1
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wang W, Gong Z, Wang Y, Zhao Y, Lu Y, Sun R, Zhang H, Shang J, Zhang J. Mutant NOTCH3ECD Triggers Defects in Mitochondrial Function and Mitophagy in CADASIL Cell Models. J Alzheimers Dis 2024; 100:1299-1314. [PMID: 39031358 DOI: 10.3233/jad-240273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Cerebral autosomal-dominant arteriopathy with subcortical infarction and leukoencephalopathy (CADASIL) is an inherited small-vessel disease that affects the white matter of the brain. Recent studies have confirmed that the deposition of NOTCH3ECD is the main pathological basis of CADASIL; however, whether different mutations present the same pathological characteristics remains to be further studied. Some studies have found that mitochondrial dysfunction is related to CADASIL; however, the specific effects of NOTCH3ECD on mitochondrial remain to be determined. Objective We aimed to explore the role of mitochondrial dysfunction in CADASIL. Methods We established transgenic human embryonic kidney-293T cell models (involving alterations in cysteine and non-cysteine residues) via lentiviral transfection. Mitochondrial function and structure were assessed using flow cytometry and transmission electron microscopy, respectively. Mitophagy was assessed using western blotting and immunofluorescence. Results We demonstrated that NOTCH3ECD deposition affects mitochondrial morphology and function, and that its protein levels are significantly correlated with mitochondrial quality and can directly bind to mitochondria. Moreover, NOTCH3ECD deposition promoted the induction of autophagy and mitophagy. However, these processes were impaired, leading to abnormal mitochondrial accumulation. Conclusions This study revealed a common pathological feature of NOTCH3ECD deposition caused by different NOTCH3 mutations and provided new insights into the role of NOTCH3ECD in mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Wan Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhenping Gong
- Department of Neurology, Xinxiang medical university, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yadan Wang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ying Zhao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yaru Lu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haohan Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Panahi M, Hase Y, Gallart-Palau X, Mitra S, Watanabe A, Low RC, Yamamoto Y, Sepulveda-Falla D, Hainsworth AH, Ihara M, Sze SK, Viitanen M, Behbahani H, Kalaria RN. ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics. Acta Neuropathol Commun 2023; 11:76. [PMID: 37158955 PMCID: PMC10169505 DOI: 10.1186/s40478-023-01558-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area, University Hospital Arnau de Vilanova (HUAV) - Department of Psychology, University of Lleida (UdL), Lleida, Spain
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430, Morioka-cho, Obu-shi, 474-8511, Aichi, Japan
| | - Roger C Low
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Masafumi Ihara
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
- Department of Geriatrics, University of Turku, Turku City Hospital, Kunnallissairaalantie 20, Turku, 20700, Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
4
|
Dong L, Zheng Q, Cheng Y, Zhou M, Wang M, Xu J, Xu Z, Wu G, Yu Y, Ye L, Feng Z. Gut Microbial Characteristics of Adult Patients With Epilepsy. Front Neurosci 2022; 16:803538. [PMID: 35250450 PMCID: PMC8888681 DOI: 10.3389/fnins.2022.803538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
ObjectiveTo characterize the intestinal flora of patients with epilepsy and its correlation with epilepsy.MethodsPatients with ages > 18 years were consecutively enrolled from the outpatient department, Affiliated Hospital of Guizhou Medical University from January 2018 to December 2019. A total of 71 subjects were recruited, including epilepsy patients (n = 41) as an observation group and patient family members (n = 30) as a control group. Fresh stool specimens of all the subjects were collected. The 16S ribosomal RNA sequencing was analyzed to determine changes in intestinal flora composition and its correlation with epilepsy. Subgroup analysis was then conducted. All patients with epilepsy were divided into an urban group (n = 21) and a rural group (n = 20) according to the region, and bioinformatics analyses were repeated between subgroups.ResultsLEfSe analysis showed that Fusobacterium, Megasphaera, Alloprevotella, and Sutterella had relatively increased abundance in the epilepsy group at the genus level. Correlation analysis suggested that Fusobacterium sp. (r = 0.584, P < 0.01), Fusobacterium mortiferum (r = 0.560, P < 0.01), Ruminococcus gnavus (r = 0.541, P < 0.01), and Bacteroides fragilis (r = 0.506, P < 0.01) were significantly positively correlated with the occurrence of epilepsy (r ≥ 0.5, P < 0.05). PICRUSt function prediction analysis showed that there were significant differences in 16 pathways between the groups at level 3. Comparing the rural group with the urban group, Proteobacteria increased at the phylum level and Escherichia coli, Fusobacterium varium, Prevotella stercorea, and Prevotellaceae bacterium DJF VR15 increased at the species level in the rural group.ConclusionThere were significant differences in the composition and functional pathways of gut flora between epilepsy patients and patient family members. The Fusobacterium may become a potential biomarker for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Lian Dong
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Nagano, Japan
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guofeng Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunli Yu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Lan Ye,
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Zhanhui Feng,
| |
Collapse
|
5
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
6
|
Liu R, Gao C, Shang J, Sun R, Wang W, Li W, Gao D, Huo X, Shi Y, Wang Y, Wang F, Zhang J. De novo Mutation Enables NOTCH3ECD Aggregation and Mitochondrial Dysfunction via Interactions with BAX and BCL-2. J Alzheimers Dis 2022; 86:67-81. [PMID: 35001891 DOI: 10.3233/jad-215256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 mutations is the most common monogenic hereditary pattern of cerebral small vessel disease. The aggregation of the mutant NOTCH3 may play a cytotoxic role in CADASIL. However, the main mechanism of this process remains unclear. OBJECTIVE We aimed to investigate the possible pathogenesis of the mutant NOTCH3 in CADASIL. METHODS The clinical information of two pedigrees were collected and analyzed. Furthermore, we constructed cell lines corresponding to this mutation in vitro. The degradation of the extracellular domain of NOTCH3 (NOTCH3ECD) was analyzed by Cycloheximide Pulse-Chase Experiment. Flow cytometry and cell counting kit-8 assay were performed to observe the effects of the NOTCH3 mutation on mitochondrial function and apoptosis. RESULTS We confirmed a de novo heterozygous missense NOTCH3 mutation (c.1690G > A, p. A564T) in two pedigrees. In vitro, the NOTCH3ECD aggregation of A564T mutant may be related to their more difficult to degrade. The mitochondrial membrane potential was attenuated, and cell viability was significant decreased in NOTCH3ECD A564T group. Interestingly, BAX and cytochrome c were significantly increased, which are closely related to the mitochondrial-mediated pathway to apoptosis. CONCLUSION In our study, the aggregation of NOTCH3ECD A564T mutation may be associated with more difficult degradation of the mutant, and the aggregation may produce toxic effects to induce apoptosis through the mitochondrial-mediated pathway. Therefore, we speculated that mitochondrial dysfunction may hopefully become a new breakthrough point to explain the pathogenesis of cysteine-sparing NOTCH3 mutations.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junkui Shang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Wang
- Department of Neurology, Xinxiang Medical University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dandan Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xuejing Huo
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yingying Shi
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanliang Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fengyu Wang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Neurology, Xinxiang Medical University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Panahi M, Rodriguez PR, Fereshtehnejad SM, Arafa D, Bogdanovic N, Winblad B, Cedazo-Minguez A, Rinne J, Darreh-Shori T, Hase Y, Kalaria RN, Viitanen M, Behbahani H. Insulin-Independent and Dependent Glucose Transporters in Brain Mural Cells in CADASIL. Front Genet 2020; 11:1022. [PMID: 33101365 PMCID: PMC7522350 DOI: 10.3389/fgene.2020.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez Rodriguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed-Mohammad Fereshtehnejad
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Donia Arafa
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Neurogeriatric Clinic, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Juha Rinne
- University of Turku, Turku University Hospital Kiinanmyllynkatu, Turku, Finland
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku,Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells. PLoS One 2018; 13:e0196628. [PMID: 29768431 PMCID: PMC5955505 DOI: 10.1371/journal.pone.0196628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/15/2018] [Indexed: 01/01/2023] Open
Abstract
Homozygous mutations of human HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HtrA1-/- mice were examined for arterial abnormalities. Although their cerebral arteries were normal, the thoracic aorta was affected in HtrA1-/- mice. The number of vascular smooth muscle cells (VSMCs) in the aorta was increased in HtrA1-/- mice of 40 weeks or younger, but decreased thereafter. The cross-sectional area of the aorta was increased in HtrA1-/- mice of 40 weeks or older. Aortic VSMCs isolated from HtrA1-/- mice rapidly proliferated and migrated, produced high MMP9 activity, and were prone to oxidative stress-induced cell death. HtrA1-/- VSMCs expressed less smooth muscle α-actin, and more vimentin and osteopontin, and responded to PDGF-BB more strongly than wild type VSMCs, indicating that HtrA1-/- VSMCs were in the synthetic phenotype. The elastic lamina was disrupted, and collagens were decreased in the aortic media. Calponin in the media was decreased, whereas vimentin and osteopontin were increased, suggesting a synthetic shift of VSMCs in vivo. Loss of HtrA1 therefore skews VSMCs toward the synthetic phenotype, induces MMP9 expression, and expedites cell death. We propose that the synthetic modulation is the primary event that leads to the vascular abnormalities caused by HtrA1 deficiency.
Collapse
|
9
|
Jahanbazi Jahan-Abad A, Alizadeh L, Sahab Negah S, Barati P, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A. Apoptosis Following Cortical Spreading Depression in Juvenile Rats. Mol Neurobiol 2018; 55:4225-4239. [PMID: 28612259 DOI: 10.1007/s12035-017-0642-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022]
Abstract
Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders, such as stroke and epilepsy. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo, we thus aimed to investigate the effect of repetitive CSD on the expression caspase-3, caspase-8, caspase-9, and caspase-12 in different brain regions using immunohistochemistry and western blotting techniques. Higher numbers of dark neurons and TUNEL-positive cells were observed in the hippocampal CA1 and CA3 regions as well as in the entorhinal and somatosensory cortices after CSD in juvenile rats. This was accompanied by higher expressions of caspase-3, caspase-8, and caspase-9. Caspase-12 levels remained unchanged after CSD, suggesting that endoplasmic reticulum stress is not involved in CSD-triggered apoptosis. Changes in caspase expression were paralleled by a decrease of procaspase-3, procaspase-8, and procaspase-9 in juvenile rat brain tissue subjected to CSD. In contrast, repetitive CSD in adult rats did not result in the upregulation of caspase signaling. Our data points to a maturation-dependent vulnerability of brain tissue to repetitive CSD with a higher degree of apoptotic damage and caspase upregulation observed in juvenile tissue. Findings suggest a key role of caspase signaling in CSD-induced cell death in the immature brain. This implies that anti-apoptotic treatment may prevent CSD-related functional deficits in the immature brain.
Collapse
Affiliation(s)
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parastoo Barati
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
| |
Collapse
|
10
|
Grochowski C, Litak J, Kamieniak P, Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic Res 2017; 52:1-13. [PMID: 29166803 DOI: 10.1080/10715762.2017.1402304] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebral small vessel disease (CSVD) is a wide term describing the condition affecting perforating arterial branches as well as arterioles, venules, and capillaries. Cerebral vascular net is one of the main targets of localised oxidative stress processes causing damage to vasculature, changes in the blood flow and blood-brain barrier and, in consequence, promoting neurodegenerative alterations in the brain tissue. Numerous studies report the fact of oxidation to proteins, sugars, lipids and nucleic acids, occurring in most neurodegenerative diseases mainly in the earliest stages and correlations with the development of cognitive and motor disturbances. The dysfunction of endothelium can be caused by oxidative stress and inflammatory mechanisms as a result of reactions and processes generating extensive reactive oxygen species (ROS) production such as high blood pressure, oxidised low density lipoproteins (oxLDL), very low density lipoproteins (vLDL), diabetes, homocysteinaemia, smoking, and infections. Several animal studies show positive aspects of ROS, especially within cerebral vasculature.
Collapse
Affiliation(s)
- Cezary Grochowski
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland.,b Department of Human Anatomy , Medical University of Lublin , Lublin , Poland
| | - Jakub Litak
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland
| | - Piotr Kamieniak
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland
| | - Ryszard Maciejewski
- b Department of Human Anatomy , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
11
|
Tang M, Shi C, Song B, Yang J, Yang T, Mao C, Li Y, Liu X, Zhang S, Wang H, Luo H, Xu Y. CADASIL mutant NOTCH3(R90C) decreases the viability of HS683 oligodendrocytes via apoptosis. Mol Biol Rep 2017; 44:273-280. [PMID: 28601945 DOI: 10.1007/s11033-017-4107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in NOTCH3. Prevailing models suggest that demyelination occurs secondary to vascular pathology. However, in zebrafish, NOTCH3 is also expressed in mature oligodendrocytes. Thus, we hypothesized that in addition to vascular defects, mutant NOTCH3 may alter glial function in individuals with CADASIL. The aim of this study was to characterize the direct effects of a mutant NOTCH3 protein in HS683 oligodendrocytes. HS683 oligodendrocytes transfected with wild-type NOTCH3, mutant NOTCH3(R90C), and empty control vector were used to study the impact of the NOTCH3(R90C) mutant on its protein hydrolytic processing, cell viability, apoptosis, autophagy, oxidative stress, and the related upstream events using immunoblotting, immunofluorescence, RT-PCR, and flow cytometry. We determined that HS683 oligodendrocytes transfected with mutant NOTCH3(R90C), which is the hotspot mutation site-associated with CADASIL, exhibited aberrant NOTCH3 proteolytic processing. Compared to cells overexpressing wild-type NOTCH3, cells overexpressing NOTCH3(R90C) were less viable and had a higher rate of apoptosis. Immunoblotting revealed that cells transfected with NOTCH3(R90C) had higher levels of intrinsic mitochondrial apoptosis, extrinsic death receptor path-related apoptosis, and autophagy compared with cells transfected with wild-type NOTCH3. This study suggests that in patients with CADASIL, early defects in glia influenced by NOTCH3(R90C) may directly contribute to white matter pathology in addition to secondary vascular defects. This study provides a potential therapeutic target for the future treatment of CADASIL.
Collapse
Affiliation(s)
- Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
12
|
Formichi P, Radi E, Branca C, Battisti C, Brunetti J, Da Pozzo P, Giannini F, Dotti MT, Bracci L, Federico A. Oxidative stress-induced apoptosis in peripheral blood lymphocytes from patients with POLG-related disorders. J Neurol Sci 2016; 368:359-68. [PMID: 27538665 DOI: 10.1016/j.jns.2016.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND POLG-related disorders are a group of heterogeneous diseases characterized by an overlapping clinical presentations and associated with mutations in the POLG gene. POLG codes for the catalytic subunit of mitochondrial polymerase gamma (POLG), essential for mitochondrial DNA (mtDNA) replication and repair. Studies on mutator POLG mice showed an increase in oxidative stress and apoptosis. In this regard we analysed the involvement of POLG mutations in the apoptotic regulation, evaluating apoptosis in peripheral blood lymphocytes (PBLs) from patients with POLG-related diseases. METHODS Cells were cultured under basal conditions and with 2-deoxy-d-ribose (dRib), a reducing sugar that induces apoptosis by oxidative stress. Apoptosis rate was assessed by flow cytometry. Phosphatidylserine translocation, mitochondrial membrane depolarization and caspase 3 activation were also analysed. RESULTS Our data showed higher percentages of apoptosis after dRib treatment in patients with POLG mutations than in controls, while under basal culture conditions, apoptosis levels were similar in the two groups. CONCLUSIONS Cells with POLG mutations are more sensitive than control cells to oxidative stress-induced apoptosis, confirming that mtDNA mutations may have a role in mitochondrial apoptosis pathway. We also suggest that redox state homeostasis may play a crucial role in phenotypic expression of POLG-related diseases.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Elena Radi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Chiara Branca
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paola Da Pozzo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Fabio Giannini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| |
Collapse
|
13
|
Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS One 2016; 11:e0150357. [PMID: 26959487 PMCID: PMC4784912 DOI: 10.1371/journal.pone.0150357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.
Collapse
|
14
|
Formichi P, Radi E, Giorgi E, Gallus GN, Brunetti J, Battisti C, Rufa A, Dotti MT, Franceschini R, Bracci L, Federico A. Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene. J Neurol Sci 2015; 351:99-108. [DOI: 10.1016/j.jns.2015.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/29/2022]
|
15
|
Visual System Involvement in CADASIL. J Stroke Cerebrovasc Dis 2013; 22:1377-84. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/29/2013] [Indexed: 01/23/2023] Open
|
16
|
Campolo J, De Maria R, Mariotti C, Tomasello C, Parolini M, Frontali M, Inzitari D, Valenti R, Federico A, Taroni F, Parodi O. Is the oxidant/antioxidant status altered in CADASIL patients? PLoS One 2013; 8:e67077. [PMID: 23799141 PMCID: PMC3682996 DOI: 10.1371/journal.pone.0067077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/14/2013] [Indexed: 01/09/2023] Open
Abstract
The altered aggregation of proteins in non-native conformation is associated with endoplasmic reticulum derangements, mitochondrial dysfunction and excessive production of reactive oxygen species. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary systemic vasculopathy, caused by NOTCH3 mutations within the receptor extracellular domain, that lead to abnormal accumulation of the mutated protein in the vascular wall. NOTCH3 misfolding could cause free radicals increase also in CADASIL. Aim of the study was to verify whether CADASIL patients have increased oxidative stress compared to unrelated healthy controls. We enrolled 15 CADASIL patients and 16 gender- and age-matched healthy controls with comparable cardiovascular risk factor. Blood and plasma reduced and total aminothiols (homocysteine, cysteine, glutathione, cysteinylglycine) were measured by HPLC and plasma 3-nitrotyrosine by ELISA. Only plasma reduced cysteine (Pr-Cys) and blood reduced glutathione (Br-GSH) concentrations differed between groups: in CADASIL patients Br-GSH levels were higher (p = 0.019) and Pr-Cys lower (p = 0.010) than in controls. No correlation was found between Br-GSH and Pr-Cys either in CADASIL patients (rho 0.25, P = 0.36) or in controls (rho -0.15, P = 0.44). Conversely, 3-nitrotyrosine values were similar in CADASIL and healthy subjects (p = 0.82). The high levels of antioxidant molecules and low levels of oxidant mediators found in our CADASIL population might either be expression of an effective protective action against free radical formation at an early stage of clinical symptoms or they could suggest that oxidative stress is not directly involved in the pathogenesis of CADASIL.
Collapse
Affiliation(s)
- Jonica Campolo
- Community Networking Resources Institute of Clinical Physiology, Cardiothoracic and Vascular Department, Niguarda Ca' Granda Hospital, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Radi E, Formichi P, Di Maio G, Battisti C, Federico A. Altered apoptosis regulation in Kufor-Rakeb syndrome patients with mutations in the ATP13A2 gene. J Cell Mol Med 2012; 16:1916-23. [PMID: 22117566 PMCID: PMC3822702 DOI: 10.1111/j.1582-4934.2011.01488.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
ATP13A2 gene encodes for a protein of the group 5 P-type ATPase family. ATP13A2 mutations are responsible for Kufor-Rakeb syndrome (KRS), a rare autosomal recessive juvenile parkinsonism characterized by the subacute onset of extrapyramidal, pyramidal and cognitive dysfunction with secondary nonresponsiveness to levodopa. FBXO7 protein is an F-box-containing protein. Recessive FBXO7 mutations are responsible for PARK15, a rare juvenile parkinsonism characterized by progressive neurodegeneration with extrapyramidal and pyramidal system involvement. Our aim was to evaluate apoptosis in cells from two KRS siblings carrying a homozygous ATP13A2 mutation and a heterozygous FBXO7 mutation. We also analysed apoptosis in the patients' healthy parents. Peripheral blood lymphocytes from the KRS patients and parents were exposed to 2-deoxy-D-ribose; apoptosis was analysed by flow cytometry and fluorescence microscopy. Apoptosis was much higher in lymphocytes from the KRS patients and parents than in controls, both in standard conditions and after induction with a pro-apoptotic stimulus. The lack of correlation between increased apoptosis and the presence of the mutated FBXO7 gene rules out the involvement of FBXO7 in apoptosis regulation. The altered apoptotic pattern of subjects with mutated ATP13A2 suggests a correlation between apoptosis alteration and the mutated ATP13A2 protein. We hypothesize that ATP13A2 mutations may compromise protein function, disrupting cell cation balance and rendering cells prone to apoptosis. However, the deregulation of apoptosis in KRS patients displaying different disease severity suggested that the altered apoptotic pathway probably does not have a pathogenetic role in KRS by itself.
Collapse
Affiliation(s)
- Elena Radi
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
18
|
Formichi P, Radi E, Battisti C, Di Maio G, Muresanu D, Federico A. Cerebrolysin administration reduces oxidative stress-induced apoptosis in lymphocytes from healthy individuals. J Cell Mol Med 2012; 16:2840-3. [PMID: 22882711 PMCID: PMC4118252 DOI: 10.1111/j.1582-4934.2012.01615.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022] Open
Abstract
Cerebrolysin is the only drug available for clinical use containing active fragments of some important neurotrophic factors obtained from purified porcine brain proteins, which has long been used for the treatment of dementia and stroke sequels. Cerebrolysin has growth factor-like activities and promotes neuronal survival and sprouting, however, its molecular mechanism still needs to be determined. It has been shown that Cerebrolysin may interact with proteolytic pathways linked to apoptosis. Administration of Cerebrolysin significantly reduces the number of apoptotic neurons after glutamate exposure. Furthermore, it has been reported that Cerebrolysin inhibits free radicals formation and lipid peroxidation. In vitro we evaluated the protective effects of Cerebrolysin towards spontaneous and induced apoptotic death in cells from healthy individuals. Peripheral blood lymphocytes (PBLs) from 10 individuals were used as cell model; 2-deoxy-D-ribose (dRib), a highly reducing sugar, was used as paradigm pro-apoptotic stimulus. Apoptosis was analysed using flow cytometry and fluorescence microscopy. Our results showed that Cerebrolysin significantly reduced the number of apoptotic PBLs after dRib treatment, although it had no significative effects on cells cultured in standard conditions. Our work showed a protective effect of Cerebrolysin on oxidative stress-induced apoptosis and suggested that PBLs can be used as an easy obtainable and handy cell model to verify Cerebrolysin effects in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of SienaSiena, Italy
| | - Elena Radi
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of SienaSiena, Italy
| | - Carla Battisti
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of SienaSiena, Italy
| | - Giuseppe Di Maio
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of SienaSiena, Italy
| | - Dafin Muresanu
- University of Medicine and Pharmacy “Iuliu Hatieganu”Cluj-Napoca, Romania
| | - Antonio Federico
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of SienaSiena, Italy
| |
Collapse
|
19
|
Formichi P, Radi E, Battisti C, Di Maio G, Dotti MT, Muresanu D, Federico A. Effects of cerebrolysin administration on oxidative stress-induced apoptosis in lymphocytes from CADASIL patients. Neurol Sci 2012; 34:553-6. [PMID: 22878905 DOI: 10.1007/s10072-012-1174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Cerebrolysin (Cere) is a peptidergic nootropic drug with neurotrophic properties which has been used to treat dementia and sequelae of stroke. Use of Cere prevents nuclear structural changes typical of apoptosis and significantly reduces the number of apoptotic cells after several apoptotic stimuli. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary disease caused by mutations of the Notch3 gene encoding the Notch3 protein. Notch3 is involved in the regulation of apoptosis, modulating Fas-Ligand (Fas-L)- induced apoptosis. The aim of this study was to evaluate the in vitro protective effects of Cere against oxidative stress-induced apoptosis in cells from CADASIL patients. We used peripheral blood lymphocytes (PBLs) from 15 CADASIL patients (age range 34-70 years); 2-deoxy-D-ribose (dRib), a highly reducing sugar, was used as paradigm pro-apoptotic stimulus. Apoptosis was analyzed by flow cytometry and fluorescence microscopy. Administration of Cere to PBLs from CADASIL patients cultured under standard conditions had no effect on the percentage of apoptotic cells. Administration of Cere to PBLs cultured with dRib caused a significant decrease in apoptosis after 48 h of culture in only 5 patients, whereas in the other 10 patients, Cere treatment was not associated with any significant difference in the percentage of apoptosis. This result showed a protective effect of Cere against oxidative stress-induced apoptosis only in 30 % of the CADASIL patients, suggesting that the Notch3 gene probably does not influence the anti-apoptotic properties of Cere in vitro.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Neurological, Neurosurgical and Behavioural Sciences, University of Siena, Policlinico "Le Scotte", V.le Bracci, 2, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Guerreiro RJ, Lohmann E, Kinsella E, Brás JM, Luu N, Gurunlian N, Dursun B, Bilgic B, Santana I, Hanagasi H, Gurvit H, Gibbs JR, Oliveira C, Emre M, Singleton A. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiol Aging 2011; 33:1008.e17-23. [PMID: 22153900 DOI: 10.1016/j.neurobiolaging.2011.10.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/06/2011] [Accepted: 10/09/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished postmortem. Mutations in 3 genes (APP, PSEN1, and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease.
Collapse
Affiliation(s)
- Rita João Guerreiro
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Radi E, Formichi P, Di Maio G, Battisti C, Federico A. Oxidative stress-induced apoptosis in two patients with Alagille syndrome. J Neurol Sci 2011; 308:49-56. [DOI: 10.1016/j.jns.2011.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
22
|
Shorter telomeres in patients with cerebral autosomal dominant arteriopathy and leukoencephalopathy (CADASIL). Neurogenetics 2011; 12:337-43. [DOI: 10.1007/s10048-011-0298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/18/2011] [Indexed: 12/28/2022]
|
23
|
Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M, Opherk C. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 2011; 20:3256-65. [PMID: 21628316 DOI: 10.1093/hmg/ddr237] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is the most common monogenic cause of stroke and vascular dementia. Accumulation and deposition of the NOTCH3 (N3) extracellular domain in small blood vessels has been recognized as a central pathological feature of the disease. Recent experiments suggested enhanced formation of higher order multimers for mutant N3 compared with wild-type (WT). However, the mechanisms and consequences of N3 multimerization are still poorly understood, in part because of the lack of an appropriate in vitro aggregation assay. We therefore developed and validated a robust assay based on recombinant N3 fragments purified from cell culture supernatants. Using single-molecule analysis techniques such as scanning for intensely fluorescent targets and single-particle fluorescence resonance energy transfer, we show that spontaneous aggregation is limited to CADASIL-mutant N3, recapitulating a central aspect of CADASIL pathology in vitro. N3 aggregation requires no co-factor and is facilitated by sulfhydryl crosslinking. Although WT N3 does not exhibit multimerization itself, it can participate in aggregates of mutant N3. Furthermore, we demonstrate that thrombospondin-2, a known interaction partner of N3, co-aggregates with mutant N3. Sequestration of WT N3 and other proteins into aggregates represents a potentially important disease mechanism. These findings in combination with a new assay for single-molecule aggregation analysis provide novel opportunities for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The pathogenic mechanism underlying Cerebral Autosomal Dominant Artheriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) remains elusive although the disease is well characterized at clinical, histological and genetic level. The conservation of the Notch pathway among species allowed the development of several animal and cellular models in order to study it. This review analyzes the reliability of the 7 pathogenic models raised for CADASIL disease: autoimmune origin, mitochondrial dysfunction, loss of Notch3 function, granular osmiophilic material (GOM) toxicity and long term unfolded protein response (UPR) activation. Besides, the relationship between vascular smooth muscle cells (VSMC) degeneration, ischemic lesions and symptoms are discussed. Lastly, some theories are pointed that would explain the exclusiveness of clinical expression to the neural system, being in fact a systemic artheriopathy.
Collapse
|
25
|
Richard E, Jorge-Finnigan A, Garcia-Villoria J, Merinero B, Desviat LR, Gort L, Briones P, Leal F, Pérez-Cerdá C, Ribes A, Ugarte M, Pérez B. Genetic and cellular studies of oxidative stress in methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC). Hum Mutat 2010; 30:1558-66. [PMID: 19760748 DOI: 10.1002/humu.21107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC) is the most frequent genetic disorder of vitamin B(12) metabolism. The aim of this work was to identify the mutational spectrum in a cohort of cblC-affected patients and the analysis of the cellular oxidative stress and apoptosis processes, in the presence or absence of vitamin B(12). The mutational spectrum includes nine previously described mutations: c.3G>A (p.M1L), c.217C>T (p.R73X), c.271dupA (p.R91KfsX14), c.331C>T (p.R111X), c.394C>T (p.R132X), c.457C>T (p.R153X), c.481C>T (p.R161X), c.565C>A (p.R189S), and c.615C>G (p.Y205X), and two novel changes, c.90G>A (p.W30X) and c.81+2T>G (IVS1+2T>G). The most frequent change was the known c.271dupA mutation, which accounts for 85% of the mutant alleles characterized in this cohort of patients. Owing to its high frequency, a real-time PCR and subsequent high-resolution melting (HRM) analysis for this mutation has been established for diagnostic purposes. All cell lines studied presented a significant increase of intracellular reactive oxygen species (ROS) content, and also a high rate of apoptosis, suggesting that elevated ROS levels might induce apoptosis in cblC patients. In addition, ROS levels decreased in hydroxocobalamin-incubated cells, indicating that cobalamin might either directly or indirectly act as a scavenger of ROS. ROS production might be considered as a phenotypic modifier in cblC patients, and cobalamin supplementation or additional antioxidant drugs might suppress apoptosis and prevent cellular damage in these patients.
Collapse
Affiliation(s)
- Eva Richard
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-Severo Ochoa (SO) Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|