1
|
Hejtmánková A, Caisová H, Tomanová T, Španielová H. The role of the DE and EF loop of BKPyV VP1 in the serological cross-reactivity between subtypes. Virus Res 2023; 324:199031. [PMID: 36587871 DOI: 10.1016/j.virusres.2022.199031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Helena Caisová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Tomanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 166 10, Praha 5, Czech Republic.
| |
Collapse
|
2
|
Prezioso C, Moens U, Pietropaolo V. Reply to Henriksen, S.; Rinaldo, C.H. Should SVGp12 Be Used for JC Polyomavirus Studies? Comment on "Prezioso et al. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses 2022, 14, 2070". Viruses 2022; 15:93. [PMID: 36680133 PMCID: PMC9861638 DOI: 10.3390/v15010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
In relation to the comment by Henriksen and Rinaldo, the authors intend to emphasize that before every experiment with SVGp12 cells they routinely test the cells for the absence of BKPyV contamination. The scientists can state that the SVGp12 cells used in their laboratory were not infected by BKPyV and that their results were also validated on the COS-7 cell line, which is permissive for JCPyV infection. Therefore, the overall findings of the study and its conclusions remain authentic. The authors recommend the necessity of carefully testing SVGp12 cells for BKPyV infection before use or, alternatively, in case of a first purchase; moreover, it is possible to choose different cell lines to avoid running into this unpleasant situation.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCCS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Kien TQ, Kien NX, Thang LV, Nghia PB, Van DT, Duc NV, Ha DM, Dung NTT, Ha NTT, Loan VT, Vinh HT, Manh BV, Su HX, Tien TV, Rostaing L, Toan PQ. Stepwise Reduction of Mycophenolate Mofetil with Conversion to Everolimus for the Treatment of Active BKV in Kidney Transplant Recipients: A Single-Center Experience in Vietnam. J Clin Med 2022; 11:jcm11247297. [PMID: 36555914 PMCID: PMC9783583 DOI: 10.3390/jcm11247297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background: No specific antiviral drug can effectively treat BKV reactivation after kidney transplantation. Thus, we evaluated stepwise-reduced immunosuppression to treat BKV reactivation. Methods: 341 kidney-transplant recipients were monitored for BKV infection (BKV-viremia, BKV-viruria). Positive samples with a significant virus load were nested PCR-genotyped in the VP1 region. In 97/211 patients presenting BKV viremia ≥104 copies/mL and/or BKV viruria ≥107 copies/mL, or BKV-nephropathy immunosuppression (i.e., mycophenolate mofetil [MMF]) was reduced by 50%. If viral load did not decrease within 28 days, MMF dose was further reduced by 25%, although calcineurin-inhibitor (CNI) therapy remained unchanged. If BKV viral load did not decrease within another 28 days, MMF was withdrawn and replaced by everolimus combined with reduced CNIs. Results: Only 41/97 BKV (+) cases completed the 6-month follow-up. Among these, 29 (71%) were in the BKV-I group and 12 (29%) were in BKV-IV. BKV viruria and BKV viremia were significantly decreased from 9.32 to 6.09 log10 copies/mL, and from 3.59 to 2.45 log10 copies/mL (p < 0.001 and p = 0.024, respectively). 11/32 (34.4%) patients were cleared of BKV viremia; 2/32 (6.3%) patients were cleared of BKV in both serum and urine, and 9/9 (100%) only had BKV viruria but did not develop BKV viremia. eGFR remained stable. No patient with BKV-related nephropathy had graft loss. There was a significant inverse relationship between changes in eGFR and serum BKV load (r = −0.314, p = 0.04). Conclusions: This stepwise immunosuppressive strategy proved effective at reducing BKV viral load in kidney transplant recipients that had high BKV loads in serum and/or urine. Renal function remained stable without rejection.
Collapse
Affiliation(s)
- Truong Quy Kien
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Nguyen Xuan Kien
- Transplant Centre, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Le Viet Thang
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Phan Ba Nghia
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Diem Thi Van
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Nguyen Van Duc
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Do Manh Ha
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Nguyen Thi Thuy Dung
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Nguyen Thi Thu Ha
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Vu Thi Loan
- Department of Endocrinology, 108 Military Central Hospital, Hanoi 100000, Vietnam
| | - Hoang Trung Vinh
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Bui Van Manh
- Center of Emergency, Intensive Care Medicine and Clinical Toxicology, Hanoi 100000, Vietnam
| | - Hoang Xuan Su
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Viet Tien
- Department of Infectious Disease, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Lionel Rostaing
- Nephrology, Hemodialysis, Apheresis, and Kidney Transplantation Department, Grenoble University Hospital, CEDEX 9, 38043 Grenoble, France
- Correspondence:
| | - Pham Quoc Toan
- Department of Nephrology, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Genomic Mutations of BK Polyomavirus in Patients after Kidney Transplantation: A Cross-Sectional Study in Vietnam. J Clin Med 2022; 11:jcm11092544. [PMID: 35566670 PMCID: PMC9101345 DOI: 10.3390/jcm11092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Objectives: The purpose of this study was to identify the SNP sites and determine the BKV genotype circulating in kidney-transplant Vietnamese recipients based on the VP1 gene region. Methods: 344 samples were collected from post-kidney-transplant recipients at the 103 Vietnam Military Hospital to investigate the number of BKV infections. Positive samples with a sufficient virus concentration were analyzed by nested PCR in the VP1 region, sequencing detected genotyping and single-nucleotide polymorphism. Results: BKV infection was determined in 214 patients (62.2%), of whom 11 (5.1%) were diagnosed with BKV-associated nephropathy. Among the 90 BKV-I strains sequenced, 89 (98.88%) were strains of I/b-1 and 1 (1.12%) was strain I/b-2. The 60 BKV-IV strains had a greater diversity of subgroups, including 40% IV/a-1, 1.66% IV/a-2, 56.68% IV/c-1, and 1.16% IV/c-2. Additionally, of 11 cases diagnosed with BKVN, seven belonged to subgroup I/b-1 (63.6%) and four to subgroup IV/c-1 (36.4%). Moreover, 22 specific SNPs that were genotype I or IV were determined in this Vietnamese population. Specifically, at position 1745, for the Vietnamese BKV-IV strains, the SNP position (A→G) appeared in 57/60 samples (95%). This causes transformation of the amino acid N→S. This SNP site can enable detection of genotype IV in Vietnam. It represents a unique evolution pattern and mutation that has not been found in other international strains. Conclusion: The BKV-I genotype was more common than BKV-IV; however, mutations that occur on the VP1 typing region of BKV-IV strains were more frequent than in BKV-I strains.
Collapse
|
5
|
Kamminga S, Sidorov IA, Tadesse M, van der Meijden E, de Brouwer C, Zaaijer HL, Feltkamp MC, Gorbalenya AE. Translating genomic exploration of the family Polyomaviridae into confident human polyomavirus detection. iScience 2022; 25:103613. [PMID: 35036862 PMCID: PMC8749223 DOI: 10.1016/j.isci.2021.103613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The Polyomaviridae is a family of ubiquitous dsDNA viruses that establish persistent infection early in life. Screening for human polyomaviruses (HPyVs), which comprise 14 diverse species, relies upon species-specific qPCRs whose validity may be challenged by accelerating genomic exploration of the virosphere. Using this reasoning, we tested 64 published HPyV qPCR assays in silico against the 1781 PyV genome sequences that were divided in targets and nontargets, based on anticipated species specificity of each qPCR. We identified several cases of problematic qPCR performance that were confirmed in vitro and corrected through using degenerate oligos. Furthermore, our study ranked 8 out of 52 tested BKPyV qPCRs as remaining of consistently high quality in the wake of recent PyV discoveries and showed how sensitivity of most other qPCRs could be rescued by annealing temperature adjustment. This study establishes an efficient framework for ensuring confidence in available HPyV qPCRs in the genomic era.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Department of Blood-borne Infections, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Igor A. Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michaël Tadesse
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Caroline de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hans L. Zaaijer
- Department of Blood-borne Infections, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Mariet C.W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Lauver MD, Lukacher AE. JCPyV VP1 Mutations in Progressive MultifocalLeukoencephalopathy: Altering Tropismor Mediating Immune Evasion? Viruses 2020; 12:v12101156. [PMID: 33053912 PMCID: PMC7600905 DOI: 10.3390/v12101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Polyomaviruses are ubiquitous human pathogens that cause lifelong, asymptomatic infections in healthy individuals. Although these viruses are restrained by an intact immune system, immunocompromised individuals are at risk for developing severe diseases driven by resurgent viral replication. In particular, loss of immune control over JC polyomavirus can lead to the development of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML). Viral isolates from PML patients frequently carry point mutations in the major capsid protein, VP1, which mediates virion binding to cellular glycan receptors. Because polyomaviruses are non-enveloped, VP1 is also the target of the host's neutralizing antibody response. Thus, VP1 mutations could affect tropism and/or recognition by polyomavirus-specific antibodies. How these mutations predispose susceptible individuals to PML and other JCPyV-associated CNS diseases remains to be fully elucidated. Here, we review the current understanding of polyomavirus capsid mutations and their effects on viral tropism, immune evasion, and virulence.
Collapse
|
7
|
McIlroy D, Hönemann M, Nguyen NK, Barbier P, Peltier C, Rodallec A, Halary F, Przyrowski E, Liebert U, Hourmant M, Bressollette-Bodin C. Persistent BK Polyomavirus Viruria is Associated with Accumulation of VP1 Mutations and Neutralization Escape. Viruses 2020; 12:v12080824. [PMID: 32751274 PMCID: PMC7472262 DOI: 10.3390/v12080824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
To investigate the relationship between neutralization escape and persistent high-level BK polyomavirus replication after kidney transplant (KTx), VP1 sequences were determined by Sanger and next-generation sequencing in longitudinal samples from KTx recipients with persistent high-level viruria (non-controllers) compared to patients who suppressed viruria (controllers). The infectivity and neutralization resistance of representative VP1 mutants were investigated using pseudotype viruses. In all patients, the virus population was initially dominated by wild-type VP1 sequences, then non-synonymous VP1 mutations accumulated over time in non-controllers. BC-loop mutations resulted in reduced infectivity in 293TT cells and conferred neutralization escape from cognate serum in five out of six non-controller patients studied. When taken as a group, non-controller sera were not more susceptible to neutralization escape than controller sera, so serological profiling cannot predict subsequent control of virus replication. However, at an individual level, in three non-controller patients the VP1 variants that emerged exploited specific “holes” in the patient’s humoral response. Persistent high-level BK polyomavirus replication in KTx recipients is therefore associated with the accumulation of VP1 mutations that can confer resistance to neutralization, implying that future BKPyV therapies involving IVIG or monoclonal antibodies may be more effective when used as preventive or pre-emptive, rather than curative, strategies.
Collapse
Affiliation(s)
- Dorian McIlroy
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes, France
- Correspondence: ; Tel.: +33-2-40-41-28-39
| | - Mario Hönemann
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Ngoc-Khanh Nguyen
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Paul Barbier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Cécile Peltier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Audrey Rodallec
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Emilie Przyrowski
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Uwe Liebert
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Maryvonne Hourmant
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, 44093 Nantes, France
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
- Faculté de Médecine, Université de Nantes, 44093 Nantes, France
| |
Collapse
|
8
|
McIlroy D, Halary F, Bressollette-Bodin C. Intra-patient viral evolution in polyomavirus-related diseases. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180301. [PMID: 30955497 DOI: 10.1098/rstb.2018.0301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human polyomaviruses show relatively little genetic polymorphism between isolates, indicating that these viruses are genetically stable between hosts. However, it has become increasingly clear that intra-host molecular evolution is a feature of some polyomavirus (PyV) infections in humans. Mutations inducing premature stop codons in the early region of the integrated Merkel cell PyV genome lead to the expression of a truncated form of the large tumour (LT) antigen that is critical for the transformation of Merkel cell carcinoma (MCC) cells. Non-coding control region (NCCR) rearrangements and point mutations in virion protein (VP) 1 have been described in both JCPyV and BKPyV infections. In the context of JCPyV infection, molecular evolution at both these loci allows the virus to replicate effectively in the central nervous system, thereby leading to the development of progressive multifocal leukoencephalopathy (PML). In BKPyV infection, NCCR rearrangements have been linked to higher rates of virus replication in the kidney, and are proposed to play a direct causal role in the development of PyV-associated nephropathy. In all three of these infections, therefore, intra-host viral evolution appears to be an essential component of the disease process. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Dorian McIlroy
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,2 Faculté des Sciences et des Techniques, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Franck Halary
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Céline Bressollette-Bodin
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,3 Faculté de Médecine, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France.,5 Service de Virologie, CHU Nantes , 44093 Nantes cedex 01 , France
| |
Collapse
|
9
|
Urbano PRP, Nali LHDS, Oliveira RDR, Sumita LM, Fink MCDDS, Pierrotti LC, Bicalho CDS, David-Neto E, Pannuti CS, Romano CM. Variable sources of Bk virus in renal allograft recipients. J Med Virol 2019; 91:1136-1141. [PMID: 30680753 DOI: 10.1002/jmv.25409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023]
Abstract
BK virus is the causative agent of polyomavirus-associated nephropathy, a major cause of kidney transplant failure affecting 1%-10% of recipients. Previous studies that investigated the viral source on the kidney recipient pointed that the donor is implicated in the origin of human polyomavirus BK (BKPyV) infection in recipients, but giving the low genetic variability of BKPyV this subject is still controversial. The aim of this study was to determine if BKPyV replicating in kidney recipients after transplantation is always originated from the donor. Urine and blood samples from 68 pairs of living donors and kidney recipients who underwent renal transplantation from August 2010-September 2011 were screened for BKPyV by real time polymerase chain reaction. Only three recipients presented viremia. When both donors and recipients were BKPyV positive, a larger fragment of VP1 region was obtained and sequenced to determine the level of similarity between them. A phylogenetic tree was built for the 12 pairs of sequences obtained from urine and high level of similarity among all sequences was observed, indicating that homology inferences for donor and recipient viruses must be cautiously interpreted. However, a close inspection on the donor-recipient pairs sequences revealed that 3 of 12 pairs presented considerably different viruses and 4 of 12 presented mixed infection, indicating that the source of BKPyV infection is not exclusively derived from the donor. We report that about 60% of the renal recipients shed BKPyV genetically distinct from the donor, confronting the accepted concept that the donor is the main source of recipients' infection.
Collapse
Affiliation(s)
- Paulo Roberto P Urbano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil
| | - Luiz H da Silva Nali
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil
| | - Renato Dos R Oliveira
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil
| | - Laura M Sumita
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil
| | | | - Lígia C Pierrotti
- Divisão de Moléstias Infecciosas e Parasitárias, do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brasil.,Serviço de Transplante Renal do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Camila da Silva Bicalho
- Divisão de Moléstias Infecciosas e Parasitárias, do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brasil
| | - Elias David-Neto
- Divisão de Moléstias Infecciosas e Parasitárias, do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brasil.,Serviço de Transplante Renal do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Cláudio S Pannuti
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil
| | - Camila M Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brasil.,Hospital das Clinicas HCFMUSP (LIM52), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
10
|
Hejtmánková A, Roubalová K, Forejtová A, Žáčková Suchanová J, Forstová J, Viklický O, Španielová H. Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. J Med Virol 2019; 91:856-864. [PMID: 30609063 DOI: 10.1002/jmv.25388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/24/2018] [Indexed: 01/04/2023]
Abstract
Active infection with BK polyomavirus (BKPyV) may cause serious complications in transplantation settings. Recently, the level of BKPyV IgG seroreactivity in graft donors has been shown to predict viremia and BKPyV-associated nephropathy in kidney transplant (KTx) recipients. Pretransplantation testing of the donor and recipient BKPyV serostatus could, therefore, identify patients at high risk. For the development of serological immunoassays, antibody response to the predominant BKPyV subtypes (BKPyV-I and BKPyV-IV) was studied using virus-like particle (VLP)-based enzyme-linked immunosorbent assay (ELISA). VLPs made from the capsid protein, VP1, derived from BKPyV-I and BKPyV-IV subtypes were produced using a baculovirus expression system and used as antigens. The tests were used for IgG antibody determination in 50 KTx recipients and 111 healthy blood donors. While 87% of samples reacted with mixed BKPyV-I and BKPyV-IV antigens, only 49% of samples were reactive in both ELISA tests when using BKPyV-I or BKPyV-IV antigens separately. Twenty-seven percent of healthy blood donors and 26% of KTx recipients were reactive only with BKPyV-I, while 9% and 20% were reactive only with BKPyV-IV, respectively. To determine the specificities of the antigens, selected seropositive samples were retested after preadsorption with soluble BKPyV-I, BKPyV-IV, or JC polyomavirus antigens. The experiments confirmed that recombinant VP1 VLP-based ELISAs predominantly detected BKPyV type-specific antibodies. The results imply that anti-BKPyV antibody ELISA tests should contain a mixture of subtype-specific VLP-based antigens instead of antigen derived from the most prevalent BKPyV-I subtype. The tests can be used for serological surveys of BKPyV infection and improved KTx patient management.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Jiřina Žáčková Suchanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Viklický
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
BK Polyomavirus MicroRNA Levels in Exosomes Are Modulated by Non-Coding Control Region Activity and Down-Regulate Viral Replication When Delivered to Non-Infected Cells Prior to Infection. Viruses 2018; 10:v10090466. [PMID: 30200237 PMCID: PMC6164188 DOI: 10.3390/v10090466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
In immunosuppressed patients, BKPyV-variants emerge carrying rearranged non-coding control-regions (rr-NCCRs) that increase early viral gene region (EVGR) expression and replication capacity. BKPyV also encodes microRNAs, which have been reported to downregulate EVGR-encoded large T-antigen transcripts, to decrease viral replication in infected cells and to be secreted in exosomes. To investigate the interplay of NCCR and microRNAs, we compared archetype- and rr-NCCR-BKPyV infection in cell culture. We found that laboratory and clinical rr-NCCR-BKPyV-strains show higher replication rates but significantly lower microRNA levels than archetype virus intracellularly and in exosomes. To investigate whether rr-NCCR or increased EVGR activity modulated microRNA levels, we examined the (sp1-4)NCCR-BKPyV, which has an archetype NCCR-architecture but shows increased EVGR expression due to point mutations inactivating one Sp1 binding site. We found that microRNA levels following (sp1-4)NCCR-BKPyV infection were as low as in rr-NCCR-variants. Thus, NCCR rearrangements are not required for lower miRNA levels. Accordingly, Sp1 siRNA knock-down decreased microRNA levels in archetype BKPyV infection but had no effect on (sp1-4)- or rr-NCCR-BKPyV. However, rr-NCCR-BKPyV replication was downregulated by exosome preparations carrying BKPyV-microRNA prior to infection. To explore the potential relevance in humans, urine samples from 12 natalizumab-treated multiple sclerosis patients were analysed. In 7 patients, rr-NCCR-BKPyV were detected showing high urine BKPyV loads but low microRNAs levels, whereas the opposite was seen in 5 patients with archetype BKPyV. We discuss the results in a dynamic model of BKPyV replication according to NCCR activity and exosome regulation, which integrates immune selection pressure, spread to new host cells and rr-NCCR emergence.
Collapse
|
12
|
Peretti A, Geoghegan EM, Pastrana DV, Smola S, Feld P, Sauter M, Lohse S, Ramesh M, Lim ES, Wang D, Borgogna C, FitzGerald PC, Bliskovsky V, Starrett GJ, Law EK, Harris RS, Killian JK, Zhu J, Pineda M, Meltzer PS, Boldorini R, Gariglio M, Buck CB. Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. Cell Host Microbe 2018; 23:628-635.e7. [PMID: 29746834 PMCID: PMC5953553 DOI: 10.1016/j.chom.2018.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/05/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
BK polyomavirus (BKV) frequently causes nephropathy (BKVN) in kidney transplant recipients (KTRs). BKV has also been implicated in the etiology of bladder and kidney cancers. We characterized BKV variants from two KTRs who developed BKVN followed by renal carcinoma. Both patients showed a swarm of BKV sequence variants encoding non-silent mutations in surface loops of the viral major capsid protein. The temporal appearance and disappearance of these mutations highlights the intra-patient evolution of BKV. Some of the observed mutations conferred resistance to antibody-mediated neutralization. The mutations also modified the spectrum of receptor glycans engaged by BKV during host cell entry. Intriguingly, all observed mutations were consistent with DNA damage caused by antiviral APOBEC3 cytosine deaminases. Moreover, APOBEC3 expression was evident upon immunohistochemical analysis of renal biopsies from KTRs. These results provide a snapshot of in-host BKV evolution and suggest that APOBEC3 may drive BKV mutagenesis in vivo.
Collapse
Affiliation(s)
- Alberto Peretti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eileen M Geoghegan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sigrun Smola
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Pascal Feld
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Marlies Sauter
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Mayur Ramesh
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, MI 48202 USA
| | - Efrem S Lim
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy
| | - Peter C FitzGerald
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Valery Bliskovsky
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Keith Killian
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack Zhu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marbin Pineda
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara 28100, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy
| | - Christopher B Buck
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients. Virus Res 2017; 243:65-68. [PMID: 29106916 DOI: 10.1016/j.virusres.2017.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/27/2023]
Abstract
BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1.
Collapse
|
14
|
Karalic D, Lazarevic I, Banko A, Cupic M, Jevtovic D, Jovanovic T. Molecular characterization of BK virus in patients infected with human immunodeficiency virus. Med Microbiol Immunol 2015; 205:185-93. [PMID: 26498471 DOI: 10.1007/s00430-015-0439-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Immunosuppression seems to be the most important cause of BKPyV reactivation. Recently, a spectrum of diseases associated with BKPyV infection has been reported in HIV-infected patients. BKPyV isolates can be classified into four subtypes based on nucleotide polymorphisms within VP1 coding region. Mutations within the BC loop of the VP1 may be associated with an increase in the viral pathogenicity. The aims of this study were to determine prevalence and distribution of BKPyV subtypes, sequence variation and mutations within VP1 among HIV-infected patients and healthy donors. Urine samples from 114 HIV-infected patients and 120 healthy donors were collected. PCR followed by sequence analysis was carried out using primers specific for VP1 and NCRR of the virus genome. The predominant BKPyV subtype was I, followed by IV. In isolates from HIV-infected patients, the majority of non-synonymous alterations were located within the BC loop. BKV sequences from healthy donors showed non-synonymous alterations outside of the receptor loops in the β-sheets. The higher frequency of mutations in the BC loop of VP1 protein was detected among HIV-infected patients. The most frequent mutation was E82D. All HIV-infected patients who harbored mutations had CD4(+) cell counts less than 200 cell/mm(3). It seems that immunosuppression is a very important factor for BKPyV reactivation that can increase viral replication rate and leads to higher frequency of mutations in the BC loop of the VP1. These mutations may change receptor specificity, and further studies are needed to determine the effect of these mutations on the biological properties of the BKPyV.
Collapse
Affiliation(s)
- Danijela Karalic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia.
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Djordje Jevtovic
- Clinics of Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbia, Bulevar oslobodjenja 16, Belgrade, 11000, Serbia
| | - Tanja Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| |
Collapse
|
15
|
Limited Variation in BK Virus T-Cell Epitopes Revealed by Next-Generation Sequencing. J Clin Microbiol 2015. [PMID: 26202116 DOI: 10.1128/jcm.01385-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies.
Collapse
|
16
|
Cardoso KM, Diaz NC, Guimarães MAA, Zalis MG, Delbue S, Ferrante P, Varella RB. Genetic and structural analysis of polyomavirus BK T-antigens reveal a higher density of mutations at inter-domain and hexamerization regions, regardless the status of infection. J Med Virol 2015; 87:1418-26. [DOI: 10.1002/jmv.24192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Kethellin M. Cardoso
- Department of Microbiology and Parasitology; Universidade Federal Fluminense; Niterói Brazil
| | - Nuria C. Diaz
- Department of Pharmaceutical Biotechnology; Universidade Federal do Rio do Janeiro; Rio de Janeiro Brazil
| | | | - Mariano G. Zalis
- Department of Preventive Medicine; Universidade Federal do Rio do Janeiro; Rio de Janeiro Brazil
| | - Serena Delbue
- Department of Biomedical; Surgical and Dental Sciences, University of Milano; Milan Italy
| | - Pasquale Ferrante
- Department of Biomedical; Surgical and Dental Sciences, University of Milano; Milan Italy
| | - Rafael B. Varella
- Department of Microbiology and Parasitology; Universidade Federal Fluminense; Niterói Brazil
| |
Collapse
|
17
|
Teutsch K, Schweitzer F, Knops E, Kaiser R, Pfister H, Verheyen J, Göbel H, Cingöz T, Di Cristanziano V. Early identification of renal transplant recipients with high risk of polyomavirus-associated nephropathy. Med Microbiol Immunol 2015; 204:657-64. [DOI: 10.1007/s00430-015-0398-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
|
18
|
Delbue S, Elia F, Carloni C, Pecchenini V, Franciotta D, Gastaldi M, Colombo E, Signorini L, Carluccio S, Bellizzi A, Bergamaschi R, Ferrante P. JC virus urinary excretion and seroprevalence in natalizumab-treated multiple sclerosis patients. J Neurovirol 2014; 21:645-52. [PMID: 25052191 DOI: 10.1007/s13365-014-0268-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023]
Abstract
The risk of developing progressive multifocal leukoencephalopathy (PML), as a consequence of infection/reactivation with JC virus (JCV), is consistent in natalizumab-treated multiple sclerosis (MS) patients, with 430 cases of PML reported so far. The risk of PML is higher in JCV seropositive patients, and it is recommended that only MS patients without JCV antibodies should be enrolled in the treatment postulating that they do not have JCV infection.We have studied forty-two natalizumab-treated MS patients, and urine and blood were collected monthly for up to 60 months. JCV and BK virus (BKV) DNA presence was verified using quantitative real-time PCR assays, and serum anti-JCV antibodies were measured with the Stratify and/or Stratify DxSelect tests.JCV and BKV DNA were not found in the blood samples, whereas they were found at least once in the urine of 21 of 42 (50 %) and of 25/42 (59.5 %) patients, respectively. JCV DNA urinary shedding increased up to month 24 of natalizumab treatment (45.2 %), and the effect of time was significant for JCV (p = 0.04), but not for BKV (p = 0.39). JCV viruria and seropositivity did not completely correlate, since three patients shedding JCV DNA in the urine were seronegative according to the serological tests.The results indicated that natalizumab therapy may increase the rate of JCV urinary shedding. Additionally, we confirmed that the identification of JCV carriers cannot solely rely on serological tests, but sensitive methods for viral DNA detection should be adopted to more precisely identify the truly JCV uninfected cases.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy
| | - Francesca Elia
- Laboratory of Translational Research Fondazione Ettore Sansavini, Lugo, Italy
| | - Camilla Carloni
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy
| | - Valentina Pecchenini
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy
| | - Diego Franciotta
- Department of General Neurology, National Neurological Institute C. Mondino, Pavia, Italy
| | - Matteo Gastaldi
- Department of General Neurology, National Neurological Institute C. Mondino, Pavia, Italy
| | - Elena Colombo
- Department of General Neurology, National Neurological Institute C. Mondino, Pavia, Italy
| | - Lucia Signorini
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy
| | - Silvia Carluccio
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy
| | - Anna Bellizzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Roberto Bergamaschi
- Department of General Neurology, National Neurological Institute C. Mondino, Pavia, Italy
| | - Pasquale Ferrante
- Department of Biomedical Surgical and Dental Sciences, University of Milano, Via Pascal, 36, Milan, 20133, Italy. .,Istituto Clinico Città Studi, Milan, Italy.
| |
Collapse
|
19
|
Delbue S, Matei DV, Carloni C, Pecchenini V, Carluccio S, Villani S, Tringali V, Brescia A, Ferrante P. Evidence supporting the association of polyomavirus BK genome with prostate cancer. Med Microbiol Immunol 2013; 202:425-30. [PMID: 23821367 DOI: 10.1007/s00430-013-0304-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/19/2013] [Indexed: 01/29/2023]
Abstract
Prostate cancer (PCA) is the most frequent cancer in men. Exposure to infectious agents has been reported to have a putative role in tumorigenesis. Among the infectious agents, convincing evidence has been accumulated about the human polyomavirus BK (BKV). Tissue fresh specimens, serum, and urine samples were collected from 124 consecutive patients, 56 with PCA and 68 with benign prostatic hyperplasia (BPH). Quantitative PCR assays were used to assess the presence of BKV and JC virus (JCV) genomes. BKV-positive tissue specimens were found in 32.1 and 22.1 % of PCA and BPH patients, respectively; in PCA group the number of positive BKV specimens/patients was significantly higher than in BPH group (3.06 vs. 1.73, p = 0.02). JCV genome was found in the biopsies collected from 28.1 and 24.2 % of PCA and BPH patients, respectively, with no significant difference in the rate of JCV specimens/patients between PCA and BPH groups. Our results support the putative causal association between BKV genome and PCA. Further studies are required to demonstrate the direct pathogenetic role of BKV in the PCA occurrence and progression in order to clear the tempting way of vaccine prophylaxis.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36, 20123, Milan, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Konietzny R, Fischer R, Ternette N, Wright CA, Turney BW, Chakera A, Hughes D, Kessler BM, Pugh CW. Detection of BK virus in urine from renal transplant subjects by mass spectrometry. Clin Proteomics 2012; 9:4. [PMID: 22537312 PMCID: PMC3460760 DOI: 10.1186/1559-0275-9-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/11/2012] [Indexed: 01/11/2023] Open
Abstract
Background The diagnosis and management of BK virus (BKV) reactivation following renal transplantation continues to be a significant clinical problem. Following reactivation of latent virus, impaired cellular immunity enables sustained viral replication to occur in urothelial cells, which potentially leads to the development of BKV-associated nephropathy (BKVAN). Current guidelines recommend regular surveillance for BKV reactivation through the detection of infected urothelial cells in urine (decoy cells) or viral nucleic acid in urine or blood. However, these methods have variable sensitivity and cannot routinely distinguish between different viral subtypes. We therefore asked whether mass spectrometry might be able to overcome these limitations and provide an additional non-invasive technique for the surveillance of BKV and identification of recipients at increased risk of BKVAN. Results Here we describe a mass spectrometry (MS)-based method for the detection of BKV derived proteins directly isolated from clinical urine samples. Peptides detected by MS derived from Viral Protein 1 (VP1) allowed differentiation between subtypes I and IV. Using this approach, we observed an association between higher decoy cell numbers and the presence of the VP1 subtype Ib-2 in urine samples derived from a cohort of 20 renal transplant recipients, consistent with the hypothesis that certain viral subtypes may be associated with more severe BKVAN. Conclusions This is the first study to identify BK virus proteins in clinical samples by MS and that this approach makes it possible to distinguish between different viral subtypes. Further studies are required to establish whether this information could lead to stratification of patients at risk of BKVAN, facilitate distinction between BKVAN and acute rejection (AR), and ultimately improve patient treatment and outcomes.
Collapse
Affiliation(s)
- Rebecca Konietzny
- Centre for Cellular and Molecular Physiology, Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuypers DRJ. Management of polyomavirus-associated nephropathy in renal transplant recipients. Nat Rev Nephrol 2012; 8:390-402. [DOI: 10.1038/nrneph.2012.64] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Weitschek E, Lo Presti A, Drovandi G, Felici G, Ciccozzi M, Ciotti M, Bertolazzi P. Human polyomaviruses identification by logic mining techniques. Virol J 2012; 9:58. [PMID: 22385517 PMCID: PMC3307486 DOI: 10.1186/1743-422x-9-58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/02/2012] [Indexed: 11/16/2022] Open
Abstract
Background Differences in genomic sequences are crucial for the classification of viruses into different species. In this work, viral DNA sequences belonging to the human polyomaviruses BKPyV, JCPyV, KIPyV, WUPyV, and MCPyV are analyzed using a logic data mining method in order to identify the nucleotides which are able to distinguish the five different human polyomaviruses. Results The approach presented in this work is successful as it discovers several logic rules that effectively characterize the different five studied polyomaviruses. The individuated logic rules are able to separate precisely one viral type from the other and to assign an unknown DNA sequence to one of the five analyzed polyomaviruses. Conclusions The data mining analysis is performed by considering the complete sequences of the viruses and the sequences of the different gene regions separately, obtaining in both cases extremely high correct recognition rates.
Collapse
Affiliation(s)
- Emanuel Weitschek
- Institute of Systems Analysis and Computer Science "A, Ruberti", National Research Council, Viale Manzoni 30, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bárcena-Panero A, Van Ghelue M, Khan MTH, Echevarría JE, Fedele G, Moens U. BK virus-associated infection in cerebrospinal fluid of neurological patients and mutation analysis of the complete VP1 gene in different patient groups. J Cell Physiol 2011; 227:136-45. [DOI: 10.1002/jcp.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Matsuda Y, Qazi Y, Iwaki Y. A rapid and efficient method BK polyomavirus genotyping by high-resolution melting analysis. J Med Virol 2011; 83:2128-34. [DOI: 10.1002/jmv.22239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Tremolada S, Akan S, Otte J, Khalili K, Ferrante P, Chaudhury PR, Woodle ES, Trofe-Clark J, White MK, Gordon J. Rare subtypes of BK virus are viable and frequently detected in renal transplant recipients with BK virus-associated nephropathy. Virology 2010; 404:312-8. [DOI: 10.1016/j.virol.2010.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/01/2010] [Accepted: 05/13/2010] [Indexed: 11/26/2022]
|
26
|
Quantitative considerations to gather maximum information from viral growth efficiency studies: the example of polyomavirus type BK (BKV). Virus Res 2010; 151:244-5. [PMID: 20580755 DOI: 10.1016/j.virusres.2010.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022]
Abstract
This short communication shows how the application of simple mathematical formulae allows researchers to extract maximum information from viral growth efficiency studies at virtually no additional costs (in terms of time or money), thus improving the comparability of results (growth rates, replicative capacities, efficacies of antivirals) between in vitro and in vivo growth efficiency studies. This could help in elucidating kinetic links between the molecular basis of virus function and clinical findings.
Collapse
|
27
|
Tremolada S, Delbue S, Larocca S, Carloni C, Elia F, Khalili K, Gordon J, Ferrante P. Polymorphisms of the BK virus subtypes and their influence on viral in vitro growth efficiency. Virus Res 2010; 149:190-6. [PMID: 20138933 DOI: 10.1016/j.virusres.2010.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
The major capsid protein, VP1, of the human polyomavirus BK (BKV) is structurally divided into five outer loops, referred to as BC, DE, EF, GH, and HI. The BC loop includes a short region, named the BKV subtyping region, spanning nucleotides 1744-1812 and characterized by non-synonymous nucleotide polymorphisms that have been used to classify different strains of BKV into four subtypes. The aim of this study was to determine if the nucleotide changes clustered within the BKV subtyping region may influence the in vitro growth efficiency of the virus. We therefore infected the African Green Monkey kidney cell line Vero with four different viral strains (named BKV I, II, III, and IV) that contained the nucleotide sequences of the BKV subtypes within the same genomic background. Infected cells were followed for 59 days and viral replication was assessed at different time points by quantitative real-time PCR (Q-PCR). BKV I, II, and IV were successfully propagated over time in Vero cells, whereas BKV III viral loads progressively decreased during the infection course, demonstrating that the non-synonymous nucleotide polymorphisms of subtype III confer a strong disadvantage for viral replication. Since subtype III differs from all the other subtypes at position 68 of the VP1, where Leu is replaced by Gln, we created viral strains bearing Gln at this position together with the polymorphisms of subtypes I, II, IV and tested their growth in Vero cells. Our results demonstrate that this amino acid substitution does not lower the replication efficiency of subtypes I, II, and IV. In conclusion, this study provides further insights to the importance of the BC loop of BKV in the virus life cycle. In addition, given the effect of the amino acid substitutions of the four BKV subtypes on infectious spread of the virus, our results suggest the need to investigate their potential association with BKV related complications.
Collapse
Affiliation(s)
- Sara Tremolada
- Department of Public Health - Microbiology - Virology, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|