1
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Theoretical Evidence of Osteoblast Self-Inhibition after Activation of the Genetic Regulatory Network Controlling Mineralization. J Theor Biol 2022; 537:111005. [PMID: 35031309 DOI: 10.1016/j.jtbi.2022.111005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023]
Abstract
Bone is a hard-soft biomaterial built through a self-assembly process under genetic regulatory network (GRN) monitoring. This paper aims to capture the behavior of the bone GRN part that controls mineralization by using a mathematical model. Here, we provide an advanced review of empirical evidence about interactions between gene coding (i) transcription factors and (ii) bone proteins. These interactions are modeled with nonlinear differential equations using Michaelis-Menten and Hill functions. Compared to empirical evidence, the two best systems (among 126=2,985,984 possibilities) use factors of inhibition from the start of the activation of each gene. It reveals negative indirect interactions coming from either negative feedback loops or the recently depicted micro-RNAs. The difference between the two systems also lies in the BSP equation and two ways for activating and reducing its production. Thus, it highlights the critical role of BSP in the bone GRN that acts on bone mineralization. Our study provides the first theoretical evidence of a necessary genetic inhibition for bone mineralization with this work.
Collapse
|
3
|
Liu C, Hu A, Chen H, Liang J, Gu M, Xiong Y, Mu CF. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm Sin B 2022; 12:364-377. [PMID: 35127392 PMCID: PMC8799883 DOI: 10.1016/j.apsb.2021.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Up to 70% of patients with late-stage breast cancer have bone metastasis. Current treatment regimens for breast cancer bone metastasis are palliative with no therapeutic cure. Disseminated tumor cells (DTCs) colonize inside the osteogenic niches in the early stage of bone metastasis. Drug delivery into osteogenic niches to inhibit DTC colonization can prevent bone metastasis from entering its late stage and therefore cure bone metastasis. Here, we constructed a 50% DSS6 peptide conjugated nanoparticle to target the osteogenic niche. The osteogenic niche was always located at the endosteum with immature hydroxyapatite. Arsenic-manganese nanocrystals (around 14 nm) were loaded in osteogenic niche-targeted PEG-PLGA nanoparticles with an acidic environment-triggered arsenic release. Arsenic formulations greatly reduced 4T1 cell adhesion to mesenchymal stem cells (MSCs)/preosteoblasts (pre-OBs) and osteogenic differentiation of osteoblastic cells. Arsenic formulations also prevented tumor cell colonization and dormancy via altering the direct interaction between 4T1 cells and MSCs/pre-OBs. The chemotactic migration of 4T1 cells toward osteogenic cells was blocked by arsenic in mimic 3D osteogenic niche. Systemic administration of osteogenic niche-targeted arsenic nanoparticles significantly extended the survival of mice with 4T1 syngeneic bone metastasis. Our findings provide an effective approach for osteogenic niche-specific drug delivery and suggest that bone metastasis can be effectively inhibited by blockage of tumor cell colonization in the bone microenvironment.
Collapse
|
4
|
Zhang T, Wu J, Zhao X, Hou F, Ma T, Wang H, Zhang X, Zhang X. Whole-exome sequencing identification of a novel splicing mutation of RUNX2 in a Chinese family with cleidocranial dysplasia. Arch Oral Biol 2019; 100:49-56. [PMID: 30798031 DOI: 10.1016/j.archoralbio.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Cleidocranial dysplasia (CCD) is a congenital autosomal dominant skeletal disease characterized by multiple craniofacial and dental anomalies. Here, we investigated mutation of the runt-related transcription factor 2 (RUNX2) gene, which is considered responsible for most instances of CCD in patients, in a Chinese family with CCD. METHODS Genomic DNA was extracted from the peripheral blood lymphocytes of all participants, and mutation analysis was performed using whole-exome and Sanger sequencing. Biophysical predictions of the altered protein were analyzed using various bioinformatics tools, and direct sequencing via reverse transcription polymerase chain reaction (PCR) was performed for functional analysis of the mutation. To determine the function of the mutated protein, expression of RUNX2 and integrin-binding sialoprotein (IBSP) was investigated via quantitative PCR. RESULTS We identified a novel splicing mutation (c.581-9 T > G) in all affected members, with this RUNX2 mutation incorporating in a new splice site to replace the canonical splice site, thereby resulting in insertion of an 8-bp fragment within the terminal exon 5 splice-acceptor site and premature translation termination. qPCR results confirmed attenuated RUNX2 expression and IBSP overexpression in the peripheral blood lymphocytes of patients. CONCLUSIONS These results suggested that the newly identified splice-site mutation (c.581-9 T > G) in RUNX2 was responsible for CCD in this family through its alteration of RUNX2 activity and upregulated IBSP levels. These findings extend the mutational spectrum of the RUNX2 gene and might contribute to genetic diagnosis and counseling of families with CCD.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Jing Wu
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxue Zhao
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Feifei Hou
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Tengfei Ma
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Huijuan Wang
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin 300070, China.
| | - Xiangyu Zhang
- Department of Pediatric Dentistry, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Wu X, Qiu W, Hu Z, Lian J, Liu Y, Zhu X, Tu M, Fang F, Yu Y, Valverde P, Tu Q, Yu Y, Chen J. An Adiponectin Receptor Agonist Reduces Type 2 Diabetic Periodontitis. J Dent Res 2019; 98:313-321. [PMID: 30626266 DOI: 10.1177/0022034518818449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is twice as prevalent in diabetics as in nondiabetics, and type 2 diabetes (T2D)-associated periodontitis is severe in many cases due to the altered and aberrant functions of bone cells in hyperglycemic conditions. Therefore, developing an effective method to halt the disease process, as well as restore and regenerate lost alveolar bone to reserve the natural teeth in diabetics, is critically important. In the current study, we applied a newly discovered adiponectin receptor agonist AdipoRon (APR) in experimental periodontitis in diabetic animal models and demonstrated the underlying molecular mechanisms. We found that when APR systemically quenched the blood sugar level in diet-induced obesity (DIO) diabetic mice, it reduced osteoclast numbers and alveolar bone loss significantly due to APR's inhibition on osteoclast differentiation shown in our in vitro studies. APR also decreased the production of proinflammatory molecules CC chemokine ligand 2 and interleukin 6 in diseased gingival tissues. On the other hand, APR promoted alveolar bone regeneration through enhancing osteogenic differentiation and decreasing stromal cell-derived factor 1 in the bone marrow that facilitates stem cell migration. Same results were achieved by APR treatment of periodontitis induced in adiponectin (APN) knockout mice, indicating the ability of APR to activate the endogenous APN receptors to exert osteoanabolic effects. In summary, our study supports the notion that APR could be used as an effective multipronged approach to target T2D-associated periodontitis.
Collapse
Affiliation(s)
- X Wu
- 1 Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China.,2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - W Qiu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Z Hu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - J Lian
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Y Liu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - X Zhu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - M Tu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - F Fang
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Y Yu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - P Valverde
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Q Tu
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Y Yu
- 1 Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Chen
- 2 Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,3 Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169:384-394. [DOI: 10.1016/j.colsurfb.2018.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
|
7
|
Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI. Lactobacillus helveticus (ATCC 27558) upregulates Runx2 and Bmp2 and modulates bone mineral density in ovariectomy-induced bone loss rats. Clin Interv Aging 2018; 13:1555-1564. [PMID: 30214175 PMCID: PMC6121767 DOI: 10.2147/cia.s169223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Osteoporosis is one of the major health concerns among the elderly population, especially in postmenopausal women. Many menopausal women over 50 years of age lose their bone density and suffer bone fractures. In addition, many mortality and morbidity cases among the elderly are related to hip fracture. This study aims to investigate the effect of Lactobacillus helveticus (L. helveticus) on bone health status among ovariectomized (OVX) bone loss-induced rats. Methods The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108–109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water. Results L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength. Conclusion Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Maria Parvaneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia, .,Discipline of Life Science, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Charles Perkin Centre, Sydney, NSW, Australia
| | - Golgis Karimi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia, .,Department of Social and Preventive Medicine, Faculty of Medicine, Julius Centre University of Malaya (JCUM), University of Malaya, Kuala Lumpur, Malaysia
| | - Rosita Jamaluddin
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia,
| | - Min Hwei Ng
- Faculty of Medicine, Tissue Engineering Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Zuriati
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia,
| | - Sani Ismaila Muhammad
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
8
|
Liu C, Cao Z, Zhang W, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Tan R, Dong S, Xu J. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL‐induced NFAT activation and calcium signaling. J Cell Physiol 2018; 233:8971-8983. [DOI: 10.1002/jcp.26841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chuan Liu
- Department of Anatomy Third Military Medical University Chongqing China
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- Department of Orthopedics The Army General Hospital Beijing China
| | - Zhen Cao
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Wen Zhang
- Department of Surgery Chinese People’s Liberation Army 66325 Hospital Beijing China
| | - Jennifer Tickner
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules, Nanjing University Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Shiwu Dong
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
| | - Jiake Xu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
9
|
Yu X, Liu S, Wang W, Li S. Periodontal ligament‑associated protein‑1 delays rat periodontal bone defect repair by regulating osteogenic differentiation of bone marrow stromal cells and osteoclast activation. Int J Mol Med 2017; 41:1110-1118. [PMID: 29251314 DOI: 10.3892/ijmm.2017.3312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess the roles of periodontal ligament‑associated protein‑1 (PLAP‑1) in the osteogenic differentiation of rat bone marrow stromal cells (rBMSCs) and in osteoclast activation during the repair of rat periodontal bone defects. Male, 6‑week‑old, Wistar rats treated with periodontal bone defects were randomly assigned to 3 groups: The PLAP‑1‑transfected rBMSC group (PLAP‑1 group), the empty vector‑transfected rBMSC group (vector group) and the normal rBMSC group (control group). Specimens were obtained at 2, 4 and 6 weeks post‑surgery. Histological observation and micro‑computed tomography were applied to evaluate the repair effect. The bone defect areas of the mandible were dissected for western blotting and reverse transcription-quantitative polymerase chain reaction (RT‑qPCR). Osteogenesis‑associated proteins, including alkaline phosphatase (ALP), bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2), Osterix (Osx) and osteocalcin (OC), as indicators of rBMSC‑induced osteogenesis, were examined by RT-qPCR and western blotting. Osteoclasts were identified and quantified using tartrate‑resistant acid phosphatase staining. Meanwhile, the receptor activator of nuclear factor κΒ ligand (RANKL)/οsteoprotegerin (OPG) ratio was quantified to assess osteoclast activation by western blotting. Τhe repair effect of the PLAP‑1 group was significantly worse than that of the vector and control groups. In the PLAP‑1 group, newly formed and mineralized bones were significantly less in quantity than that in the other two groups (P<0.05), and the expression of osteogenic proteins (ALP, BSP, Runx2, Osx and OC) was also reduced (P<0.01). However, there was no significant difference between the vector and control groups. The RANKL/OPG ratio was upregulated in the PLAP‑1 group due to decreased OPG protein expression and a simultaneous increase in RANKL protein expression (P<0.01), and more osteoclasts were activated in the PLAP‑1 group (P<0.01). In conclusion, the present study found that PLAP‑1 delays rat periodontal bone defect repair by inhibiting osteogenic differentiation and promoting osteoclast activation, mainly dependent on the upregulation of the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Xijiao Yu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Shu Li
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, Tang J, Murray D, Zhou X, Drissi H, Dard MM, Tu Q, Chen J. Overexpression of MiR-335-5p Promotes Bone Formation and Regeneration in Mice. J Bone Miner Res 2017; 32:2466-2475. [PMID: 28846804 PMCID: PMC5732062 DOI: 10.1002/jbmr.3230] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) and the Wnt signaling pathway play critical roles in regulating bone development and homeostasis. Our previous study revealed high expression of miR-335-5p in osteoblasts and hypertrophic chondrocytes in mouse embryos and the ability of miR-335-5p to promote osteogenic differentiation by downregulating Wnt antagonist Dickkopf-1 (DKK1). The purpose of this study was to investigate the effects of miR-335-5p constitutive overexpression on bone formation and regeneration in vivo. To that end, we generated a transgenic mouse line specifically overexpressing miR-335-5p in osteoblasts lineage by the osterix promoter and characterized its bone phenotype. Bone histomorphometry and μCT analysis revealed higher bone mass and increased parameters of bone formation in transgenic mice than in wild-type littermates. Increased bone mass in transgenic mice bones also correlated with enhanced expression of osteogenic differentiation markers. Upon osteogenic induction, bone marrow stromal cells (BMSCs) isolated from transgenic mice displayed higher mRNA expression of osteogenic markers than wild-type mice BMSCs cultures. Protein expression of Runx2 and Osx was also upregulated in BMSC cultures of transgenic mice upon osteogenic induction, whereas that of DKK1 was downregulated. Most important, BMSCs from transgenic mice were able to repair craniofacial bone defects as shown by μCT analysis, H&E staining, and osteocalcin (OCN) immunohistochemistry of newly formed bone in defects treated with BMSCs. Taken together, our results demonstrate constitutive overexpression of miR-335-5p driven by an osterix promoter in the osteoblast lineage induces osteogenic differentiation and bone formation in mice and support the potential application of miR-335-5p-modified BMSCs in craniofacial bone regeneration. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Tianchi Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Lei Sui
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Qianqian Han
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Liming Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Shu Meng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Leilei Zheng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Paloma Valverde
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jean Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Dana Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Xuedong Zhou
- Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | - Michel M Dard
- Periodontology and Implant Dentistry, New York University College of Dentistry, New York, NY, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Department of Anatomy and Cell Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
11
|
Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J. miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/β-Catenin Signaling Pathway. DNA Cell Biol 2017. [PMID: 28622009 DOI: 10.1089/dna.2017.3657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteogenesis of mesenchymal stem cells (MSCs) has played a necessary role in the repair of bone. According to some reports, microRNAs participate in different physiological activity of the cells, including cell differentiation. This study investigated the function that miR-139-5p plays in the osteogenic differentiation of human bone marrow MSCs (hBMSCs). In addition to miR-139-5p, the effects of alkaline phosphatase (ALP), a membrane-bound metalloenzyme that is considered an early osteogenic differentiation marker, have also been investigated. Calcium-rich deposit (mineralization) is also a typical osteogenic differentiation marker that could be visualized by alizarin red S (ARS) staining. Inhibiting miR-139-5p notably promotes the hBMSC osteoblast differentiation, which, however, will be reduced by overexpressed miR-139-5p. This result has been made based on the alternations of ALP activity, ARS staining, as well as expression of osteogenic genes, including runt-related gene-2 (Runx2), collagen I (Col-1), and osteocalcin (OCN). miR-139-5p exerts its role in BMSC osteogenesis most probably through the Wnt/β-catenin pathway, by direct targeting CTNNB1 and frizzled 4 (FZD4), essential factors of Wnt/β-catenin pathway. In conclusion, according to the present study, inhibiting miR-139-5p could be a promising strategy in hBMSC osteogenesis.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Buhua Sun
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Shushan Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Ruibo Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Jianxi Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| |
Collapse
|
12
|
Yao W, Li X, Zhao B, Du G, Feng P, Chen W. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch Oral Biol 2017; 73:88-93. [DOI: 10.1016/j.archoralbio.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/14/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
13
|
Zhou J, Hu Y, Chen Y, Yang L, Song J, Tang Y, Deng F, Zheng L. Dicer-dependent pathway contribute to the osteogenesis mediated by regulation of Runx2. Am J Transl Res 2016; 8:5354-5369. [PMID: 28078008 PMCID: PMC5209488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Osteogenesis is mediated by sophisticated interactions of various molecular functions and biological processes, including post-transcriptional regulation. A range of miRNAs have been reported to regulate bone homeostasis and osteoblasts differentiation either positively or negatively through multiple signaling pathways. RNase III endonuclease Dicer is the key enzyme required for the biogenesis of miRNAs and small interfering RNAs. To determine the global influence of miRNAs on regulation of osteogenesis of pre-osteoblast cells, the transcriptional regulation of Dicer and the function of Dicer during osteoblast differentiation and mineralization were investigated. Runx2 binding directly to the Dicer promoter region was characterized in MC3T3-E1 cells by chromatin immunoprecipitation (ChIP) and luciferase promoter reporter assays. Overexpression or knockdown of Runx2 resulted in increase or decrease of Dicer expression, respectively. Furthermore, abatement of Dicer in MC3T3-E1 cells down-regulated the expression of osteogenic marker genes and mineralization ability, at least partly involving Dicer-dependent processing of the miR-21a-5p targeting PTEN via pAKT/pGSK3β/β-catenin signaling pathways. Taken together, the study demonstrates the role of Dicer in osteogenesis and suggests that Dicer is required, in part, for Runx2 regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Zhou
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yun Hu
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yang Chen
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Lan Yang
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yuying Tang
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Feng Deng
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| |
Collapse
|
14
|
Di Luca A, Longoni A, Criscenti G, Mota C, van Blitterswijk C, Moroni L. Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication 2016; 8:045007. [DOI: 10.1088/1758-5090/8/4/045007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Yadav PS, Khan MP, Prashar P, Duggal S, Rath SK, Chattopadhyay N, Bandyopadhyay A. Characterization of BMP signaling dependent osteogenesis using a BMP depletable avianized bone marrow stromal cell line (TVA-BMSC). Bone 2016; 91:39-52. [PMID: 27424936 DOI: 10.1016/j.bone.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
Adipogenesis, chondrogenesis and osteogenesis are BMP signaling dependent differentiation processes. However, the molecular networks operating downstream of BMP signaling to bring about these distinct fates are yet to be fully elucidated. We have developed a novel Bone Marrow Stromal Cell (BMSC) derived mouse cell line as a powerful in vitro platform to conduct such experiments. This cell line is a derivative of BMSCs isolated from a tamoxifen inducible Bmp2 and Bmp4 double conditional knock-out mouse strain. These BMSCs are immortalized and stably transfected with avian retroviral receptor TVA (TVA-BMSCs), enabling an easy method for stable transduction of multiple genes in these cells. In TVA-BMSCs multiple components of BMP signaling pathway can be manipulated simultaneously. Using this cell line we have demonstrated that for osteogenesis, BMP signaling is required only for the first three days. We have further demonstrated that Klf10, an osteogenic transcription factor which is transcribed in developing bones in a BMP signaling dependent manner, can largely compensate for the loss of BMP signaling during osteogenesis of BMSCs. TVA-BMSCs can undergo chondrogenesis and adipogenesis, and hence may be used for dissection of the molecular networks downstream of BMP signaling in these differentiation processes as well.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Mohd Parvez Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Paritosh Prashar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivali Duggal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Srikanta Kumar Rath
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Naibedya Chattopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
16
|
Chen J, Lin Y, Sun Z. Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKα-mediated activation of RUNX2. Aging Cell 2016; 15:853-60. [PMID: 27242197 PMCID: PMC5013020 DOI: 10.1111/acel.12494] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 01/14/2023] Open
Abstract
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/−) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/− mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/− mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/− mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/− mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Yi Lin
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Zhongjie Sun
- Department of Physiology College of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| |
Collapse
|
17
|
Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. In Vitro Cell Dev Biol Anim 2016; 52:1026-1033. [PMID: 27401008 DOI: 10.1007/s11626-016-0068-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) inhibits osteogenic differentiation of murine bone marrow stromal cells, and transcription factor Runx2 serves as an essential regulation target in the process. The underlying mechanism may involve the regulation of Runx2 expression and the Runx2 activity in downstream gene transcription, which has not been fully elucidated. In this study, ST2 murine bone marrow-derived stromal cells were treated with bone morphogenetic protein-2 (BMP-2) and/or TNF-α in osteogenic medium, and the expression of Runx2 was estimated. Cells were transfected with Runx2, p65, inhibitor of κBα (IκBα), 9.0 kb bone sialoprotein (BSP) promoter-luciferase or osteoblast-specific cis-acting element 2 (OSE2)-luciferase reporter vectors, and then real time-PCR and dual luciferase analysis were used to investigate the effect of TNF-α on Runx2-activated osteogenic gene transcription and the molecular mechanism. We found that TNF-α inhibited BMP-2-induced osteogenic marker expression and both the spontaneous and BMP-2-induced Runx2 expression. TNF-α stimulation or overexpression of nuclear factor-kappa B (NF-κB) p65 subunit repressed the Runx2-activated BSP and osteocalcin (OC) transcriptions. The Runx2-induced 9.0 kb BSP promoter activity was attenuated by TNF-α or p65, while the OSE2 activity was not affected. Besides, blockage of NF-κB by IκBα overexpression eliminated these inhibitory effects of TNF-α on Runx2 signaling. These results suggest that in murine bone marrow stromal cells undergoing osteogenic differentiation, TNF-α and it activated NF-κB pathway inhibit the expression of Runx2 gene, and suppress the Runx2-mediated osteogenic gene transcription via the 9.0 kb BSP promoter.
Collapse
|
18
|
Zheng L, Tu Q, Meng S, Zhang L, Yu L, Song J, Hu Y, Sui L, Zhang J, Dard M, Cheng J, Murray D, Tang Y, Lian JB, Stein GS, Chen J. Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. J Cell Physiol 2016; 232:182-91. [PMID: 27064596 DOI: 10.1002/jcp.25406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
DICER is the central enzyme that cleaves precursor microRNAs (miRNAs) into 21-25 nucleotide duplex in cell lineage differentiation, identity, and survival. In the current study, we characterized the specific bone metabolism genes and corresponding miRNAs and found that DICER and Runt-related transcription factor 2 (Runx2) expressions increased simultaneously during osteogenic differentiation. Luciferase assay showed that Runx2 significantly increased the expression levels of DICER luciferase promoter reporter. Our analysis also revealed weaker DICER expression in embryos of Runx2 knock out mice (Runx2 -/-) compared with that of Runx2 +/- and Runx2 +/+ mice. We further established the calvarial bone critical-size defect (CSD) mouse model. The bone marrow stromal cells (BMSCs) transfected with siRNA targeting DICER were combined with silk scaffolds and transplanted into calvarial bone CSDs. Five weeks post-surgery, micro-CT analysis revealed impaired bone formation, and repairing in calvarial defects with the siRNA targeting DICER group. In conclusion, our results suggest that DICER is specifically regulated by osteogenic master gene Runx2 that binds to the DICER promoter. Consequently, DICER cleaves precursors of miR-335-5p and miR-17-92 cluster to form mature miRNAs, which target and decrease the Dickkopf-related protein 1 (DKK1), and proapoptotic factor BIM levels, respectively, leading to an enhanced Wnt/β-catenin signaling pathway. These intriguing results reveal a central mechanism underlying lineage-specific regulation by a Runx2/DICER/miRNAs cascade during osteogenic differentiation and bone development. Our study, also suggests a potential application of modulating DICER expression for bone tissue repair and regeneration. J. Cell. Physiol. 232: 182-191, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leilei Zheng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts.,College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts.
| | - Shu Meng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Liming Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Lei Sui
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts.,Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Michel Dard
- Periodontology and Implant Dentistry, New York University College of Dentistry, New York, New York
| | - Jessica Cheng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Dana Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Yin Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts.
| |
Collapse
|
19
|
Overexpression of PLAP-1 in bone marrow stromal cells inhibits the rat critical-size skull defect repair. J Mol Histol 2015; 46:251-61. [DOI: 10.1007/s10735-015-9623-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023]
|
20
|
Lee SY, Li MH, Chen YL, Lin KT, Hsu SW, Chen YH. TAZ is Associated with Poor Osteoblast Differentiation of Mesenchymal Stem Cells Under Simulated Microgravity. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.4103/1011-4564.172997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Overexpression of the PLAP-1 gene inhibits the differentiation of BMSCs into osteoblast-like cells. J Mol Histol 2014; 45:599-608. [DOI: 10.1007/s10735-014-9585-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023]
|
22
|
Adiponectin ameliorates experimental periodontitis in diet-induced obesity mice. PLoS One 2014; 9:e97824. [PMID: 24836538 PMCID: PMC4023953 DOI: 10.1371/journal.pone.0097824] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023] Open
Abstract
Adiponectin is an adipokine that sensitizes the body to insulin. Low levels of adiponectin have been reported in obesity, diabetes and periodontitis. In this study we established experimental periodontitis in male adiponectin knockout and diet-induced obesity mice, a model of obesity and type 2 diabetes, and aimed at evaluating the therapeutic potential of adiponectin. We found that systemic adiponectin infusion reduced alveolar bone loss, osteoclast activity and infiltration of inflammatory cells in both periodontitis mouse models. Furthermore, adiponectin treatment decreased the levels of pro-inflammatory cytokines in white adipose tissue of diet-induced obesity mice with experimental periodontitis. Our in vitro studies also revealed that forkhead box O1, a key transcriptional regulator of energy metabolism, played an important role in the direct signaling of adiponectin in osteoclasts. Thus, adiponectin increased forkhead box O1 mRNA expression and its nuclear protein level in osteoclast-precursor cells undergoing differentiation. Inhibition of c-Jun N-terminal kinase signaling decreased nuclear protein levels of forkhead box O1. Furthermore, over-expression of forkhead box O1 inhibited osteoclastogenesis and led to decreased nuclear levels of nuclear factor of activated T cells c1. Taken together, this study suggests that systemic adiponectin application may constitute a potential intervention therapy to ameliorate type 2 diabetes-associated periodontitis. It also proposes that adiponectin inhibition of osteoclastogenesis involves forkhead box O1.
Collapse
|
23
|
Shin Kang K, Hun Jeong Y, Min Hong J, Yong WJ, Rhie JW, Cho DW. Flexure-Based Device for Cyclic Strain-Mediated Osteogenic Differentiation. J Biomech Eng 2013; 135:114501. [DOI: 10.1115/1.4025103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
Application of low-magnitude strains to cells on small-thickness scaffolds, such as those for rodent calvarial defect models, is problematic, because general translation systems have limitations in terms of generating low-magnitude smooth signals. To overcome this limitation, we developed a cyclic strain generator using a customized, flexure-based, translational nanoactuator that enabled generation of low-magnitude smooth strains at the subnano- to micrometer scale to cells on small-thickness scaffolds. The cyclic strain generator we developed showed predictable operational characteristics by generating a sinusoidal signal of a few micrometers (4.5 μm) without any distortion. Three-dimensional scaffolds fitting the critical-size rat calvarial defect model were fabricated using poly(caprolactone), poly(lactic-co-glycolic acid), and tricalcium phosphate. Stimulation of human adipose–derived stem cells (ASCs) on these fabricated scaffolds using the cyclic strain generator we developed resulted in upregulated osteogenic marker expression compared to the nonstimulated group. These preliminary in vitro results suggest that the cyclic strain generator successfully provided mechanical stimulation to cells on small-thickness scaffolds, which influenced the osteogenic differentiation of ASCs.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Young Hun Jeong
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 429-793, South Korea
| | - Jung Min Hong
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Woon-Jae Yong
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| |
Collapse
|
24
|
Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 2011; 26:1953-63. [PMID: 21351149 PMCID: PMC3810406 DOI: 10.1002/jbmr.377] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dickkopf-related protein 1 (DKK1) is essential to maintain skeletal homeostasis as an inhibitor of Wnt signaling and osteogenic differentiation. The purpose of this study was to investigate the molecular mechanisms underlying the developmental stage-specific regulation of the DKK1 protein level. We performed a series of studies including luciferase reporter assays, micro-RNA microarray, site-specific mutations, and gain- and loss-of-function analyses. We found that the DKK1 protein level was regulated via DKK1 3' UTR by miRNA control, which was restricted to osteoblast-lineage cells. As a result of decreased DKK1 protein level by miR-335-5p, Wnt signaling was enhanced, as indicated by elevated GSK-3β phosphorylation and increased β-catenin transcriptional activity. The effects of miR-335-5p were reversed by anti-miR-335-5p treatment, which downregulated endogenous miR-335-5p. In vivo studies showed high expression levels of miR-335-5p in osteoblasts and hypertrophic chondrocytes of mouse embryos, indicating a pivotal role of miR-335-5p in regulating bone development. In conclusion, miR-335-5p activates Wnt signaling and promotes osteogenic differentiation by downregulating DKK1. This cell- and development-specific regulation is essential and mandatory for the initiation and progression of osteogenic differentiation. miR-335-5p proves to be a potential and useful targeting molecule for promoting bone formation and regeneration.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 2011; 17:1767-76. [PMID: 21385070 DOI: 10.1089/ten.tea.2010.0503] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expressed in branchial arches and osteoblast-lineage cells, special AT-rich sequence-binding protein (SATB2) is responsible for preventing craniofacial abnormalities and defects in osteoblast function. In this study, we transduced SATB2 into murine adult stem cells, and found that SATB2 significantly increased expression levels of bone matrix proteins, osteogenic transcription factors, and a potent angiogenic factor, vascular endothelial growth factor. Using an osterix (Osx) promoter-luciferase construct and calvarial cells isolated from runt-related transcription factor 2 (Runx2)-deficient mice, we found that SATB2 upregulates Osx expression independent of Runx2, but synergistically enhances the regulatory effect of Runx2 on Osx promoter. We then transplanted SATB2-overexpressing adult stem cells genetically double-labeled with bone sialoprotein (BSP) promoter-driven luciferase and β-actin promoter-driven enhanced green fluorescent protein into mandibular bone defects. We identified increased luciferase-positive cells in SATB2-overexpressing groups, indicating more transplanted cells undergoing osteogenic differentiation. New bone formation was consequently accelerated in SATB2 groups. In conclusion, SATB2 acts as a potent transcription factor to enhance osteoblastogenesis and promote bone regeneration. The application of SATB2 in bone tissue engineering gives rise to a higher bone forming capacity as a result of multiple-level amplification of regulatory activity.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The reaction of bone to tumor growth from human breast cancer cells in a rat spine single metastasis model. Spine (Phila Pa 1976) 2011; 36:497-504. [PMID: 21422981 PMCID: PMC3897243 DOI: 10.1097/brs.0b013e3181d8906f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo experiments to develop a rat spine single metastasis model by using human breast cancer cells. OBJECTIVE To study the survival and tumorigenesis of the human breast cancer cells after transplantation to vertebral body (VB) by intraosseous injection as a model for therapeutic studies of spine metastatic tumor. SUMMARY OF BACKGROUND DATA VBs are the most common bones involved in the metastases of breast cancer. To develop experimental therapeutics requires an appropriate animal model. Moreover, it is also important to establish accurate and sensitive detection methods for the evaluation. METHODS MDA-MB-231 human breast cancer cells were injected into 3-week-old female athymic rats. The tumorigenesis was assayed with quantitative in vivo bioluminescence (IVIS), microcomputed tomography (micro-CT), quantitative CT (qCT), micro position emission tomography (micro-PET), and histologic studies. RESULTS A spine single metastasis model of human breast cancer was successfully developed in rats. The IVIS signal intensity from the cancer cells increased after 2 weeks. Signal from the tumor in spine can be detected by micro-PET at day 1. The signal intensity decreased after 1 week and then recovered and continually increased afterwards. Bone destruction was demonstrated in the qCT and micro-CT images. However, both qCT and micro-CT found that the bone density in the cancer cell-injected VB increased before the appearance of osteolysis. The growth of tumor and the reaction of bone in the VB were observed simultaneously by histology. CONCLUSION A spine single metastasis model was developed by injection of human breast cancer cells into the VB of athymic rats. This is the first report of quantitative evaluation with micro-PET in a spine metastasis model. In addition, the detection of osteogenesis after the introduction of MDA-MB-231 cells in vivo is a novel observation.
Collapse
|
27
|
Tu Q, Zhang J, Dong LQ, Saunders E, Luo E, Tang J, Chen J. Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J Biol Chem 2011; 286:12542-53. [PMID: 21300805 DOI: 10.1074/jbc.m110.152405] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adiponectin is an adipokine playing an important role in regulating energy homeostasis and insulin sensitivity. However, the effect of adiponectin on bone metabolism shows contradictory results according to different research studies. In this study femurs were isolated from genetically double-labeled mBSP9.0Luc/β-ACT-EGFP transgenic mice and were transplanted into adiponectin knock-out mice or wild type mice to investigate the effect of temporary exposure to adiponectin deficiency on bone growth and metabolism. We found that the growth of bone explants in adiponectin knock-out mice was significantly retarded. Histological analysis, microcomputed tomography analysis, and tartrate-resistant acid phosphatase staining revealed reduced trabecular bone volume, decreased cortical bone, and increased osteoclast number in bone explants in adiponectin knock-out mice. We then found that adiponectin inhibits RANKL-induced osteoclastogenesis from RAW264.7 cells and down-regulates RANKL-enhanced expressions of osteoclastogenic regulators including NFAT2, TRAF6, cathepsin K, and tartrate-resistant acid phosphatase. Adiponectin also increases osteoclast apoptosis and decreases survival/proliferation of osteoclast precursor cells. Using siRNA specifically targeting APPL1, the first identified adaptor protein of adiponectin signaling, we found that the inhibitory effect of adiponectin on osteoclasts was induced by APPL1-mediated down-regulation of Akt1 activity. In addition, overexpression of Akt1 successfully reversed adiponectin-induced inhibition in RANKL-stimulated osteoclast differentiation. In conclusion, adiponectin is important in maintaining the balance of energy metabolism, inflammatory responses, and bone formation.
Collapse
Affiliation(s)
- Qisheng Tu
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, Kaplan D, Yang P, Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2010; 226:150-7. [PMID: 20658533 DOI: 10.1002/jcp.22316] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.
Collapse
Affiliation(s)
- Xuejing Duan
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kwon RY, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 2010; 25:1798-807. [PMID: 20200992 PMCID: PMC3153350 DOI: 10.1002/jbmr.74] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.
Collapse
Affiliation(s)
- Ronald Y Kwon
- La Jolla Bioengineering Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
30
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 2010; 43:219-28. [PMID: 20546240 DOI: 10.1111/j.1365-2184.2010.00670.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. MATERIALS AND METHODS The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full-length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real-time real time RT-PCR and in vitro mineralization assay were performed to evaluate the effects of full-length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. RESULTS The above-mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real-time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full-length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full-length Runx2. CONCLUSIONS Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over-expression up-regulated expression levels of osteoblast/cementoblast-related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2-induced changes in DFCs were more prominent than those induced by full-length Runx2.
Collapse
Affiliation(s)
- K Pan
- Department of Periodontology and Institute of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang J, Tu Q, Chen J. Applications of transgenics in studies of bone sialoprotein. J Cell Physiol 2009; 220:30-4. [PMID: 19326395 DOI: 10.1002/jcp.21768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone sialoprotein (BSP) is a major non-collagenous protein in mineralizing connective tissues such as dentin, cementum and calcified cartilage tissues. As a member of the Small Integrin-Binding Ligand, N-linked Glycoprotein (SIBLING) gene family of glycoproteins, BSP is involved in regulating hydroxyapatite crystal formation in bones and teeth, and has long been used as a marker gene for osteogenic differentiation. In the most recent decade, new discoveries in BSP gene expression and regulation, bone remodeling, bone metastasis, and bone tissue engineering have been achieved with the help of transgenic mice. In this review, we discuss these new discoveries obtained from the literatures and from our own laboratory, which were derived from the use of transgenic mouse mutants related to BSP gene or its promoter activity.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
33
|
Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B. Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol 2009; 23:1203-14. [PMID: 19389811 DOI: 10.1210/me.2008-0470] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Runx2 and androgen receptor (AR) are master transcription factors with pivotal roles in bone metabolism and prostate cancer (PCa). We dissected AR-mediated repression of Runx2 in dihydrotestosterone (DHT)-treated osteoblastic and PCa cells using reporter assays and endogenous Runx2 target genes. Repression required DHT, but not AR's transactivation function, and was associated with nuclear colocalization of the two proteins. Runx2 and AR coimmunoprecipitated and interacted directly in glutathione-S-transferase pull-down assays. Interaction was ionic in nature. Intact AR DNA-binding domain (DBD) was necessary and sufficient for both interaction with Runx2 and its repression. Runx2 sequences required for interaction were the C-terminal 132 amino acid residues together with the Runt DBD. Runx2 DNA binding was abrogated by endogenous AR in chromatin immunoprecipitation assays and by recombinant AR-DBD in gel shift assays. Furthermore, AR caused increased nuclear mobility of Runx2 as indicated by faster fluorescence recovery after photobleaching. Thus, AR binds Runx2 and abrogates its binding to DNA and possibly to other nuclear components. Clinical relevance of our results was suggested by an inverse correlation between expression of AR-responsive prostate-specific antigen and osteocalcin genes in PCa biopsies. Given the tumor suppressor properties of Runx2, its repression by AR may constitute a mechanism of hormone carcinogenesis. Attenuation of Runx2 by AR in osteoblasts may play a role in skeletal metabolism: the bone-sparing effect of androgens is attributable, in part, to keeping Runx2 activity in check and preventing high-turnover bone disease such as seen after castration and in transgenic mice overexpressing Runx2 in osteoblasts.
Collapse
Affiliation(s)
- Sanjeev K Baniwal
- Department Biochemistry and Molecular Biology, Institute of Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|