be implemented in diagnostic clinical routine. In the young field of miRNA based research advances have been made in identifying miRNAs as potential targets for the treatment of experimental CF and HF. Promising study results suggest their potential future application as therapeutic agents in treatment of cardiovascular disease. This article summarizes the current state of the various aspects of miRNA research in the field of CF and HF with reduced ejection fraction as well as preserved ejection fraction. The review provides an overview of the application of circulating miRNAs as biomarkers in CF and HF and current approaches to therapeutically utilize miRNAs in this field of cardiovascular disease.
Collapse
|
28
|
Novel biomarkers in cardiology: MicroRNAs in atrial fibrillation. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2015; 85:225-9. [DOI: 10.1016/j.acmx.2015.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/02/2015] [Accepted: 01/16/2015] [Indexed: 11/20/2022] Open
|
29
|
Bose D, Nahar S, Rai MK, Ray A, Chakraborty K, Maiti S. Selective inhibition of miR-21 by phage display screened peptide. Nucleic Acids Res 2015; 43:4342-52. [PMID: 25824952 PMCID: PMC4417150 DOI: 10.1093/nar/gkv185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 11/20/2014] [Accepted: 02/23/2015] [Indexed: 01/07/2023] Open
Abstract
miRNAs are nodal regulators of gene expression and deregulation of miRNAs is causally associated with different diseases, including cancer. Modulation of miRNA expression is thus of therapeutic importance. Small molecules are currently being explored for their potential to downregulate miRNAs. Peptides have shown to have better potency and selectivity toward their targets but their potential in targeting and modulating miRNAs remain unexplored. Herein, using phage display we found a very selective peptide against pre-miR-21. Interestingly, the peptide has the potential to downregulate miR-21, by binding to pre-miR-21 and hindering Dicer processing. It is selective towards miR-21 inside the cell. By antagonising miR-21 function, the peptide is able to increase the expression of its target proteins and thereby increase apoptosis and suppress cell proliferation, invasion and migration. This peptide can further be explored for its anti-cancer activity in vivo and may be even extended to clinical studies.
Collapse
Affiliation(s)
- Debojit Bose
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India
| | - Smita Nahar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Manish Kumar Rai
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Arjun Ray
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Kausik Chakraborty
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Souvik Maiti
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India National Chemical Laboratory, CSIR, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
30
|
Schulte C, Zeller T. microRNA-based diagnostics and therapy in cardiovascular disease-Summing up the facts. Cardiovasc Diagn Ther 2015; 5:17-36. [PMID: 25774345 DOI: 10.3978/j.issn.2223-3652.2014.12.03] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) are discussed as potential disease-specific biomarkers in cardiovascular disease. Their diagnostic value has been examined in numerous studies and animal models with respect to coronary artery disease (CAD) and myocardial infarction (MI) and the prognostic abilities of circulating miRNAs in risk stratification of future disease have been evaluated. Various miRNAs are described to complement protein-based biomarkers or classical risk factors in the diagnosis of CAD or MI and even represent potential new biomarkers in the discrimination of unstable angina pectoris (UAP). Signatures consisting of sets of multiple miRNAs seem to improve the predictive power compared to single miRNAs. Furthermore, the emerging field of miRNA-based therapeutics has reached cardiovascular research. The first promising in vitro results are raising hope for future clinical application. However, methods and material used for RNA isolation, miRNA detection and normalization steps still lack ways of standardization and need to be considered carefully. This article reviews the current knowledge of miRNAs in cardiovascular disease focusing on CAD and MI and will provide an overview regarding the use of circulating miRNAs as biomarkers and potential therapeutic targets in the field of CAD.
Collapse
Affiliation(s)
- Christian Schulte
- 1 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, 20246 Hamburg, Germany ; 2 German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Tanja Zeller
- 1 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, 20246 Hamburg, Germany ; 2 German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| |
Collapse
|
31
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
32
|
Sun L, Sun S, Zeng S, Li Y, Pan W, Zhang Z. Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia. Mol Med Rep 2015; 11:4039-46. [PMID: 25625292 PMCID: PMC4394928 DOI: 10.3892/mmr.2015.3246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/22/2014] [Indexed: 11/27/2022] Open
Abstract
Paroxysmal or persistent tachycardia in pediatric patients is a common disease. Certain circulating microRNAs (miRNAs) have been associated with arrhythmia. The present study investigated miRNAs in the plasma of pediatric patients with tachycardia. Forty pediatric subjects were included retrospectively: 24 with recurrent sustained tachycardia [seven cases of ventricular tachycardia (VT) and 17 cases of supraventricular tachycardia (SVT)] and 16 healthy controls. Circulating miR-1 and miR-133 in the plasma were detected by fluorescent quantitative polymerase chain reaction. miR-1 levels were significantly decreased in the arrhythmia group compared with those in the controls (P=0.004) whilst miR-133 expression levels were not significantly different between the two groups (P=0.456). Both miR-1 and miR-133 levels showed significant differences between the SVT and VT groups (P=0.004 and P=0.046, respectively), and a significant decrease in miR-1 levels was observed in the SVT group as compared with the controls (P<0.001). No significant difference was observed in the expression levels of miR-133. By contrast, miR-133 levels were significantly increased in the VT group compared with those in the controls (P=0.024), whereas no statistically significant difference was observed in the expression levels of miR-1. Receiver operating characteristic curves showed that 1/miR-1 was significant for the evaluation of tachycardia. Additionally, miR-1 produced enhanced sensitivity and specificity for the evaluation of SVT compared with miR-133, whereas miR-133 was a better marker to assess VT. This study demonstrated that miRNAs may be appropriate markers for pediatric tachycardia; miR-1 levels were decreased in the arrhythmia group compared with those in the healthy controls. Furthermore, patients with SVT had lower miR-1 expression levels while those with VT had higher miR-133 expression levels.
Collapse
Affiliation(s)
- Ling Sun
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shuo Sun
- Department of Cardiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoying Zeng
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yufen Li
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Pan
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiwei Zhang
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
33
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
34
|
JIN DANJUAN, FANG YANTIAN, LI ZHENGYANG, CHEN ZONGYOU, XIANG JIANBIN. Epithelial-mesenchymal transition-associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncol Rep 2014; 33:515-25. [DOI: 10.3892/or.2014.3638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/17/2014] [Indexed: 11/06/2022] Open
|
35
|
The role of microRNAs in skin fibrosis. Arch Dermatol Res 2014; 305:763-76. [PMID: 24022477 DOI: 10.1007/s00403-013-1410-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Fibrotic skin disorders may be debilitating and impair quality of life. There are few effective treatment options for cutaneous fibrotic diseases. In this review, we discuss our current understanding of the role of microRNAs (miRNAs) in skin fibrosis. miRNAs are a class of small, non-coding RNAs involved in skin fibrosis. These small RNAs range from 18 to 25 nucleotides in length and modify gene expression by binding to target messenger RNA (mRNA), causing degradation of the target mRNA or inhibiting the translation into proteins. We present an overview of the biogenesis, maturation and function of miRNAs. We highlight miRNA’s role in key skin fibrotic processes including: transforming growth factor-beta signaling, extracellular matrix deposition, and fibroblast proliferation and differentiation. Some miRNAs are profibrotic and their upregulation favors these processes contributing to fibrosis, while anti-fibrotic miRNAs inhibit these processes and may be reduced in fibrosis. Finally, we describe the diagnostic and therapeutic significance of miRNAs in the management of skin fibrosis. The discovery that miRNAs are detectable in serum, plasma, and other bodily fluids, and are relatively stable, suggests that miRNAs may serve as valuable biomarkers to monitor disease progression and response to treatment. In the treatment of skin fibrosis, antifibrotic miRNAs may be upregulated using mimics and viral vectors. Conversely, profibrotic miRNAs may be downregulated by employing anti-miRNAs, sponges, erasers and masks. We believe that miRNA-based therapies hold promise as important treatments and may transform the management of fibrotic skin diseases by physicians.
Collapse
|
36
|
Significance and therapeutic value of miRNAs in embryonal neural tumors. Molecules 2014; 19:5821-62. [PMID: 24806581 PMCID: PMC6271640 DOI: 10.3390/molecules19055821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors of the nervous system are the leading cause of childhood cancer-related morbidity and mortality. Medulloblastoma, supratentorial primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumor and neuroblastoma account for more than 20% of childhood malignancies and typify the current neural embryonal tumor model in pediatric oncology. Mechanisms driving the formation of these tumors point towards impaired differentiation of neuronal and neuron-associated cells during the development of the nervous system as an important factor. The importance of microRNAs (miRNAs) for proper embryonic cell function has been confirmed and their aberrant expressions have been linked to tumor development. The role of miRNAs in controlling essential regulators of key pathways implicated in tumor development makes their use in diagnostics a powerful tool to be used for early detection of cancer, risk assessment and prognosis, as well as for the design of innovative therapeutic strategies. In this review we focus on the significance of miRNAs involved in the biology of embryonal neural tumors, delineate their clinical significance and discuss their potential as a novel therapeutic target.
Collapse
|
37
|
Nguyen HT, Tian G, Murph MM. Molecular epigenetics in the management of ovarian cancer: are we investigating a rational clinical promise? Front Oncol 2014; 4:71. [PMID: 24782983 PMCID: PMC3986558 DOI: 10.3389/fonc.2014.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. Although liquid tumors are benefiting from epigenetically related therapies, solid tumors like ovarian cancer are not (yet?). Herein, we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Pre-clinical and clinical research on the role of epigenetic modifications is also summarized. Unfortunately, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management, which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have pre-clinical utility in pharmacology and clinical applications for prognosis and diagnosis. Finally, drugs currently in clinical trials (i.e., histone deacetylase inhibitors) are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; but we hope so in the future.
Collapse
Affiliation(s)
- Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| | - Geng Tian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA ; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University , Changchun , China
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| |
Collapse
|
38
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
39
|
Abstract
Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation-contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5'-flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3'untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation.
Collapse
Affiliation(s)
- Zhiguo Wang
- Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
40
|
Abstract
Ischemic stroke predominates in all types of stroke and none neuroprotective agents success in the clinical trial. MicroRNAs are small endogenous noncoding RNA molecules that act as negative or positive regulators of gene expressions by binding completely or partially to complementary target sequences in the mRNAs. The genes which could be modulated by microRNAs play a role in the etiology and pathophysiology ischemic stroke. Therefore, microRNAs may have function on ischemic stroke. A lot of previous studies have investigated the roles of microRNAs in the ischemic stroke. This mini review would highlight the recent progress of microRNAs on the ischemic stroke. Accumulating evidence demonstrated that microRNAs contributed to the etiology of ischemic stroke and modulated the pathophysiological process such as brain edema, local inflammation, and apoptosis in the brain tissues after stroke. And we also discussed the potential application of microRNAs in ischemic stroke such as a biomarker of stroke and drug target. In conclusion, microRNAs play an important role in stroke etiology, pathophysiology, diagnosis, and therapy for ischemic stroke. It needs further research to investigate the biological function in ischemic stroke before it enters the clinical practice.
Collapse
|
41
|
Zhang M, Zhou X, Wang B, Yung BC, Lee LJ, Ghoshal K, Lee RJ. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. J Control Release 2013; 168:251-61. [PMID: 23567045 PMCID: PMC3672318 DOI: 10.1016/j.jconrel.2013.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
Abstract
Lactosylated gramicidin-containing lipid nanoparticles (Lac-GLN) were developed for delivery of anti-microRNA-155 (anti-miR-155) to hepatocellular carcinoma (HCC) cells. MiR-155 is an oncomiR frequently elevated in HCC. The Lac-GLN formulation contained N-lactobionyl-dioleoyl phosphatidylethanolamine (Lac-DOPE), a ligand for the asialoglycoprotein receptor (ASGR), and an antibiotic peptide gramicidin A. The nanoparticles exhibited a mean particle diameter of 73 nm, zeta potential of +3.5mV, anti-miR encapsulation efficiency of 88%, and excellent colloidal stability at 4°C. Lac-GLN effectively delivered anti-miR-155 to HCC cells with a 16.1- and 4.1-fold up-regulation of miR-155 targets C/EBPβ and FOXP3 genes, respectively, and exhibited significant greater efficiency over Lipofectamine 2000. In mice, intravenous injection of Lac-GLN containing Cy3-anti-miR-155 led to preferential accumulation of the anti-miR-155 in hepatocytes. Intravenous administration of 1.5 mg/kg anti-miR-155 loaded Lac-GLN resulted in up-regulation of C/EBPβ and FOXP3 by 6.9- and 2.2-fold, respectively. These results suggest potential application of Lac-GLN as a liver-specific delivery vehicle for anti-miR therapy.
Collapse
Affiliation(s)
- Mengzi Zhang
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
| | - Xiaoju Zhou
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
- State Key Laboratory of Virology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China
| | - Bo Wang
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Bryant C. Yung
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
| | - Ly J. Lee
- NSF Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD), The Ohio State University, Columbus, Ohio 43210, U.S.A
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Kalpana Ghoshal
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Robert J. Lee
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- NSF Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD), The Ohio State University, Columbus, Ohio 43210, U.S.A
| |
Collapse
|
42
|
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS One 2013; 8:e66796. [PMID: 23805279 PMCID: PMC3689682 DOI: 10.1371/journal.pone.0066796] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza virus replication, a small interfering RNA (siRNA) screen of 720 HPKs was performed. From the screen, 17 HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5 (CDK13), CALM2, PKN3, and HK2) were validated as essential for A/WSN/33 influenza virus replication, and 6 HPKs (CDK13, HK2, NEK8, PANK4, PLK4 and SGK3) were identified as vital for both A/WSN/33 and A/New Caledonia/20/99 influenza virus replication. These HPKs were found to affect multiple host pathways and regulated by miRNAs induced during infection. Using a panel of miRNA agonists and antagonists, miR-149* was found to regulate NEK8 expression, miR-548d-3p was found to regulate MAPK1 transcript expression, and miRs -1228 and -138 to regulate CDK13 expression. Up-regulation of miR-34c induced PLK4 transcript and protein expression and enhanced influenza virus replication, while miR-34c inhibition reduced viral replication. These findings identify HPKs important for influenza viral replication and show the miRNAs that govern their expression.
Collapse
|
43
|
Schena FP, Serino G, Sallustio F. MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant 2013; 29:755-63. [PMID: 23787546 DOI: 10.1093/ndt/gft223] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A series of microRNAs (miRNAs) have a critical role in many cellular and physiological activities such as cell cycle, growth, proliferation, apoptosis and metabolism. miRNAs are also important in the maintenance of renal homeostasis and kidney diseases. In vitro and in vivo animal models have shown a critical role of miRNAs in the development of diabetic nephropathy (DN) and in the progression of renal fibrosis. Specific miRNAs in renal tissue and peripheral blood mononuclear cells (PBMCs) are up and downregulated in different kidney diseases. They represent new potential biomarkers for diagnosis and targeted therapy. In addition, urinary miRNAs may be considered non-invasive biomarkers for monitoring the progression of renal damage. The activity of miRNAs can be modified by different approaches such as the use of antisense oligonucleotide inhibitors (antagomirs), tandem miRNA-binding site repeats manufactured by Decoy or Sponge technologies and miRNA mimics. The use of miRNA blockers or antagonists as therapeutic agents is very attractive but new information will be necessary considering their role in other systems.
Collapse
Affiliation(s)
- F P Schena
- Department of Emergency and Organ Transplant, University of Bari, Bari, Italy
| | | | | |
Collapse
|
44
|
Ketley A, Warren A, Holmes E, Gering M, Aboobaker AA, Brook JD. The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development. PLoS One 2013; 8:e65170. [PMID: 23755189 PMCID: PMC3673911 DOI: 10.1371/journal.pone.0065170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.
Collapse
Affiliation(s)
- Ami Ketley
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Anne Warren
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Emily Holmes
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Martin Gering
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - J. David Brook
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Soriano A, Jubierre L, Almazán-Moga A, Molist C, Roma J, de Toledo JS, Gallego S, Segura MF. microRNAs as pharmacological targets in cancer. Pharmacol Res 2013; 75:3-14. [PMID: 23537752 DOI: 10.1016/j.phrs.2013.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/13/2022]
Abstract
The survival rate of cancer patients has increased considerably in the last 20 years owing to significant efforts made in prevention, early detection protocols, combined chemotherapy regimens, targeted therapies, refined radiotherapy and cancer vaccines. However, metastasis and acquired resistance to current therapies represent two major challenges for achieving long-term cure. Therefore, new treatment strategies must be developed. One promising alternative is epigenetic-based therapies, of which miRNAs are at the forefront. MicroRNAs are endogenous small non-coding RNAs, often deregulated in cancer, which regulate gene expression by specific binding to the 3'-UTR of target genes. They are excellent candidates for therapy since miRNAs can regulate multiple targets of the same or different pathways, thereby minimizing the risk of resistance development or compensatory mechanisms. In this review, the mechanisms that lead to miRNA deregulation in cancer, their feasibility as therapeutic tools and the different strategies for the pharmacological manipulation of miRNAs in preclinical animal models are discussed.
Collapse
Affiliation(s)
- Aroa Soriano
- Laboratory of Translational Research in Childhood Cancer, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Caroli A, Cardillo MT, Galea R, Biasucci LM. Potential therapeutic role of microRNAs in ischemic heart disease. J Cardiol 2013; 61:315-20. [PMID: 23490563 DOI: 10.1016/j.jjcc.2013.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the most important cause of death and illness in the western world. Atherosclerosis constitutes the single most important contributor to CVD. miRNAs are small ribonucleic acids (RNAs) that negatively regulate gene expression on the post-transcriptional level by inhibiting mRNA translation or promoting mRNA degradation. Several studies demonstrated that miRNAs dysregulation have a key role in the disease process and, focusing on atherosclerotic disease, in every step of plaque formation and destabilization. These data suggest a possible therapeutic application of miRNA modulation, in particular dysregulated miRNAs can be modulated in disease process antagonizing miRNAs up-regulated and increasing miRNAs down-regulated. In this review we summarize the miRNA therapeutic techniques (antimiR, mimics, sponges, masking, and erasers) underlining their therapeutic advantages and evaluating their risks and challenges. In particular, the use of miRNA modulators as a therapeutic approach opens a novel and fascinating area of intervention in the therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Annalisa Caroli
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | |
Collapse
|
47
|
Landskroner-Eiger S, Moneke I, Sessa WC. miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 2013; 3:a006643. [PMID: 23169571 DOI: 10.1101/cshperspect.a006643] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs are highly expressed in endothelial cells, and recent data suggest that they regulate aspects of vascular development and angiogenesis. This study highlights the state of the art in this field and potential therapeutic opportunities. MicroRNAs (miRNAs) represent a family of conserved short (≈22 nt) noncoding single-stranded RNAs that have been identified in plants and animals. They are generated by the sequential processing of the RNA template by the enzymes Drosha and Dicer, and mature miRNAs can regulate the levels of gene expression at the posttranscriptional level. miRNAs participate in a diverse range of regulatory events via regulation of genes involved in the control of processes such as development, differentiation, homeostasis, metabolism, growth, proliferation, and apoptosis. However, rather than functioning as regulatory on-off switches, miRNAs often function to modulate or fine-tune cellular phenotypes. So far, more than 1000 mammalian miRNAs have been identified since the discovery of the first two miRNAs (lin-4 and let-7), and bioinformatics predictions indicate that mammalian miRNAs can regulate ∼30% of all protein-coding genes.
Collapse
Affiliation(s)
- Shira Landskroner-Eiger
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
48
|
Joshi D, Gosh K, Vundinti BR. MicroRNAs in hematological malignancies: a novel approach to targeted therapy. ACTA ACUST UNITED AC 2013; 17:170-5. [PMID: 22664117 DOI: 10.1179/102453312x13376952196656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are about 19-24 nucleotide small single-stranded noncoding RNAs that are involved in crucial cell processes such as proliferation, apoptosis, and differentiation. Several studies reported show the involvement of miRNA in cancer. It has been suggested that miRNA profiling has the potential to classify a variety of tumors and possibly predict outcome. MicroRNA can act as an oncogene as well as tumor suppressor gene and this dual function of miRNA can be utilized as a therapeutic tool. The oncogenic character of miRNA can be silenced through various RNA interference-type strategies. The involvement of miRNA in the tumorogenesis processes makes them an important therapeutic tool and a novel biomarker. In this review, we have highlighted the role of miRNA in hematological malignancies and its utility in targeted therapy.
Collapse
Affiliation(s)
- Dolly Joshi
- National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai, India
| | | | | |
Collapse
|
49
|
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs (ncRNAs) and posttranscriptional gene regulators shown to be involved in pathogenesis of all types of human cancers. Their aberrant expression as tumor suppressors can lead to cancerogenesis by inhibiting malignant potential, or when acting as oncogenes, by activating malignant potential. Differential expression of miRNA genes in tumorous tissues can occur owing to several factors including positional effects when mapping to cancer-associated genomic regions, epigenetic mechanisms, and malfunctioning of the miRNA processing machinery, all of which can contribute to a complex miRNA-mediated gene network misregulation. They may increase or decrease expression of protein-coding genes, can target 3'-UTR or other genic regions (5'-UTR, promoter, coding sequences), and can function in various subcellular compartments, developmental, and metabolic processes. Because expanding research on miRNA-cancer associations has already produced large amounts of data, our main objective here was to summarize main findings and critically examine the intricate network connecting the miRNAs and coding genes in regulatory mechanisms and their function and phenotypic consequences for cancer. By examining such interactions, we aimed to gain insights for the development of new diagnostic markers as well as identification of potential venues for more selective tumor therapy. To enable efficient examination of the main past and current miRNA discoveries, we developed a Web-based miRNA timeline tool that will be regularly updated (http://www.integratomics-time.com/miRNA_timeline). Further development of this tool will be directed at providing additional analyses to clarify complex network interactions between miRNAs, other classes of ncRNAs, and protein-coding genes and their involvement in development of diseases including cancer. This tool therefore provides curated relevant information about the miRNA basic research and therapeutic application all at hand on one site to help researchers and clinicians in making informed decision about their miRNA cancer-related research or clinical practice.
Collapse
|
50
|
Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 2012; 167:1651-9. [PMID: 23063140 DOI: 10.1016/j.ijcard.2012.09.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 01/08/2023]
Abstract
Cardiac remodelling is a key process in the progression of cardiovascular disease, implemented in myocardial infarction, valvular heart disease, myocarditis, dilated cardiomyopathy, atrial fibrillation and heart failure. Fibroblasts, extracellular matrix proteins, coronary vasculature, cardiac myocytes and ionic channels are all involved in this remodelling process. MicroRNAs (miRNAs) represent a sizable sub-group of small non-coding RNAs, which degrade or inhibit the translation of their target mRNAs, thus regulating gene expression and play an important role in a wide range of biologic processes. Recent studies have reported that miRNAs are aberrantly expressed in the cardiovascular system under some pathological conditions. Indeed, in vitro and in vivo models have revealed that miRNAs are essential for cardiac development and remodelling. Clinically, there is increasing evidence of the potential diagnostic role of miRNAs as potential diagnostic biomarkers and they may represent a novel therapeutic target in several cardiovascular disorders. This paper provides an overview of the impact of several miRNAs in electrical and structural remodelling of the cardiac tissue, and the diagnostic and therapeutic potential of miRNA in cardiovascular disease.
Collapse
|