1
|
Huang Z, Ito M, Zhang S, Toda T, Takeda JI, Ogi T, Ohno K. Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115482. [PMID: 37717354 DOI: 10.1016/j.ecoenv.2023.115482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.
Collapse
Affiliation(s)
- Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuro Toda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
2
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Auger C, Vinaik R, Appanna VD, Jeschke MG. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 2021; 118:154733. [PMID: 33631145 PMCID: PMC8052308 DOI: 10.1016/j.metabol.2021.154733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Roohi Vinaik
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
4
|
Wang Y, Liu X, Zhang Y, Wan B, Zhang J, He W, Hu D, Yang Y, Lai J, He M, Chen C. Exposure to a 50 Hz magnetic field at 100 µT exerts no DNA damage in cardiomyocytes. Biol Open 2019; 8:bio.041293. [PMID: 31362949 PMCID: PMC6737969 DOI: 10.1242/bio.041293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effects of exposure to magnetic fields (MFs) at electric frequencies (50-60 Hz) on carcinogenicity are still in debate. Whether exposure to MFs affects the heart is also a debated issue. This study aimed to determine whether exposure to extremely low frequency MFs (ELF-MFs) induced DNA damage in cardiomyocytes both in vitro and in vivo Human ventricular cardiomyocytes were exposed to 50 Hz ELF-MF at 100 µT for 1 h continuously or 75 min intermittently. The effects of the treatments were evaluated by DNA damage, redox status changes and relative signal molecular expression. Moreover, ten male Sprague-Dawley rats were exposed to a 50 Hz MF at 100 µT for 7 days, while another 10 rats were sham exposed. The protein levels of p53 and Hsp70 in heart tissue were analyzed by western blot. The results showed that exposure to ELF-MF did not induce DNA damage, changes to cell cycle distribution or increased reactive oxygen species level. No significant differences were detected in p53 and Hsp70 expression level between the ELF-MF and sham-exposure groups both in vitro and in vivo All these data indicate that MFs at power-frequency may not cause DNA damage in cardiomyocytes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yong Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingfa Liu
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Yemao Zhang
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Baoquan Wan
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Jiangong Zhang
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Wei He
- Electric Power Research Institute of State Grid Gansu Electric Power Company, Lanzhou 730050, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinsheng Lai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Costantini E, Sinjari B, D'Angelo C, Murmura G, Reale M, Caputi S. Human Gingival Fibroblasts Exposed to Extremely Low-Frequency Electromagnetic Fields: In Vitro Model of Wound-Healing Improvement. Int J Mol Sci 2019; 20:ijms20092108. [PMID: 31035654 PMCID: PMC6540598 DOI: 10.3390/ijms20092108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Several clinical studies have suggested the impact of sinusoidal and pulsed electromagnetic fields in quickening wound repair processes and tissue regeneration. The clinical use of extremely low-frequency electromagnetic fields could represent a novel frontier in tissue repair and oral health, with an interesting clinical perspective. The present study aimed to evaluate the effect of an extremely low-frequency sinusoidal electromagnetic field (SEMF) and an extremely low-frequency pulsed electromagnetic field (PEMF) with flux densities of 1 mT on a model of oral healing process using gingival fibroblasts. An in vitro mechanical injury was produced to evaluate wound healing, migration, viability, metabolism, and the expression of selected cytokines and protease genes in fibroblasts exposed to or not exposed to the SEMF and the PEMF. Interleukin 6 (IL-6), transforming growth factor beta 1 (TGF-β), metalloproteinase 2 (MMP-2), monocyte chemoattractant protein 1 (MCP-1), inducible nitric oxide synthase (iNOS), and heme oxygenase 1 (HO-1) are involved in wound healing and tissue regeneration, favoring fibroblast proliferation, chemotaxis, and activation. Our results show that the exposure to each type of electromagnetic field increases the early expression of IL-6, TGF-β, and iNOS, driving a shift from an inflammatory to a proliferative phase of wound repair. Additionally, a later induction of MMP-2, MCP-1, and HO-1 was observed after electromagnetic field exposure, which quickened the wound-healing process. Moreover, electromagnetic field exposure influenced the proliferation, migration, and metabolism of human gingival fibroblasts compared to sham-exposed cells. This study suggests that exposure to SEMF and PEMF could be an interesting new non-invasive treatment option for wound healing. However, additional studies are needed to elucidate the best exposure conditions to provide the desired in vivo treatment efficacy.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Giovanna Murmura
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
6
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
7
|
Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 2017; 5:167-176. [PMID: 30023251 PMCID: PMC6025786 DOI: 10.1016/j.jmau.2017.07.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems. Abbreviations: EMF, electromagnetic fields; RF, radiofrequency; ROS, reactive oxygen species; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; CAT, catalase; SOD, superoxide dismutase; HSP, heat shock protein; EMF/RFR, electromagnetic frequency and radiofrequency exposures; ELF-EMFs, exposure to extremely low frequency; MEL, melatonin; FA, folic acid; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Elfide Gizem Kıvrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Hyeok Jung J, Young Kim J. Electromagnetic field (10 Hz, 1 mT) protects mesenchymal stem cells from oxygen-glucose deprivation-induced cell death by reducing intracellular Ca 2+ and reactive oxygen species. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Duong CN, Kim JY. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS. Int J Radiat Biol 2016; 92:195-201. [PMID: 26882219 DOI: 10.3109/09553002.2016.1136851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- a Department of Life Science , Gachon University , Seongnam , Kyeonggi-Do , Korea
| | - Jae Young Kim
- a Department of Life Science , Gachon University , Seongnam , Kyeonggi-Do , Korea
| |
Collapse
|
10
|
Misa-Agustiño M, Leiro-Vidal J, Gomez-Amoza J, Jorge-Mora M, Jorge-Barreiro F, Salas-Sánchez A, Ares-Pena F, López-Martín E. EMF radiation at 2450MHz triggers changes in the morphology and expression of heat shock proteins and glucocorticoid receptors in rat thymus. Life Sci 2015; 127:1-11. [DOI: 10.1016/j.lfs.2015.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/29/2014] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
|
11
|
|
12
|
Effect of Pulsed Electromagnetic Field (PEMF) on Infarct Size and Inflammation After Cerebral Ischemia in Mice. Transl Stroke Res 2014; 5:491-500. [DOI: 10.1007/s12975-014-0334-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/09/2014] [Accepted: 02/03/2014] [Indexed: 11/26/2022]
|
13
|
Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link - Part I. ACTA ACUST UNITED AC 2013; 20:191-209. [PMID: 24095003 DOI: 10.1016/j.pathophys.2013.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/06/2013] [Accepted: 07/15/2013] [Indexed: 01/02/2023]
Abstract
Although autism spectrum conditions (ASCs) are defined behaviorally, they also involve multileveled disturbances of underlying biology that find striking parallels in the physiological impacts of electromagnetic frequency and radiofrequency exposures (EMF/RFR). Part I of this paper will review the critical contributions pathophysiology may make to the etiology, pathogenesis and ongoing generation of core features of ASCs. We will review pathophysiological damage to core cellular processes that are associated both with ASCs and with biological effects of EMF/RFR exposures that contribute to chronically disrupted homeostasis. Many studies of people with ASCs have identified oxidative stress and evidence of free radical damage, cellular stress proteins, and deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs may be due to genetics or may be downstream of inflammation or environmental exposures. Cell membrane lipids may be peroxidized, mitochondria may be dysfunctional, and various kinds of immune system disturbances are common. Brain oxidative stress and inflammation as well as measures consistent with blood-brain barrier and brain perfusion compromise have been documented. Part II of this paper will review how behaviors in ASCs may emerge from alterations of electrophysiological oscillatory synchronization, how EMF/RFR could contribute to these by de-tuning the organism, and policy implications of these vulnerabilities. Changes in brain and autonomic nervous system electrophysiological function and sensory processing predominate, seizures are common, and sleep disruption is close to universal. All of these phenomena also occur with EMF/RFR exposure that can add to system overload ('allostatic load') in ASCs by increasing risk, and worsening challenging biological problems and symptoms; conversely, reducing exposure might ameliorate symptoms of ASCs by reducing obstruction of physiological repair. Various vital but vulnerable mechanisms such as calcium channels may be disrupted by environmental agents, various genes associated with autism or the interaction of both. With dramatic increases in reported ASCs that are coincident in time with the deployment of wireless technologies, we need aggressive investigation of potential ASC - EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
Collapse
Affiliation(s)
- Martha R Herbert
- TRANSCEND Research Program Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
14
|
Abstract
The use of electrical devices has gradually increased throughout the last century, and scientists have suggested that electromagnetic fields (EMF) generated by such devices may have harmful effects on living creatures. This work represents a systematic review of collective scholarly literature examining the effects of EMFs on the heart. Although most works describing effects of EMF exposure have been carried out using city electric frequencies (50–60 Hz), a consensus has not been reached about whether long- or short-term exposure to 50–60 Hz EMF negatively affects the heart. Studies have indicated that EMFs produced at cell-phone frequencies cause no-effect on the heart. Differences between results of studies may be due to a compensatory response developed by the body over time. At greater EMF strengths or shorter exposures, the ability of the body to develop compensation mechanisms is reduced and the potential for heart-related effects increases. It is noteworthy that diseases of heart tissues such as myocardial ischemia can also be successfully treated using EMF. Despite the substantial volume of data that has been collected on heart-related effects of EMFs, additional studies are needed at the cellular and molecular level to fully clarify the subject. Until the effects of EMF on heart tissue are more fully explored, electronic devices generating EMFs should be approached with caution.
Collapse
Affiliation(s)
- Onur Elmas
- Sanliurfa Training and Research Hospital, Physiology Laboratory, Sanliurfa, Turkey
| |
Collapse
|
15
|
Villarini M, Ambrosini MV, Moretti M, Dominici L, Taha E, Piobbico D, Gambelunghe C, Mariucci G. Brain hsp70 expression and DNA damage in mice exposed to extremely low frequency magnetic fields: A dose-response study. Int J Radiat Biol 2013; 89:562-70. [DOI: 10.3109/09553002.2013.782449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Enhanced cell survival and diminished apoptotic response to simulated ischemia–reperfusion in H9c2 cells by magnetic field preconditioning. Apoptosis 2012; 17:1182-96. [DOI: 10.1007/s10495-012-0747-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Zhao B, Sun G, Feng G, Duan W, Zhu X, Chen S, Hou L, Jin Z, Yi D. Carboxy terminus of heat shock protein (HSP) 70-interacting protein (CHIP) inhibits HSP70 in the heart. J Physiol Biochem 2012; 68:485-91. [PMID: 22456997 DOI: 10.1007/s13105-012-0161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/13/2012] [Indexed: 12/17/2022]
Abstract
Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in naïve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.
Collapse
Affiliation(s)
- Bijun Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, 127 Changle West RD, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hronik-Tupaj M, Kaplan DL. A review of the responses of two- and three-dimensional engineered tissues to electric fields. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:167-80. [PMID: 22046979 DOI: 10.1089/ten.teb.2011.0244] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
19
|
Cheon S, Park I, Kim M. Pulsed Electromagnetic Field Elicits Muscle Recovery via Increase of HSP 70 Expression after Crush Injury of Rat Skeletal Muscle. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Songhee Cheon
- Department of Physical Therapy, College of Health Science, Youngsan University
| | - Inah Park
- Department of Life Science, Faculty of Art and Science, University of Toronto
| | - Minhee Kim
- Department of Physical Therapy, College of Health Science, Eulji University
| |
Collapse
|
20
|
Pilla A, Fitzsimmons R, Muehsam D, Wu J, Rohde C, Casper D. Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim Biophys Acta Gen Subj 2011; 1810:1236-45. [PMID: 22005645 DOI: 10.1016/j.bbagen.2011.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/21/2011] [Accepted: 10/01/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND The transduction mechanism for non-thermal electromagnetic field (EMF) bioeffects has not been fully elucidated. This study proposes that an EMF can act as a first messenger in the calmodulin-dependent signaling pathways that orchestrate the release of cytokines and growth factors in normal cellular responses to physical and/or chemical insults. METHODS Given knowledge of Ca(2+) binding kinetics to calmodulin (CaM), an EMF signal having pulse duration or carrier period shorter than bound Ca(2+) lifetime may be configured to accelerate binding, and be detectable above thermal noise. New EMF signals were configured to modulate calmodulin-dependent signaling and assessed for efficacy in cellular studies. RESULTS Configured EMF signals modulated CaM-dependent enzyme kinetics, produced several-fold increases in key second messengers to include nitric oxide and cyclic guanosine monophosphate in chondrocyte and endothelial cultures and cyclic adenosine monophosphate in neuronal cultures. Calmodulin antagonists and downstream blockers annihilated these effects, providing strong support for the proposed mechanism. CONCLUSIONS Knowledge of the kinetics of Ca(2+) binding to CaM, or for any ion binding specific to any signaling cascade, allows the use of an electrochemical model by which the ability of any EMF signal to modulate CaM-dependent signaling can be assessed a priori or a posteriori. Results are consistent with the proposed mechanism, and strongly support the Ca/CaM/NO pathway as a primary EMF transduction pathway. GENERAL SIGNIFICANCE The predictions of the proposed model open a host of significant possibilities for configuration of non-thermal EMF signals for clinical and wellness applications that can reach far beyond fracture repair and wound healing.
Collapse
Affiliation(s)
- Arthur Pilla
- Departments of Biomedical Engineering, Columbia University and Orthopedics, Mount Sinai School of Medicine, New York, NY, United States.
| | | | | | | | | | | |
Collapse
|
21
|
Lazarev VF, Onokhin KV, Antimonova OI, Polonik SG, Guzhova IV, Margulis BA. Kinetics of chaperone activity of proteins Hsp70 and Hdj1 in human leukemia u-937 cells after preconditioning with thermal shock or compound u-133. BIOCHEMISTRY (MOSCOW) 2011; 76:590-5. [PMID: 21639839 DOI: 10.1134/s0006297911050099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinetics of the chaperone activity of proteins Hsp70 and Hdj1 were analyzed in human U-937 promonocytes during their response to heat shock or to treatment with the echinochrome triacetyl glucoside derivative U-133. To measure the chaperone activity of both proteins, a special test was developed for their recognition and binding of a denatured protein. Using this test, the chaperone activity could be concurrently estimated in large numbers of cellular or tissue extracts. We also estimated the contents of both chaperones in cells by immunoblotting. The values for contents of Hsp70 and Hdj1 obtained by two independent test systems coincided, and this suggested that the substrate-binding activity could change proportionally to the chaperone content in the protein mixture. Therefore, the test developed by us can be employed for high throughput screening of drugs activating cellular chaperones. The analysis of quantity and activity of two cellular chaperones during the cell response to heat stress or to the drug-like substance U-133 showed that both factors caused the accumulation of chaperones with similar kinetics. We conclude that the efficiency of drug preconditioning could be close to the efficiency of hyperthermia and that the high activity of chaperones could be retained in human cells for no less than 1.5 days.
Collapse
Affiliation(s)
- V F Lazarev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| | | | | | | | | | | |
Collapse
|
22
|
Belton M, Prato FS, Carson JJ. Effect of glutathione depletion, hyperthermia, and a 100-mT static magnetic field on an hsp70/luc reporter system. Bioelectromagnetics 2011; 32:453-62. [DOI: 10.1002/bem.20659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 01/20/2011] [Indexed: 11/06/2022]
|
23
|
Mannerling AC, Simkó M, Mild KH, Mattsson MO. Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:731-41. [PMID: 20582429 DOI: 10.1007/s00411-010-0306-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/07/2010] [Indexed: 05/19/2023]
Abstract
Epidemiological studies suggest a correlation between exposure to low-level extremely low-frequency (ELF) magnetic fields (MF) and certain cancers and neurodegenerative diseases. Experimental studies have not provided any mechanism for such effects, although at flux density levels significantly higher than the ones encountered in epidemiological studies, radical homoeostasis and levels of stress response proteins can be affected. Here, we report on the influence of MF exposure (50-Hz sine wave; 1 h; 0.025-0.10 mT; vertical or horizontal MF exposure direction) on different cellular parameters (proliferation, cell cycle distribution, superoxide radical anion, and HSP70 protein levels) in the human leukaemia cell line K562. The positive control heat treatment (42°C, 1 h) did not affect either cell proliferation or superoxide radical anion production but caused accumulation of cells in the G2 phase and increased the stress protein HSP70. MF exposure (0.10 mT, 1 h) did not affect either cell cycle kinetics or proliferation. Both vertical and horizontal MF exposures for 1 h caused significantly and transiently increased HSP70 levels (>twofold), at several flux densities, compared to sham controls and also compared to heat treatment. This exposure also increased (30-40%) the levels of the superoxide radical anion, comparable to the positive control PMA. Addition of free radical scavengers (melatonin or 1,10-phenantroline) inhibited the MF-induced increase in HSP70. In conclusion, an early response to ELF MF in K562 cells seems to be an increased amount of oxygen radicals, leading to HSP70 induction. Furthermore, the results suggest that there is a flux density threshold where 50-Hz MF exerts its effects on K562 cells, at or below 0.025 mT, and also that it is the MF, and not the induced electric field, which is the active parameter.
Collapse
Affiliation(s)
- Ann-Christine Mannerling
- Life Science Center, Academy of Natural Sciences and Technology, Orebro University, Orebro, Sweden
| | | | | | | |
Collapse
|
24
|
Heredia-Rojas JA, Rodríguez de la Fuente AO, Alcocer González JM, Rodríguez-Flores LE, Rodríguez-Padilla C, Santoyo-Stephano MA, Castañeda-Garza E, Taméz-Guerra RS. Effect of 60 Hz magnetic fields on the activation of hsp70 promoter in cultured INER-37 and RMA E7 cells. In Vitro Cell Dev Biol Anim 2010; 46:758-63. [PMID: 20835776 DOI: 10.1007/s11626-010-9342-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 08/19/2010] [Indexed: 11/26/2022]
Abstract
It has been reported that 50-60 Hz magnetic fields (MF) with flux densities ranging from microtesla to millitesla are able to induce heat shock factor or heat shock proteins in various cells. In this study, we investigated the effect of 60 Hz sinusoidal MF at 8 and 80 μT on the expression of the luciferase gene contained in a plasmid labeled as electromagnetic field-plasmid (pEMF). This gene construct contains the specific sequences previously described for the induction of hsp70 expression by MF, as well as the reporter for the luciferase gene. The pEMF vector was transfected into INER-37 and RMA E7 cell lines that were later exposed to either MF or thermal shock (TS). Cells that received the MF or TS treatments and their controls were processed according to the luciferase assay system for evaluate luciferase activity. An increased luciferase gene expression was observed in INER-37 cells exposed to MF and TS compared with controls (p < 0.05), but MF exposure had no effect on the RMA E7 cell line.
Collapse
Affiliation(s)
- J Antonio Heredia-Rojas
- Departamento de Ciencias Exactas y Desarrollo Humano, Facultad de Ciencias Biológicas, UANL, Serafín Peña #909 Norte, Monterrey, Nuevo León C.P. 64000, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goodman R, Lin-Ye A, Geddis MS, Wickramaratne PJ, Hodge SE, Pantazatos SP, Blank M, Ambron RT. Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria. Int J Radiat Biol 2010; 85:851-9. [PMID: 19639507 DOI: 10.1080/09553000903072488] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE To use regenerating Planaria Dugesia dorotocethala as a model to determine whether an intermittent modulated extremely low frequency electro-magnetic field (ELF-EMF) produces elevated levels of the heat shock protein hsp70 and stimulates intracellular pathways known to be involved in injury and repair. We focused on serum response element (SRE) binding through the extra-cellular signal-regulated kinase (ERK) cascade. MATERIALS AND METHODS Planaria were transected equidistant between the tip of the head and the tip of the tail. Individual head and tail portions from the same worm were exposed to a 60 Hertz 80 milliGauss ELF-EMF for 1 h twice daily for 15 days post-transection under carefully controlled exposure conditions. The regenerating heads and tails were photographed and the lengths measured at three-day intervals. In other experiments, the timing of the appearance of pigmented eyes was monitored in the tail portion at 12-h intervals following transection in both ELF-EMF exposed and sham control. In some experiments protein lysates were analysed for hsp70 levels, doubly phosphorylated (pp)-ERK, Elk-1 kinase activity and serum response factor (SRF)-SRE binding. RESULTS ELF-EMF exposure during the initial 3-days post-surgery caused a significant increase in regeneration for both heads and tails, but especially tails. The first appearance of eyes occurred at day seven post-transection in tail portions exposed to ELF-EMF. In the sham control tail samples the initial appearance of eyes occurred 48 h later. Concurrently, ELF-EMF-exposed heads and tails exhibited an elevation in the level of hsp70 protein, an activation of an ERK cascade, and an increase in SRF-SRE binding. CONCLUSION Exposures to a modulated sinusoidal ELF-EMF were delivered by a Helmholtz configuration at a frequency of 60 Hz and 80 mG twice a day for one hour. This is accompanied by an increase in hsp70 protein levels, activation of specific kinases and upregulation of transcription factors that are generally associated with repair processes.
Collapse
Affiliation(s)
- Reba Goodman
- Department of Pathology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Belton M, Rozanski C, Prato FS, Carson JJL. The effect of 100 mT SMF on activation of the hsp70 promoter in a heat shock/luciferase reporter system. J Cell Biochem 2010; 108:956-62. [PMID: 19725048 DOI: 10.1002/jcb.22327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real-time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real-time. Two heat parameters were considered in combination with sham- and 100 mT-exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult.
Collapse
Affiliation(s)
- Michelle Belton
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Hu JH, St-Pierre LS, Buckner CA, Lafrenie RM, Persinger MA. Growth of injected melanoma cells is suppressed by whole body exposure to specific spatial-temporal configurations of weak intensity magnetic fields. Int J Radiat Biol 2010; 86:79-88. [DOI: 10.3109/09553000903419932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Blank M, Goodman R. Electromagnetic fields stress living cells. PATHOPHYSIOLOGY 2009; 16:71-8. [DOI: 10.1016/j.pathophys.2009.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022] Open
|
29
|
Santini MT, Rainaldi G, Indovina PL. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol 2009; 85:294-313. [PMID: 19399675 DOI: 10.1080/09553000902781097] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The major areas of research that have characterised investigation of the impact of extremely low frequency (ELF) electromagnetic fields on living systems in the past 50 years are discussed. In particular, selected studies examining the role of these fields in cancer, their effects on immune and nerve cells, and the positive influence of these ELF fields on bone and nerve cells, wound healing and ischemia/reperfusion injury are explored. CONCLUSIONS The literature indicates that there is still no general agreement on the exact biological detrimental effects of ELF fields, on the physical mechanisms that may be behind these effects or on the extent to which these effects may be harmful to humans. Nonetheless, the majority of the in vitro experimental results indicate that ELF fields induce numerous types of changes in cells. Whether or not the perturbations observed at the cellular level can be directly extrapolated to negative effects in humans is still unknown. However, the myriad of effects that ELF fields have on biological systems should not be ignored when evaluating risk to humans from these fields and, consequently, in passing appropriate legislation to safeguard both the general public and professionally-exposed workers. With regard to the positive effects of these fields, the possibility of testing further their efficacy in therapeutic protocols should also not be overlooked.
Collapse
Affiliation(s)
- Maria T Santini
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanita, Viale Regina Elena, Rome.
| | | | | |
Collapse
|
30
|
A literature review: the cardiovascular effects of exposure to extremely low frequency electromagnetic fields. Int Arch Occup Environ Health 2009; 82:919-33. [DOI: 10.1007/s00420-009-0404-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 01/26/2009] [Indexed: 11/26/2022]
|
31
|
Cao Y, Zhang W, Lu MX, Xu Q, Meng QQ, Nie JH, Tong J. 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:727-732. [PMID: 19492235 DOI: 10.1080/15287390902841466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mobile phones are widely used globally. However, the biological effects due to exposure to electromagnetic fields (EMF) produced by mobile phones are largely unknown. Environmental and occupational exposure of humans to gamma-rays is a biologically relevant phenomenon. Consequently studies were undertaken to examine the interactions between gamma-rays and EMF on human health. In this study, exposure to 900-MHz EMF expanded gamma-ray damage to SHG44 cells. Preexposure EMF enhanced the decrease in cell proliferation induced by gamma-ray irradiation and the rate of apoptosis. The combination of EMF and gamma-ray exposure resulted in a synergistic effect by triggering stress response, which increased reactive oxygen species, but the expression of hsp70 at both mRNA and protein levels remained unaltered. Data indicate that the adverse effects of gamma-rays on cellular functions are strengthened by EMF.
Collapse
Affiliation(s)
- Yi Cao
- School of Radiation Medicine and Public Health, Suzhou University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|