1
|
Huang Y, Zia N, Ma Y, Li T, Walker GC, Naguib HE, Kumacheva E. Colloidal Hydrogel with Staged Sequestration and Release of Molecules Undergoing Competitive Binding. ACS NANO 2024; 18:25841-25851. [PMID: 39240238 DOI: 10.1021/acsnano.4c09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Competitive binding of distinct molecules in the hydrogel interior can facilitate dynamic exchange between the hydrogel and the surrounding environment. The ability to control the rates of sequestration and release of these molecules would enhance the hydrogel's functionality and enable targeting of a specific task. Here, we report the design of a colloidal hydrogel with two distinct pore dimensions to achieve staged, diffusion-controlled scavenging and release dynamics of molecules undergoing competitive binding. The staged scavenging and release strategy was shown for CpG oligodeoxynucleotide (ODN) and human epidermal growth factor (hEGF), two molecules exhibiting different affinities to the quaternary ammonium groups of the hydrogel. Fast ODN scavenging from the ambient environment occurred via diffusion through submicrometer-size hydrogel pores, while delayed hEGF release from the hydrogel was governed by its diffusion through nanometer-size pores. The results of the experiments were in agreement with simulation results. The significance of staged ODN-hEGF exchange was highlighted by the dual anti-inflammation and tissue proliferation hydrogel performance.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
| | - Nashmia Zia
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto M5S 3E4, Canada
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto M5S 3G9, Canada
| |
Collapse
|
2
|
Cui HS, Joo SY, Cho YS, Lee YR, Ro YM, Kwak IS, Hur GY, Seo CH. Exosomes Derived from Hypertrophic Scar Fibroblasts Suppress Melanogenesis in Normal Human Epidermal Melanocytes. Int J Mol Sci 2024; 25:7236. [PMID: 39000342 PMCID: PMC11241421 DOI: 10.3390/ijms25137236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Post-burn hypertrophic scars often exhibit abnormal pigmentation. Exosomes play important roles in maintaining normal physiological homeostasis and in the pathological development of diseases. This study investigated the effects of the exosomes derived from hypertrophic scar fibroblasts (HTSFs) on melanocytes, which are pigment-producing cells. Normal fibroblasts (NFs) and HTSFs were isolated and cultured from normal skin and hypertrophic scar (HTS) tissue. Both the NF- and HTSF-exosomes were isolated from a cell culture medium and purified using a column-based technique. The normal human epidermal melanocytes were treated with both exosomes at a concentration of 100 μg/mL at different times. The cell proliferation, melanin content in the medium, apoptotic factors, transcription factors, melanin synthesis enzymes, signaling, signal transduction pathways, and activators of transcription factors (STAT) 1, 3, 5, and 6 were investigated. Compared with the Dulbecco's phosphate-buffered saline (DPBS)-treated controls and NF-exosomes, the HTSF-exosomes decreased the melanocyte proliferation and melanin secretion. The molecular patterns of apoptosis, proliferation, melanin synthesis, Smad and non-Smad signaling, and STATs were altered by the treatment with the HTSF-exosomes. No significant differences were observed between the DPBS-treated control and NF-exosome-treated cells. HTSF-derived exosomes may play a role in the pathological epidermal hypopigmentation observed in patients with HTS.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| | - You Ra Lee
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - Yu Mi Ro
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - In Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea;
| | - Gi Yeun Hur
- Department of Plastic and Reconstructive Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| |
Collapse
|
3
|
Uyar I, Aksam E, Kopal C. Nasal Sill Flap for Lip Lifting. Facial Plast Surg 2024; 40:106-111. [PMID: 37402393 DOI: 10.1055/s-0043-1770764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Over the years, different techniques have been developed to reduce the number of incisions and scars in subnasal lip lifting and to increase the amount of lifting. The aim of this study was to present a new technique to hide the scars at the nasal base in subnasal lip lifting procedures and to review the literature. METHODS The file of patients who underwent subnasal lip lifting between January 2019 and January 2021 were examined. In all patients, the nasal sill flap that was designed was elevated, and the nasal sill flap that was prepared was adapted to its new location when the excision had been completed. Two different plastic surgeons evaluated the patients in the postoperative 12-month follow-ups. The scars were evaluated for vascularity, pigmentation, elasticity, thickness, and height. RESULTS The study included 26 patients. While 21 patients had no histories of lip lifting, five patients had had previous lip lifting history. The mean operation time was 37.11 minutes. Patients' skin types were determined as Type 3 in 18 patients and Type 4 in eight patients according to the Fitzpatrick classification. The mean follow-up period of the patients was 13.11 months. At the end of the 12-month period, the mean scar score of the patients was calculated as 11.15. The mean scar score of primary cases was 11.14, and the mean scar score of secondary cases was 11.20 (p = 0.983). There was no statistically significant difference in terms of complications among smokers (p = 0.356). The mean scar score was calculated as 12.17 in patients who had Type 3 skin and 8.88 in patients with Type 4 skin (p = 0.075). CONCLUSIONS This technique is beneficial for patients because the scars are discrete and easier for patients to accept.
Collapse
Affiliation(s)
- Ilker Uyar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Izmir Katip Celebi University Medical Faculty, Izmir, Turkey
| | - Ersin Aksam
- Department of Plastic, Reconstructive and Aesthetic Surgery, Izmir Katip Celebi University Medical Faculty, Izmir, Turkey
| | - Can Kopal
- Private Practice, Kultur Mah. Sair Esref Bul. No:61 Bahar Apartmanı K:2 D:5 Alsancak/Izmir, Turkey
| |
Collapse
|
4
|
Ramírez O, Pomareda F, Olivares B, Huang YL, Zavala G, Carrasco-Rojas J, Álvarez S, Leiva-Sabadini C, Hidalgo V, Romo P, Sánchez M, Vargas A, Martínez J, Aguayo S, Schuh CMAP. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155108. [PMID: 37844380 DOI: 10.1016/j.phymed.2023.155108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Aloe vera (AV) is a medicinal plant, most known for its beneficial effects on a variety of skin conditions. Its known active compounds include carbohydrates and flavonoids such as quercetin and kaempferol, among others. In the past decade, plant nanovesicles (NVs) have gained considerable interest as interkingdom communicators, presenting an opportunity for clinical standardization of natural products. In this study, we aimed to assess the potential of AVpNVs for the treatment of burn wounds. METHODS AVpNVs were isolated and characterized regarding vesicle yield (nanoparticle tracking analysis) and structure (transmission electron microscopy and atomic force microscopy), as well as their protein content with proteomics. We assessed key characteristics for treating burn wounds in vitro, such as the anti-inflammatory potential in LPS-stimulated macrophages and keratinocytes, and the effect of AVpNVs on myofibroblast differentiation and contraction. KEY FINDINGS AVpNVs presented a homogenous NV population, vesicular shape, and NV-associated protein markers. AVpNVs significantly decreased the secretion of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Furthermore, AVpNVs inhibited myofibroblast differentiation and significantly decreased their contractile potential in collagen matrices. Observed effects were linked to proteins identified in the isolates through proteomics analysis. CONCLUSION AVpNVs displayed characteristics as an inflammatory modulator, while simultaneously diminishing myofibroblast differentiation and contraction. Novel strategies for burn wound treatment seek to decrease scarring on a cellular and molecular level in the early stages of wound healing, which makes AVpNVs a promising candidate for future plant-vesicle-based treatments.
Collapse
Affiliation(s)
- Orlando Ramírez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Florencia Pomareda
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Belén Olivares
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Gabriela Zavala
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Simón Álvarez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Hidalgo
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Pablo Romo
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Matías Sánchez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Ayleen Vargas
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
5
|
Xu Z, Cheng C, Zhang Y, Yang D, Jing W, Liu X, Li X. Lipopolysaccharide induces skin scarring through the TLR4/Myd88 inflammatory signaling pathway in dermal fibroblasts. Burns 2023; 49:1997-2006. [PMID: 37821278 DOI: 10.1016/j.burns.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/19/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023]
Abstract
Skin scarring is a frequent complication of the wound healing process. Bacterial contamination and prolonged inflammation in wounds are thought to play significant roles during scar formation, but little is known about their specific mechanisms of action. In this study, hypertrophic scar derived fibroblasts (HSFs) and paired normal skin derived fibroblasts (NSFs) were used to evaluate the effects of lipopolysaccharide (LPS) on inflammation-induced skin scarring and explore the inflammation-mediated mechanism of activity of LPS on dermal fibroblasts. LPS was found to significantly upregulate the expression of the proinflammatory molecules TLR4, Myd88, TRAF6, and p65, and the fibrosis-related proteins Col I, Col III, and α-SMA, in NSFs. Blocking Myd88 expression with T6167923 downregulated the expression of Col I, Col III, and α-SMA, whereas activating Myd88 expression with CL075 significantly upregulated their expression in LPS-treated NSFs. LPS was found to delay wound healing and increase skin scarring in cell and mouse models. These results showed that LPS could induce scar formation through the TLR4/Myd88 signaling pathway in dermal fibroblasts, suggesting that the downregulation of excessive inflammation in wound tissues inhibits skin scarring and improves scar appearance.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, West Chang-le Road, No 127, Xi'an 710032, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China
| | - Yangang Zhang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China
| | - Danyang Yang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China
| | - Wenwen Jing
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China
| | - Xin Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China
| | - Xiaoli Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, No 157, Xi'an 710004, China.
| |
Collapse
|
6
|
Anfossi R, Vivar R, Ayala P, González-Herrera F, Espinoza-Pérez C, Osorio JM, Román-Torres M, Bolívar S, Díaz-Araya G. Interferon-β decreases LPS-induced neutrophil recruitment to cardiac fibroblasts. Front Cell Dev Biol 2023; 11:1122408. [PMID: 37799272 PMCID: PMC10547890 DOI: 10.3389/fcell.2023.1122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-β. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-β countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-β. Ruxolitinib blocked these IFN-β anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-β boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-β had no significant impact. Pre-treating CF with LPS, IFN-β, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-β pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
Collapse
Affiliation(s)
- Renatto Anfossi
- Unidad de Farmacia, Hospital Regional del Libertador Bernardo O’Higgins, Rancagua, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Farmacología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago de Chile, Chile
| | | | - Claudio Espinoza-Pérez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Román-Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Samir Bolívar
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Mony MP, Harmon KA, Hess R, Dorafshar AH, Shafikhani SH. An Updated Review of Hypertrophic Scarring. Cells 2023; 12:cells12050678. [PMID: 36899815 PMCID: PMC10000648 DOI: 10.3390/cells12050678] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Hypertrophic scarring (HTS) is an aberrant form of wound healing that is associated with excessive deposition of extracellular matrix and connective tissue at the site of injury. In this review article, we provide an overview of normal (acute) wound healing phases (hemostasis, inflammation, proliferation, and remodeling). We next discuss the dysregulated and/or impaired mechanisms in wound healing phases that are associated with HTS development. We next discuss the animal models of HTS and their limitations, and review the current and emerging treatments of HTS.
Collapse
Affiliation(s)
- Manjula P. Mony
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kelly A. Harmon
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ryan Hess
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
9
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Hosseini M, Brown J, Khosrotehrani K, Bayat A, Shafiee A. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. BURNS & TRAUMA 2022; 10:tkac036. [PMID: 36017082 PMCID: PMC9398863 DOI: 10.1093/burnst/tkac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Indexed: 12/19/2022]
Abstract
Pathological scarring imposes a major clinical and social burden worldwide. Human cutaneous wounds are responsive to mechanical forces and convert mechanical cues to biochemical signals that eventually promote scarring. To understand the mechanotransduction pathways in cutaneous scarring and develop new mechanotherapy approaches to achieve optimal scarring, the current study highlights the mechanical behavior of unwounded and scarred skin as well as intra- and extracellular mechanisms behind keloid and hypertrophic scars. Additionally, the therapeutic interventions that promote optimal scar healing by mechanical means at the molecular, cellular or tissue level are extensively reviewed. The current literature highlights the significant role of fibroblasts in wound contraction and scar formation via differentiation into myofibroblasts. Thus, understanding myofibroblasts and their responses to mechanical loading allows the development of new scar therapeutics. A review of the current clinical and preclinical studies suggests that existing treatment strategies only reduce scarring on a small scale after wound closure and result in poor functional and aesthetic outcomes. Therefore, the perspective of mechanotherapies needs to consider the application of both mechanical forces and biochemical cues to achieve optimal scarring. Moreover, early intervention is critical in wound management; thus, mechanoregulation should be conducted during the healing process to avoid scar maturation. Future studies should either consider combining mechanical loading (pressure) therapies with tension offloading approaches for scar management or developing more effective early therapies based on contraction-blocking biomaterials for the prevention of pathological scarring.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering (MMPE), Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, England, UK
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| |
Collapse
|
11
|
Parikh UM, Mentz J, Collier I, Davis MJ, Abu-Ghname A, Colchado D, Short WD, King A, Buchanan EP, Balaji S. Strategies to Minimize Surgical Scarring: Translation of Lessons Learned from Bedside to Bench and Back. Adv Wound Care (New Rochelle) 2022; 11:311-329. [PMID: 34416825 DOI: 10.1089/wound.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: An understanding of the physiology of wound healing and scarring is necessary to minimize surgical scar formation. By reducing tension across the healing wound, eliminating excess inflammation and infection, and encouraging perfusion to healing areas, surgeons can support healing and minimize scarring. Recent Advances: Preoperatively, newer techniques focused on incision placement to minimize tension, skin sterilization to minimize infection and inflammation, and control of comorbid factors to promote a healing process with minimal scarring are constantly evolving. Intraoperatively, measures like layered closure, undermining, and tissue expansion can be taken to relieve tension across the healing wound. Appropriate suture technique and selection should be considered, and finally, there are new surgical technologies available to reduce tension across the closure. Postoperatively, the healing process can be supported as proliferation and remodeling take place within the wound. A balance of moisture control, tension reduction, and infection prevention can be achieved with dressings, ointments, and silicone. Vitamins and corticosteroids can also affect the scarring process by modulating the cellular factors involved in healing. Critical Issues: Healing with no or minimal scarring is the ultimate goal of wound healing research. Understanding how mechanical tension, inflammation and infection, and perfusion and hypoxia impact profibrotic pathways allows for the development of therapies that can modulate cytokine response and the wound extracellular microenvironment to reduce fibrosis and scarring. Future Directions: New tension-off loading topical treatments, laser, and dermabrasion devices are under development, and small molecule therapeutics have demonstrated scarless wound healing in animal models, providing a promising new direction for future research aimed to minimize surgical scarring.
Collapse
Affiliation(s)
- Umang M. Parikh
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - James Mentz
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Ian Collier
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Matthew J. Davis
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Amjed Abu-Ghname
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Colchado
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Walker D. Short
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Alice King
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Edward P. Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Immunohistochemical Analysis of Postburn Scars following Treatment Using Dermal Substitutes. Anal Cell Pathol (Amst) 2022; 2022:3686863. [PMID: 35251908 PMCID: PMC8896958 DOI: 10.1155/2022/3686863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background Post-burn hypertrophic scars commonly occur after burns. Studies that compare dermal substitutes with other treatment methods are insufficient. The purpose was to analyze the histopathological differences in hypertrophic burn scars after Matriderm®+split-thickness skin graft (STSG) and compare with AlloDerm®+STSG, STSG, full-thickness skin graft (FTSG), and normal skin. Methods Samples of unburned, normal skin and deep 2nd or 3rd degree burns were obtained from patients who experienced a burn injury in the past to at least 6 months before biopsy, which was performed between 2011 and 2012. All subjects received >6 months of treatment before the biopsy. Intervention groups were normal (63), STSG (28), FTSG (6), Matriderm® (11), and AlloDerm® (18). Immunohistochemical analyses of elastin, collagen I, collagen III, cluster of differentiation 31 (CD31), smooth muscle actin (α-SMA), and laminin from scar and control tissues were performed and compared. Results α-SMA vascular quantity and vessel width, stromal CD31, and basement membrane laminin expression were not significantly different between normal and intervention groups. Matriderm® group showed no significant difference in elastin, collagen III, stromal CD31 and α-SMA, CD31 vessel width, stromal α-SMA, vessel quantity and width, and laminin length compared to the normal group, meaning they were not significantly different from the normal skin traits. Conclusion Dermal substitutes may be an optimal alternative to address the cosmetic and functional limitations posed by other treatment methods.
Collapse
|
13
|
Tanno H, Kanno E, Kurosaka S, Oikawa Y, Watanabe T, Sato K, Kasamatsu J, Miyasaka T, Ishi S, Shoji M, Takagi N, Imai Y, Ishii K, Tachi M, Kawakami K. Topical Administration of Heat-Killed Enterococcus faecalis Strain KH2 Promotes Re-Epithelialization and Granulation Tissue Formation during Skin Wound-Healing. Biomedicines 2021; 9:1520. [PMID: 34829749 PMCID: PMC8614852 DOI: 10.3390/biomedicines9111520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria (LAB) are known to have beneficial effects on immune responses when they are orally administered as bacterial products. Although the beneficial effects of LAB have been reported for the genera Lactobacillus and Lactococcus, little has been uncovered on the effects of the genus Enterococcus on skin wound-healing. In this study, we aimed to clarify the effect of heat-killed Enterococcus faecalis KH2 (heat-killed KH2) strain on the wound-healing process and to evaluate the therapeutic potential in chronic skin wounds. We analyzed percent wound closure, re-epithelialization, and granulation area, and cytokine and growth factor production. We found that heat-killed KH2 contributed to the acceleration of re-epithelialization and the formation of granulation tissue by inducing tumor necrosis factor-α, interleukin-6, basic fibroblast growth factor, transforming growth factor (TGF)-β1, and vascular endothelial growth factor production. In addition, heat-killed KH2 also improved wound closure, which was accompanied by the increased production of TGF-β1 in diabetic mice. Topical administration of heat-killed KH2 might have therapeutic potential for the treatment of chronic skin wounds in diabetes mellitus. In the present study, we concluded that heat-killed KH2 promoted skin wound-healing through the formation of granulation tissues and the production of inflammatory cytokines and growth factors.
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Yukari Oikawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
| | - Takumi Watanabe
- Bio-Lab Co., Ltd., 2-1-3 Komagawa, Hidaka-shi 350-1249, Japan;
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (N.T.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.S.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
14
|
Exploring the Protective Effects of Phaeodactylum tricornutum Extract on LPS-Treated Fibroblasts. COSMETICS 2021. [DOI: 10.3390/cosmetics8030076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Microalgal extracts are an important source of bioactive compounds with antioxidant and anti-inflammatory properties that can be used in cosmetics. The microalgae Phaeodactylum tricornutum (PT) is known for its high content of omega-3 fatty acids, which are known to attenuate inflammation. Here, we explore the effects of aqueous microencapsulated extract of PT on lipopolysaccharide (LPS)-stimulated normal human dermal fibroblasts (NHDF) to underline its application as an active ingredient in cosmetics. Methods: We assessed cell viability using MTT assay, so as to target any potential cytotoxicity of the extract. Moreover, with the aid of RT-qPCR, we studied the transcript accumulation of genes involved in cell antioxidant response, cell proliferation, and inflammation. Results: Our results revealed that the hydrolyzed rice flour-encapsulated (HRF) PT extract promotes anti-inflammatory and antioxidant response, increasing cell proliferation in NHDF cells. Conclusions: Our data indicate a promising use of HRF-encapsulated PT extract in cosmetics by reducing skin inflammation.
Collapse
|
15
|
lncRNA PAPPA-AS1 Induces the Development of Hypertrophic Scar by Upregulating TLR4 through Interacting with TAF15. Mediators Inflamm 2021; 2021:3170261. [PMID: 34285657 PMCID: PMC8275406 DOI: 10.1155/2021/3170261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Hypertrophic scar (HTS) is a complicated pathological process induced mainly by burns and wounds, with abnormal proliferation of fibroblasts and the transformation of fibroblasts to myofibroblasts. PAPPA-AS1, a differentially expressed long noncoding RNA (lncRNA) in the HTS tissues, attracted our interests in its potential role and mechanism in the development and process of HTS. In the present study, the regulatory effect of lncRNA PAPPA-AS1 on the Toll-like receptor 4 (TLR4) signal pathway, as well as the molecular mechanism, was investigated. Bioinformatics analysis was utilized to screen the differentially expressed lncRNAs in HTS tissues. PAPPA-AS1 was significantly upregulated in both HTS tissues and hypertrophic scar fibroblast (HTsFb) cells. The expression levels of TLR4, MyD88, TGF-β1, collagen I, collagen III, and α-SMA were greatly elevated in HTsFb cells. By knocking down PAPPA-AS1, the proliferation of HTsFb cells, TLR4, and TGF-β1 signal pathway and the expression of fibrosis markers both in HTsFb cells and HTS tissues were suppressed. It was accompanied by the alleviated pathological state in the HTS tissues, which were significantly reversed by cotransfecting with the pcDNA3.1-TLR4 vector. Positive correlation and interaction were observed between PAPPA-AS1 and TAF15 and between TAF15 and the promoter of TLR4, respectively. In conclusion, lncRNA PAPPA-AS1 might induce the development of HTS by upregulating TLR4 through interacting with TAF15.
Collapse
|
16
|
Agrawal A, Ding J, Agrawal B, Kwan PO, Tredget EE. Stimulation of toll-like receptor pathways by burn eschar tissue as a possible mechanism for hypertrophic scarring. Wound Repair Regen 2021; 29:810-819. [PMID: 34043867 DOI: 10.1111/wrr.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023]
Abstract
Hypertrophic scars (HTS) are a common complication following burn injuries with prolonged inflammation. They do not respond well to current treatment options including mechanical, biomolecular and surgical therapies. Toll-like receptor (TLR) 2 and 4 respond to microbes and damaged endogenous ligands to trigger pro-inflammatory pathways, and they are expressed more in HTS fibroblasts compared to normal skin fibroblasts. TLR2 responds to microbial lipoteichoic acid (LTA) while TLR4 responds to microbial lipopolysaccharide (LPS) and endogenous ligands. We investigated the role of burn tissue and small leucine-rich proteoglycans (decorin and biglycan) in the stimulation of TLR2 and TLR4 pathways using cells stably transfected with TLR2 or TLR4 linked to a reporter system. Normal skin (n = 5) was collected post-abdominoplasty, and burn eschar samples (n = 18) were collected from 18 patients between 0 and 14 days post-burn. We found that burn tissue stimulates TLR2 activity significantly more than normal tissue and contains significantly higher levels of LTA. Burn tissue was a stronger stimulator of TLR4 than was normal skin. Burn tissue samples' stimulation of TLR4 and TLR2 correlated. The time post-burn (0-14 days) of wound tissue sampling correlated positively but moderately with TLR2 and TLR4 simulation. In comparison to the dose-dependent effects of natural decorin or biglycan on TLR4 activation, their denatured forms exhibited stronger or weaker stimulation, respectively. They were not potent stimulators of TLR2. TLR2 and TLR4 stimulation is not limited to bacteria in wounds and likely involves multiple endogenous damage-associated molecular patterns. Insight into mechanisms of HTS will facilitate the development of future targeted therapies to modify wound progression and provide benefits to patients suffering with HTS and other fibroproliferative disorders.
Collapse
Affiliation(s)
- Ambika Agrawal
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jie Ding
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter O Kwan
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E Tredget
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
19
|
Kobylkevich BM, Raihan MJ, Uprety T, Kaushik RS, Shore JS, Sohn JJ, Messerli MA. Linear polysaccharides reduce production of inflammatory cytokines by LPS-stimulated bovine fibroblasts. Vet Immunol Immunopathol 2021; 234:110220. [PMID: 33713903 DOI: 10.1016/j.vetimm.2021.110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
Chronic lesions in the limbs of farm animals cause lameness due to chronic infection and inflammation. Exploratory treatments for chronic wounds in humans may be suitable for adaptation into the field of animal care. Specifically, antimicrobial linear polysaccharides like oxidized regenerated cellulose (ORC) and chitin/chitosan are biodegradable hemostats that are being explored to promote healing of chronic wounds but have not been directly compared using the same biological specimen. Despite their current use in humans, linear polysaccharides possess features that may preclude their use as biodegradable bandages. For example, ORC promotes inflammation when it remains in vivo and chitin/chitosan stimulate size-dependent proinflammatory responses. In order to assess the use of these materials to treat chronic wounds we have compared their effects on cellular toxicity and in stimulating the production of proinflammatory cytokines by bovine epidermal fibroblasts. While neither polysaccharide increased cell mortality, on average, they caused minor alterations in expression of proinflammatory cytokines from cells isolated from different animals. Both polysaccharides reduced expression of proinflammatory cytokines stimulated by microbial lipopolysaccharide. We conclude that the polysaccharides used in this study are relatively inert and may improve healing of chronic epidermal wounds in farm animals.
Collapse
Affiliation(s)
- Brian M Kobylkevich
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - M Jahir Raihan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Jay S Shore
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, United States
| | - Joel J Sohn
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, United States
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States.
| |
Collapse
|
20
|
Fu S, Panayi A, Fan J, Mayer HF, Daya M, Khouri RK, Gurtner GC, Ogawa R, Orgill DP. Mechanotransduction in Wound Healing: From the Cellular and Molecular Level to the Clinic. Adv Skin Wound Care 2021; 34:67-74. [PMID: 33443911 DOI: 10.1097/01.asw.0000725220.92976.a7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GENERAL PURPOSE To review the various mechanical forces that affect fibroblasts, keratinocytes, endothelial cells, and adipocytes at the cellular and molecular level as well as scar-reducing mechanical devices currently in clinical use. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Compare and contrast the responses of various types of cells to mechanical forces.2. Identify the mechanical devices and techniques that can help restore skin integrity.
Collapse
|
21
|
Chansard A, Dubrulle N, Poujol de Molliens M, Falanga PB, Stephen T, Hasan M, van Zandbergen G, Aulner N, Shorte SL, David-Watine B. Unveiling Interindividual Variability of Human Fibroblast Innate Immune Response Using Robust Cell-Based Protocols. Front Immunol 2021; 11:569331. [PMID: 33505391 PMCID: PMC7829859 DOI: 10.3389/fimmu.2020.569331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
The LabEx Milieu Interieur (MI) project is a clinical study centered on the detailed characterization of the baseline and induced immune responses in blood samples from 1,000 healthy donors. Analyses of these samples has lay ground for seminal studies on the genetic and environmental determinants of immunologic variance in a healthy cohort population. In the current study we developed in vitro methods enabling standardized quantification of MI-cohort-derived primary fibroblasts responses. Our results show that in vitro human donor cohort fibroblast responses to stimulation by different MAMPs analogs allows to characterize individual donor immune-phenotype variability. The results provide proof-of-concept foundation to a new experimental framework for such studies. A bio-bank of primary fibroblast lines was generated from 323 out of 1,000 healthy individuals selected from the MI-study cohort. To study inter-donor variability of innate immune response in primary human dermal fibroblasts we chose to measure the TLR3 and TLR4 response pathways, both receptors being expressed and previously studied in fibroblasts. We established high-throughput automation compatible methods for standardized primary fibroblast cell activation, using purified MAMPS analogs, poly I:C and LPS that stimulate TLR3 and TLR4 pathways respectively. These results were in turn compared with a stimulation method using infection by HSV-1 virus. Our "Add-only" protocol minimizes high-throughput automation system variability facilitating whole process automation from cell plating through stimulation to recovery of cell supernatants, and fluorescent labeling. Images were acquired automatically by high-throughput acquisition on an automated high-content imaging microscope. Under these methodological conditions standardized image acquisition provided for quantification of cellular responses allowing biological variability to be measured with low system noise and high biological signal fidelity. Optimal for automated analysis of immuno-phenotype of primary human cell responses our method and experimental framework as reported here is highly compatible to high-throughput screening protocols like those necessary for chemo-genomic screening. In context of primary fibroblasts derived from donors enrolled to the MI-clinical-study our results open the way to assert the utility of studying immune-phenotype characteristics relevant to a human clinical cohort.
Collapse
Affiliation(s)
- Audrey Chansard
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France
| | - Nelly Dubrulle
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France
| | | | - Pierre B Falanga
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France
| | - Tharshana Stephen
- UTechS Cytometry and Biomarkers, CRT, Institut Pasteur, Paris, France
| | - Milena Hasan
- UTechS Cytometry and Biomarkers, CRT, Institut Pasteur, Paris, France
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Nathalie Aulner
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France
| | - Spencer L Shorte
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France.,Pasteur Joint International Research Unit Ai3D, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Brigitte David-Watine
- UTechS Photonic BioImaging, C2RT, Institut Pasteur, Paris, France.,Unité INSERM U 1223, Institut Pasteur, Paris, France.,Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France.,CNRS UMR2001, Paris, France.,INSERM, Équipe Avenir, Paris, France
| |
Collapse
|
22
|
Shi J, Shi S, Xie W, Zhao M, Li Y, Zhang J, Li N, Bai X, Cai W, Hu X, Hu D, Han J, Guan H. IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts. J Cell Mol Med 2021; 25:1554-1567. [PMID: 33410606 PMCID: PMC7875929 DOI: 10.1111/jcmm.16250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022] Open
Abstract
Hypertrophic scar (HS) is a severe fibrotic skin disease. It has always been a major problem in clinical treatment, mainly because its pathogenesis has not been well understood. The roles of bacterial contamination and prolonged wound inflammation were considered significant. IL‐10 is a potent anti‐inflammatory cytokine and plays a pivotal role in wound healing and scar formation. Here, we investigate whether IL‐10 alleviates lipopolysaccharide (LPS)‐induced inflammatory response and skin scarring and explore the possible mechanism of scar formation. Our results showed that the expression of TLR4 and pp65 was higher in HS and HS‐derived fibroblasts (HSFs) than their counterpart normal skin (NS) and NS‐derived fibroblasts (NSFs). LPS could up‐regulate the expression of TLR4, pp65, Col I, Col III and α‐SMA in NSFs, but IL‐10 could down‐regulate their expression in both HSFs and LPS‐induced NSFs. Blocking IL‐10 receptor (IL‐10R) or the phosphorylation of STAT3, their expression was up‐regulated. In addition, in vitro and in vivo models results showed that IL‐10 could alleviate LPS‐induced fibroblast‐populated collagen lattice (FPCL) contraction and scar formation. Therefore, IL‐10 alleviates LPS‐induced skin scarring via IL‐10R/STAT3 axis regulating TLR4/NF‐κB pathway in dermal fibroblasts by reducing ECM proteins deposition and the conversion of fibroblasts to myofibroblasts. Our results indicate that IL‐10 can alleviate the LPS‐induced harmful effect on wound healing, reduce scar contracture, scar formation and skin fibrosis. Therefore, the down‐regulation of inflammation may lead to a suitable scar outcome and be a better option for improving scar quality.
Collapse
Affiliation(s)
- Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenbo Xie
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Na Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolong Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
de Bakker E, van der Putten MAM, Heymans MW, Spiekstra SW, Waaijman T, Butzelaar L, Negenborn VL, Beekman VK, Akpinar EO, Rustemeyer T, Niessen FB, Gibbs S. Prognostic tools for hypertrophic scar formation based on fundamental differences in systemic immunity. Exp Dermatol 2021; 30:169-178. [PMID: 32618380 PMCID: PMC7818462 DOI: 10.1111/exd.14139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Unpredictable hypertrophic scarring (HS) occurs after approximately 35% of all surgical procedures and causes significant physical and psychological complaints. Parallel to the need to understanding the mechanisms underlying HS formation, a prognostic tool is needed. The objective was to determine whether (systemic) immunological differences exist between patients who develop HS and those who develop normotrophic scars (NS) and to assess whether those differences can be used to identify patients prone to developing HS. A prospective cohort study with NS and HS groups in which (a) cytokine release by peripheral blood mononuclear cells (PBMC) and (b) the irritation threshold (IT) after an irritant (sodium lauryl sulphate) patch test was evaluated. Univariate regression analysis of PBMC cytokine secretion showed that low MCP-1, IL-8, IL-18 and IL-23 levels have a strong correlation with HS (P < .010-0.004; AUC = 0.790-0.883). Notably, combinations of two or three cytokines (TNF-a, MCP-1 and IL-23; AUC: 0.942, Nagelkerke R2 : 0.727) showed an improved AUC indicating a better correlation with HS than single cytokine analysis. These combination models produce good prognostic results over a broad probability range (sensitivity: 93.8%, specificity 86.7%, accuracy 90,25% between probability 0.3 and 0.7). Furthermore, the HS group had a lower IT than the NS group and an accuracy of 68%. In conclusion, very fundamental immunological differences exist between individuals who develop HS and those who do not, whereas the cytokine assay forms the basis of a predictive prognostic test for HS formation, the less invasive, easily performed irritant skin patch test is more accessible for daily practice.
Collapse
Affiliation(s)
- Erik de Bakker
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Mirthe A. M. van der Putten
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
- Department of Plastic surgeryOLVG HospitalAmsterdamThe Netherlands
| | - Martijn W. Heymans
- Department of Epidemiology and BiostatisticsAmsterdam UMCThe Netherlands
| | - Sander W. Spiekstra
- Department of Molecular Cell Biology and ImmunologAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and ImmunologAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Liselotte Butzelaar
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Vera L. Negenborn
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Vivian K. Beekman
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Erman O. Akpinar
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Thomas Rustemeyer
- Department of DermatologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Frank B. Niessen
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and ImmunologAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
24
|
Coburn PT, Herbay AC, Berrini M, Li-Jessen NYK. An in vitro assessment of the response of THP-1 macrophages to varying stiffness of a glycol-chitosan hydrogel for vocal fold tissue engineering applications. J Biomed Mater Res A 2020; 109:1337-1352. [PMID: 33112473 DOI: 10.1002/jbm.a.37125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Abstract
The physical properties of a biomaterial play an essential role in regulating immune and reparative activities within the host tissue. This study aimed to evaluate the immunological impact of material stiffness of a glycol-chitosan hydrogel designed for vocal fold tissue engineering. Hydrogel stiffness was varied via the concentration of glyoxal cross-linker applied. Hydrogel mechanical properties were characterized through atomic force microscopy and shear plate rheometry. Using a transwell setup, macrophages were co-cultured with human vocal fold fibroblasts that were embedded within the hydrogel. Macrophage viability and cytokine secretion were evaluated at 3, 24, and 72 hr of culture. Flow cytometry was applied to evaluate macrophage cell surface markers after 72 hr of cell culture. Results indicated that increasing hydrogel stiffness was associated with increased anti-inflammatory activity compared to relevant controls. In addition, increased anti-inflammatory activity was observed in hydrogel co-cultures. This study highlighted the importance of hydrogel stiffness from an immunological viewpoint when designing novel vocal fold hydrogels.
Collapse
Affiliation(s)
| | | | - Mattia Berrini
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Nicole Y K Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Canada
| |
Collapse
|
25
|
Wilgus TA. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature. PLASTIC AND AESTHETIC RESEARCH 2020; 7:54. [PMID: 33123623 PMCID: PMC7592345 DOI: 10.20517/2347-9264.2020.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a key phase in the cutaneous wound repair process. The activation of inflammatory cells is critical for preventing infection in contaminated wounds and results in the release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial cells, and fibroblasts to aid in the repair process. However, there is an abundance of data suggesting that the strength of the inflammatory response early in the healing process correlates directly with the amount of scar tissue that will eventually form. This review will summarize the literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and discuss potential treatment modalities that target inflammation to minimize scarring.
Collapse
Affiliation(s)
- Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Pang K, Li B, Tang Z, Yang W, Hao L, Shi Z, Zhang J, Cai L, Li R, Liu Y, Lv Q, Ding J, Han C. Resveratrol inhibits hypertrophic scars formation by activating autophagy via the miR-4654/Rheb axis. Mol Med Rep 2020; 22:3440-3452. [PMID: 32945452 PMCID: PMC7453609 DOI: 10.3892/mmr.2020.11407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic scars (HSs) are a type of pathological scar which are induced by surgery, burn injuries or trauma during the healing process. Due to the high recurrence rates and strong invasive properties, HSs have become a major clinical issue. Resveratrol has been identified as a potential agent to suppress scar formation; however, the underlying mechanism of action remains unclear. Therefore, the present study aimed to investigate the effect of resveratrol on HS-derived fibroblasts (HSFBs) in vitro. MTT assay was performed to evaluate cell viability following the resveratrol treatment. Western blot and RT-qPCR analysis was used to identify the expression levels and the relationship among autophagic markers, miR-4654 and resveratrol treatment. Finally, GFP-LC3 stable HSFBs cells were generated to further assess the effect of resveratrol. The results revealed that resveratrol significantly induced cell death in a dose-dependent manner and induced autophagy by downregulating the expression levels of Rheb in HSFBs. Notably, microRNA-4654 (miR-4654) was significantly decreased in the HSFBs and re-upregulated by resveratrol treatment dose-dependently. Through the bioinformatic analysis and luciferase assay, miR-4654 was identified to directly target Rheb. Transfection studies showed that miR-4654 negative correlated with Rheb expression, suggesting that the autophagic process may be altered by the miR-4654/Rheb axis under the control of resveratrol. In conclusion, the results of the present study suggested that resveratrol may promote autophagy by upregulating miR-4654, which in turn may suppress Rheb expression via directly binding to the 3′-untranslated region of Rheb. These findings provided a novel insight into the development of potential therapeutic targets for HSs.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiming Tang
- Department of Dermatology, Xuzhou Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen Yang
- Department of Renal Disease, Shandong First Medical University, Tai'an, Shandong 271016, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianjun Zhang
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Longjun Cai
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Rui Li
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ying Liu
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jicun Ding
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
27
|
Zhu J, Sun M, Wang Y, Bi H, Xue C. Gene expression profile analysis on different stages of hypertrophic scarring in a rabbit ear model. Exp Ther Med 2020; 20:1505-1513. [PMID: 32742383 PMCID: PMC7388309 DOI: 10.3892/etm.2020.8879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertrophic scarring (HS) is one of the most common skin disorders. The study aimed to investigate the gene expression profile at day 10 (Stage 1), 21 (Stage 2), and day 40 (Stage 3) post-wounding of HS using RNA-sequencing of a scar model from rabbit ears. A total of 17,386 unigenes were annotated using the eggNOG Functional Category database. The study identified significantly differentially expressed genes (DEGs) including 261, 141, and 247 upregulated ones as well as 253, 272, and 58 downregulated ones in three stages respectively. The DEGs varies among each stage measured by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs were enriched in 'immune system process' and 'proteinaceous extracellular matrix' in Stage 1, 'anatomical structure development', 'cell differentiation', 'cell adhesion'and some other terms in Stage 2, 'cancers', 'proteinaceous extracellular matrix' and 'signal transduction' in Stage 3. Furthermore, the Wnt signaling pathway was found to play a pivotal role in regression of HS. In conclusion, we revealed comprehensively the gene expression profiles during HS formation providing probable targets in HS treatment.
Collapse
Affiliation(s)
- Ji Zhu
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Mengyan Sun
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hongda Bi
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
28
|
Singampalli KL, Balaji S, Wang X, Parikh UM, Kaul A, Gilley J, Birla RK, Bollyky PL, Keswani SG. The Role of an IL-10/Hyaluronan Axis in Dermal Wound Healing. Front Cell Dev Biol 2020; 8:636. [PMID: 32850791 PMCID: PMC7396613 DOI: 10.3389/fcell.2020.00636] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Scar formation is the typical endpoint of postnatal dermal wound healing, which affects more than 100 million individuals annually. Not only do scars cause a functional burden by reducing the biomechanical strength of skin at the site of injury, but they also significantly increase healthcare costs and impose psychosocial challenges. Though the mechanisms that dictate how dermal wounds heal are still not completely understood, they are regulated by extracellular matrix (ECM) remodeling, neovascularization, and inflammatory responses. The cytokine interleukin (IL)-10 has emerged as a key mediator of the pro- to anti-inflammatory transition that counters collagen deposition in scarring. In parallel, the high molecular weight (HMW) glycosaminoglycan hyaluronan (HA) is present in the ECM and acts in concert with IL-10 to block pro-inflammatory signals and attenuate fibrotic responses. Notably, high concentrations of both IL-10 and HMW HA are produced in early gestational fetal skin, which heals scarlessly. Since fibroblasts are responsible for collagen deposition, it is critical to determine how the concerted actions of IL-10 and HA drive their function to potentially control fibrogenesis. Beyond their independent actions, an auto-regulatory IL-10/HA axis may exist to modulate the magnitude of CD4+ effector T lymphocyte activation and enhance T regulatory cell function in order to reduce scarring. This review underscores the pathophysiological impact of the IL-10/HA axis as a multifaceted molecular mechanism to direct primary cell responders and regulators toward either regenerative dermal tissue repair or scarring.
Collapse
Affiliation(s)
- Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Jamie Gilley
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | | | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
29
|
Frasca L, Lande R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin Exp Immunol 2020; 201:14-24. [PMID: 32048277 DOI: 10.1111/cei.13426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved receptors essential for the host defence against pathogens. Both immune and non-immune cells can express TLRs, although at different levels. Systemic sclerosis (SSc) is a chronic disease in which autoimmunity, dysregulated profibrotic mediator release and activation of fibroblasts lead to dysregulated collagen deposition and fibrosis. There is now increasing knowledge that the innate immune system and, in particular, TLRs take a part in SSc pathogenesis. The list of endogenous ligands that can stimulate TLRs in SSc is growing: these ligands represent specific danger-associated molecular patterns (DAMPs), involved either in the initiation or the perpetuation of inflammation, and in the release of factors that sustain the fibrotic process or directly stimulate the cells that produce collagen and the endothelial cells. This review reports evidences concerning TLR signalling involvement in SSc. We report the new DAMPs, as well as the TLR-linked pathways involved in disease, with emphasis on type I interferon signature in SSc, the role of plasmacytoid dendritic cells (pDCs) and platelets. The dissection of the contribution of all these pathways to disease, and their correlation with the disease status, as well as their values as prognostic tools, can help to plan timely intervention and design new drugs for more appropriate therapeutic strategies.
Collapse
Affiliation(s)
- L Frasca
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - R Lande
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
30
|
Friedman O, Gofstein D, Arad E, Gur E, Sprecher E, Artzi O. Laser pretreatment for the attenuation of planned surgical scars: A randomized self-controlled hemi-scar pilot study. J Plast Reconstr Aesthet Surg 2020; 73:893-898. [PMID: 31926893 DOI: 10.1016/j.bjps.2019.11.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonsurgical scar attenuation options include compression garments, silicone gel, intralesional drug therapy, radiation therapy, laser, and light therapies. Laser application preceding surgical intervention has been shown to modify the wound-healing process and affect subsequent scar formation. The objective of this study was to evaluate the safety, efficacy, and final cosmesis of a single presurgical laser treatment on surgical scar formation. METHODS This was a randomized, controlled, intraindividual split-scar pilot study with blinded assessments of treated versus untreated planned incision sites. One half of each planned scar was treated by means of an Erbium glass, 1540 nm laser, 24 h before surgery, and the other half was not treated and served as the control. Clinical evaluations and the measurements of patient and physician POSAS scales were done at 1 and 12 months following surgery. RESULTS Eleven patients completed the study and were included in the analyses. Laser pretreatment showed a significant beneficial effect compared with no treatment. Both the patient and physician mean Patient and Observer Scar Assessment Scale scores were significantly lower for the laser-treated half of the scars compared with the control side (1.55 to 3.00, p = 0.02 and 2.28 to 4.42, p = 0.03). There was a highly significant interobserver correlation in the evaluation of the overall posttreatment changes (r = 0.904, p < 0.001). CONCLUSION A single presurgical laser treatment of a planned incision site is a simple, safe, and painless strategy to significantly improve the final scar appearance.
Collapse
Affiliation(s)
- Or Friedman
- Departments of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv 6423906, Israel.
| | - Dina Gofstein
- Departments of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv 6423906, Israel
| | - Ehud Arad
- Departments of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv 6423906, Israel
| | - Eyal Gur
- Departments of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv 6423906, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Artzi
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Tagliari E, Campos LF, Campos AC, Costa-Casagrande TA, Noronha LD. EFFECT OF PROBIOTIC ORAL ADMINISTRATION ON SKIN WOUND HEALING IN RATS. ACTA ACUST UNITED AC 2019; 32:e1457. [PMID: 31826084 PMCID: PMC6902899 DOI: 10.1590/0102-672020190001e1457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
Background: Manipulating intestinal microbiota with probiotics might stimulate skin
response. Understanding all stages of the healing process, as well as the
gut-skin-healing response can improve the skin healing process. Aim: To evaluate the effect of perioperative oral administration of probiotics on
the healing of skin wounds in rats. Methods: Seventy-two Wistar male adult rats were weighed and divided into two groups
with 36 each, one control group (supplemented with oral maltodextrin 250
mg/day) and one probiotic group (supplemented with Lactobacillus
paracasei LPC-37, Bifidobacterium lactis
HN0019, Lactobacillus rhamnosus HN001,
Lactobacillus acidophilus NCFM® at a dose of
250 mg/day), both given orally daily for 15 days. The two groups were
subsequently divided into three subgroups according to the moment of
euthanasia: in the 3rd, 7th and 10th
postoperative days. Results: There were no significant changes in weight in both groups. Wound contraction
was faster in probiotic group when compared to the controls, resulting in
smaller wound area in the 7th postoperative day. As for
histological aspects, the overall H&E score was lower in the probiotic
group. The probiotic group showed increased fibrosis from 3rd to
the 7th postoperative day. The type I collagen production was
higher in the probiotic group at the 10th postoperative day, and
the type III collagen increased in the 7th. Conclusion: The perioperative use of orally administrated probiotic was associated with a
faster reduction of the wound area in rats probably by reducing the
inflammatory phase, accelerating the fibrosis process and the deposition of
collagen.
Collapse
Affiliation(s)
- Eliane Tagliari
- Postgraduate Program in Clinical Surgery, Health Sciences Sector, Federal University of Paraná; Curitiba, PR, Brazil
| | - Leticia Fuganti Campos
- Postgraduate Program in Clinical Surgery, Health Sciences Sector, Federal University of Paraná; Curitiba, PR, Brazil
| | - Antonio Carlos Campos
- Department of Surgery, Health Sciences Sector, Federal University of Paraná; Curitiba, PR, Brazil
| | | | - Lúcia de Noronha
- Pathology Laboratory, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
32
|
Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology 2019; 160:116-125. [PMID: 31709535 DOI: 10.1111/imm.13152] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The skin is the outermost layer of the body with an extensive surface area of approximately 1·8 m2 , and is the first line of defence against a multitude of external pathogens and environmental insults. The skin also has important homeostatic functions such as reducing water loss and contributing to thermoregulation of the body. The structure of the skin and its cellular composition work in harmony to prevent infections and to deal with physical and chemical challenges from the outside world. In this review, we discuss how the structural cells such as keratinocytes, fibroblasts and adipocytes contribute to barrier immunity. We also discuss specialized immune cells that are resident in steady-state skin including mononuclear phagocytes, such as Langerhans cells, dermal macrophages and dermal dendritic cells in addition to the resident memory T cells. Ageing results in an increased incidence of cancer and skin infections. As we age, the skin structure changes with thinning of the epidermis and dermis, increased water loss, and fragmentation of collagen and elastin. In addition, the skin immune composition is altered with reduced Langerhans cells, decreased antigen-specific immunity and increased regulatory populations such as Foxp3+ regulatory T cells. Together, these alterations result in decreased barrier immunity in the elderly, explaining in part their increased susceptiblity to cancer and infections.
Collapse
Affiliation(s)
- Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
33
|
The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and Atopic Dermatitis. J Immunol Res 2019; 2019:1824624. [PMID: 31815151 PMCID: PMC6877906 DOI: 10.1155/2019/1824624] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
As the key defense molecules originally identified in Drosophila, Toll-like receptor (TLR) superfamily members play a fundamental role in detecting invading pathogens or damage and initiating the innate immune system of mammalian cells. The skin, the largest organ of the human body, protects the human body by providing a critical physical and immunological active multilayered barrier against invading pathogens and environmental factors. At the first line of defense, the skin is constantly exposed to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), and TLRs, expressed in a cell type-specific manner by various skin cells, serve as key molecules to recognize PAMPs and DAMPs and to initiate downstream innate immune host responses. While TLR-initiated inflammatory responses are necessary for pathogen clearance and tissue repair, aberrant activation of TLRs will exaggerate T cell-mediated autoimmune activation, leading to unwanted inflammation, and the development of several skin diseases, including psoriasis, atopic dermatitis, systemic lupus erythematosus, diabetic foot ulcers, fibrotic skin diseases, and skin cancers. Together, TLRs are at the interface between innate immunity and adaptive immunity. In this review, we will describe current understanding of the role of TLRs in skin defense and in the pathogenesis of psoriasis and atopic dermatitis, and we will also discuss the development and therapeutic effect of TLR-targeted therapies.
Collapse
|
34
|
Gonciarz W, Krupa A, Hinc K, Obuchowski M, Moran AP, Gajewski A, Chmiela M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One 2019; 14:e0220636. [PMID: 31390383 PMCID: PMC6685636 DOI: 10.1371/journal.pone.0220636] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. Aim To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. Methods We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). Results Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. Conclusions H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
- * E-mail:
| |
Collapse
|
35
|
Role of Early Application of Pressure Garments following Burn Injury and Autografting. Plast Reconstr Surg 2019; 143:310e-321e. [PMID: 30688890 DOI: 10.1097/prs.0000000000005270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pressure garment therapy, used for reduction of postburn scarring, is commonly initiated after complete healing of the wound or autograft. Although some clinicians have suggested that earlier treatment may improve outcomes, the effect of early initiation of therapy has not been studied in a controlled environment. METHODS Full-thickness burns were created on red Duroc pigs, burn eschar was excised, and the wound bed was grafted with split-thickness autografts. Grafts were treated with pressure garments immediately, 1 week (early), or 5 weeks (delayed) after grafting with nontreated grafts as controls. Scar morphology, biomechanics, and gene expression were measured at multiple time points up to 17 weeks after grafting. RESULTS Grafts that received pressure within 1 week after grafting exhibited no reduction in engraftment rates. Immediate and early application of pressure resulted in scars with decreased contraction, reduced scar thickness, and improved biomechanics compared with controls. Pressure garment therapy did not alter expression of collagen I, collagen III, or transforming growth factor β1 at the time points investigated; however, expression of matrix metalloproteinase 1 was significantly elevated in the immediate pressure garment therapy group at week 3, whereas the delayed pressure garment therapy and control groups approached baseline levels at this time point. CONCLUSIONS Early application of pressure garments is safe and effective for reducing scar thickness and contraction and improving biomechanics. This preclinical study suggests that garments should be applied as soon as possible after grafting to achieve greatest benefit, although clinical studies are needed to validate the findings in humans.
Collapse
|
36
|
|
37
|
Fu X, Dong J, Wang S, Yan M, Yao M. Advances in the treatment of traumatic scars with laser, intense pulsed light, radiofrequency, and ultrasound. BURNS & TRAUMA 2019; 7:1. [PMID: 30723753 PMCID: PMC6350396 DOI: 10.1186/s41038-018-0141-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022]
Abstract
Traumatic scarring is one of the most common complications after soft tissue injury caused by burns and trauma, which affects tens of millions of people worldwide every year. Traumatic scars diminish the quality of life due to disfigurement, symptoms of pain and itch, and restricted motion. The pathogenesis and pathophysiology of traumatic scar remain elusive. The management for traumatic scars is comprised of surgical and non-surgical interventions such as pressure therapy, silicone, corticosteroid, and radiotherapy, which are chosen by clinicians based on the physical examinations of scars. Recently, great progress in treating traumatic scars has been achieved by the development of novel technologies including laser, intense pulsed light (IPL), radiofrequency, and ultrasound. The aim of this review article was to summarize the advances of these technologies for traumatic scars intervention.
Collapse
Affiliation(s)
- Xiujun Fu
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Jiying Dong
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Shen Wang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Min Yan
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Min Yao
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| |
Collapse
|
38
|
Yang JH, Yoon JY, Moon J, Min S, Kwon HH, Suh DH. Expression of inflammatory and fibrogenetic markers in acne hypertrophic scar formation: focusing on role of TGF-β and IGF-1R. Arch Dermatol Res 2018; 310:665-673. [PMID: 30167815 DOI: 10.1007/s00403-018-1856-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/20/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022]
Abstract
Acne vulgaris is a universal skin disease and it may leave a scar when the original skin lesion disappears. These scars can cause cosmetic problems and psychological burden, leading to poor quality of life of patients. Acne scars are classified into atrophic scars and hypertrophic scars. As most of the acne scars are atrophic, many studies have been conducted focusing on the treatment of atrophic lesions. This study was conducted to investigate the underlying pathogenesis of acne hypertrophic scars by identifying roles of fibrogenetic and inflammatory markers. Skin biopsy samples were obtained from hypertrophic scars of face and back and from adjacent normal tissues as control group. Some samples from back were immature hypertrophic scars and the other samples were in mature stages. Immunohistochemistry staining and quantitative PCR were performed for fibrogenetic and inflammatory markers. Both in mature and immature hypertrophic scars, vimentin and α-SMA were increased. Production of TGF-β3 protein as well as transcription of TGF-β3 was also significantly elevated. In contrast, expression of TGF-β1 showed no increase. Instead, expression levels of SMAD2 and SMAD4 were increased. Elevations of CD45RO, TNF-α and IL-4 and reduction of IL-10 were observed. In immature hypertrophic scars, IGF-1R and insulin-degrading enzyme expression were increased. Increased apoptosis was observed in immature stages of hypertrophic scars but not in mature stages. Elevations of TGF-β3, SMAD2 and SMAD4 in hypertrophic scars and increase of IGF-1R in immature stages may give some clues for acne hypertrophic scar formation.
Collapse
Affiliation(s)
- Ji Hoon Yang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Department of Dermatology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
| | - Ji Young Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Department of Dermatology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
| | - Jungyoon Moon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Department of Dermatology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
| | | | | | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea. .,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Department of Dermatology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea.
| |
Collapse
|
39
|
Colak O, Ozer K, Dikmen A, Ozakinci H, Ozkaya O. Evaluation of Safe Systemic Immunosuppression Created with Dexamethasone in Prevention of Capsular Contracture: A Glance to Distinct Perspectives with Toll-Like Receptors. Aesthetic Plast Surg 2018; 42:1133-1143. [PMID: 29564486 DOI: 10.1007/s00266-018-1119-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The toll-like receptors (TLRs) stand at the interface of innate immune activation. We hypothesize to decrease the response of innate immunity activated by TLR4 by a safe, short-term, systemic immunosuppression. METHODS Two silicone block implants were placed into two dorsal subcutaneous pockets in 32 rats that were subdivided into four groups: The two study groups were the IV DEX group (single intravenous injection of dexamethasone 1 h before surgery) and the IV DEX + IP DEX group (in addition to a single intravenous injection of dexamethasone 1 h before surgery, intraperitoneal dexamethasone was administered for 10 days after surgery), and the two control groups were the untreated control group and the saline-treated control group. After 10 weeks, all animals were killed to determine capsular thickness, inflammatory cell density, presence of pseudoepitheliomatous hyperplasia, edema, necrosis, vascularization, TLR4 expression and myofibroblast proliferation. RESULTS No significant difference was observed in any parameter between the untreated and saline-treated control groups (p > 0.05). Capsular thickness, myofibroblast proliferation, TLR4 expression density were statistically different among study groups compared to control (p < 0.05). CONCLUSIONS This study demonstrates the relationship between toll-like receptors and fibrous capsule after implant surgery. Decreasing the innate immunity by a safe, short-term perioperative systemic immunosuppression resulted in decreased TLR4 expression and myofibroblast differentiation which could be a new research field in profibrotic pathophysiology underlying breast capsule formation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Ozlem Colak
- Istanbul Okmeydani Training and Research Hospital, Plastic, Reconstructive and Aesthetic Surgery Clinic, 34384, Istanbul, Turkey
| | - Kadri Ozer
- Aydin State Hospital, Plastic, Reconstructive and Aesthetic Surgery Clinic, 09100, Aydın, Turkey.
| | - Adile Dikmen
- Sinop Ataturk State Hospital, Plastic, Reconstructive and Aesthetic Surgery Clinic, Sinop, Turkey
| | - Hilal Ozakinci
- Department of Pathology, Ankara 29 Mayis State Hospital, Ankara, Turkey
| | - Ozay Ozkaya
- Istanbul Okmeydani Training and Research Hospital, Plastic, Reconstructive and Aesthetic Surgery Clinic, 34384, Istanbul, Turkey
| |
Collapse
|
40
|
Gasparrini M, Giampieri F, Forbes-Hernandez TY, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Zhang J, Quiles JL, Mezzetti B, Bompadre S, Battino M. Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin lipopolysaccharide in Human Dermal Fibroblast. Food Chem Toxicol 2018; 114:128-140. [DOI: 10.1016/j.fct.2018.02.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
|
41
|
Sadiq A, Shah A, Jeschke MG, Belo C, Qasim Hayat M, Murad S, Amini-Nik S. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int J Mol Sci 2018; 19:ijms19041034. [PMID: 29596386 PMCID: PMC5979562 DOI: 10.3390/ijms19041034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Post-burn trauma significantly raises tissue serotonin concentration at the initial stages of injury, which leads us to investigate its possible role in post burn wound healing. Therefore, we planned this study to examine the role of serotonin in wound healing through in vitro and in vivo models of burn injuries. Results from in vitro analysis revealed that serotonin decreased apoptosis and increased cell survival significantly in human fibroblasts and neonatal keratinocytes. Cellular proliferation also increased significantly in both cell types. Moreover, serotonin stimulation significantly accelerated the cell migration, resulting in narrowing of the scratch zone in human neonatal keratinocytes and fibroblasts cultures. Whereas, fluoxetine (a selective serotonin reuptake inhibitor) and ketanserin (serotonin receptor 2A inhibitor) reversed these effects. Scald burn mice model (20% total body surface area) showed that endogenous serotonin improved wound healing process in control group, whereas fluoxetine and ketanserin treatments (disruptors of endogenous serotonin stimulation), resulted in poor reepithelization, bigger wound size and high alpha smooth muscle actin (α-SMA) count. All of these signs refer a prolonged differentiation state, which ultimately exhibits poor wound healing outcomes. Collectively, data showed that the endogenous serotonin pathway contributes to regulating the skin wound healing process. Hence, the results of this study signify the importance of serotonin as a potential therapeutic candidate for enhancing skin healing in burn patients.
Collapse
Affiliation(s)
- Alia Sadiq
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
| | - Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.
| | - Cassandra Belo
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
| | - Sheeba Murad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), H-12 Islamabad, Pakistan.
- Molecular Immunology Unit, The Institute of Infection and Immunity, St. George's, University of London, London SW17 0RE, UK.
| | - Saeid Amini-Nik
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
42
|
Harrison SR, Scambler T, Oubussad L, Wong C, Wittmann M, McDermott MF, Savic S. Inositol-Requiring Enzyme 1-Mediated Downregulation of MicroRNA (miR)-146a and miR-155 in Primary Dermal Fibroblasts across Three TNFRSF1A Mutations Results in Hyperresponsiveness to Lipopolysaccharide. Front Immunol 2018; 9:173. [PMID: 29467762 PMCID: PMC5808292 DOI: 10.3389/fimmu.2018.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor (TNF)-receptor-associated periodic fever syndrome (TRAPS) is a rare monogenic autoinflammatory disorder characterized by mutations in the TNFRSF1A gene, causing TNF-receptor 1 (TNFR1) misfolding, increased cellular stress, activation of the unfolded protein response (UPR), and hyperresponsiveness to lipopolysaccharide (LPS). Both microRNA (miR)-146a and miR-155 provide negative feedback for LPS-toll-like receptor 2/4 signaling and cytokine production, through regulation of nuclear factor kappa B (NF-κB). In this study, we hypothesized that proinflammatory cytokine signaling in TRAPS downregulates these two miRs, resulting in LPS-induced hyperresponsiveness in TRAPS dermal fibroblasts (DFs), irrespective of the underlying genetic mutation. Primary DF were isolated from skin biopsies of TRAPS patients and healthy controls (HC). TNFR1 cell surface expression was measured using immunofluorescence. DF were stimulated with LPS, interleukin (IL)-1β, thapsigargin, or TNF, with and without inositol-requiring enzyme 1 (IRE1) inhibitor (4u8C), following which miR-146a and miR-155 expression was measured by RT-qPCR. IL-1β, IL-6, and TNF secretion was measured by enzyme-linked immunosorbent assays, and baseline expression of 384 different miRs was assessed using microfluidics assays. TNFR1 was found to be expressed on the surface of HC DF but expression was deficient in all samples with TRAPS-associated mutations. HC DF showed significant dose-dependent increases in both miR-146a and miR-155 expression levels in response to LPS; however, TRAPS DF failed to upregulate either miR-146a or miR-155 under the same conditions. This lack of miR-146a and miR-155 upregulation was associated with increased proinflammatory cytokine production in TRAPS DF in response to LPS challenge, which was abrogated by 4u8C. Incubation of HC DF with IL-1β led to downregulation of miR-146a and miR-155 expression, which was dependent on IRE1 enzyme. We observed global dysregulation of hundreds of other miRs at baseline in the TRAPS DF. In summary, these data suggest a mechanism whereby IL-1β, produced in response to activation of the UPR in TRAPS DF, downregulates miR-146a and miR-155, by inducing IRE1-dependent cleavage of both these miRs, thereby impairing negative regulation of NF-κB and increasing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Stephanie R Harrison
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom
| | - Thomas Scambler
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom
| | - Lylia Oubussad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom
| | - Chi Wong
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom.,Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,National Institute for Health Research-Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, United Kingdom.,National Institute for Health Research-Leeds Biomedical Research Centre, Leeds, United Kingdom.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
43
|
D'Arpa P, Leung KP. Toll-Like Receptor Signaling in Burn Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2017; 6:330-343. [PMID: 29062590 PMCID: PMC5649422 DOI: 10.1089/wound.2017.0733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models.
Collapse
Affiliation(s)
| | - Kai P. Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
44
|
McKeown-Longo PJ, Higgins PJ. Integration of Canonical and Noncanonical Pathways in TLR4 Signaling: Complex Regulation of the Wound Repair Program. Adv Wound Care (New Rochelle) 2017; 6:320-329. [PMID: 29062589 DOI: 10.1089/wound.2017.0736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: Chronic inflammation and maladaptive repair contribute to the development of fibrosis that negatively impacts quality of life and organ function. The toll-like receptor (TLR) system is a critical node in the tissue response to both exogenous (pathogen-associated) and endogenous (damage-associated) molecular pattern factors (PAMPs and DAMPs, respectively). The development of novel TLR ligand-, pathway-, and/or target gene-specific therapeutics may have clinical utility in the management of the exuberant inflammatory/fibrotic tissue response to injury without compromising the host defense to pathogens. Recent Advances: DAMP ligands, released upon wounding, and microbial-derived PAMPs interact with several TLRs, and their various coreceptor partners, engaging downstream pathways that include Src family kinases, the epidermal growth factor receptor, integrins and the tumor suppressor phosphatase and tensin homolog (PTEN). Toll-like receptor 4 (TLR4) activation enhances cellular responses to the potent profibrotic cytokine transforming growth factor-β1 (TGF-β1) by attenuating the expression of receptors that inhibit TGF-β1 signaling. Critical Issues: Common as well as unique pathways may be activated by PAMP and DAMP ligands that bind to the repertoire of TLRs on various cell types. Dissecting mechanisms underlying ligand-dependent engagement of this complex, highly interactive, network will provide for adaptation of new and focused therapies directed to the regulation of pathologically significant profibrotic genes. Inherent in this diversity are therapeutic opportunities to modulate the pathophysiologic consequences of persistent TLR signaling. The recently identified involvement of receptor and nonreceptor kinase pathways in TLR signaling may present novel opportunities for pharmacologic intervention. Future Directions: Clarifying the identity and function of DAMP-activated TLR complexes or ligand-binding partners, as well as their engaged downstream effectors and target genes, are key factors in the eventual design of pathway-specific treatment modalities. Such approaches may be tailored to address the spectrum of TLR-initiated pathologies (including localized and persistent inflammation, maladaptive repair/fibrosis) and, perhaps, even titrated to achieve patient-unique beneficial clinical outcomes.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
45
|
Gentile D, Lazzerini PE, Gamberucci A, Natale M, Selvi E, Vanni F, Alì A, Taddeucci P, Del-Ry S, Cabiati M, Della-Latta V, Abraham DJ, Morales MA, Fulceri R, Laghi-Pasini F, Capecchi PL. Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts. Front Pharmacol 2017; 8:638. [PMID: 28955239 PMCID: PMC5602350 DOI: 10.3389/fphar.2017.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.
Collapse
Affiliation(s)
- Daniela Gentile
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pietro E Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariarita Natale
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Selvi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Vanni
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Alì
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paolo Taddeucci
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, University College London, London, United Kingdom
| | | | - Rosella Fulceri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pier L Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
46
|
Che KF, Kaarteenaho R, Lappi-Blanco E, Levänen B, Sun J, Wheelock Å, Palmberg L, Sköld CM, Lindén A. Interleukin-26 Production in Human Primary Bronchial Epithelial Cells in Response to Viral Stimulation: Modulation by Th17 cytokines. Mol Med 2017; 23:247-257. [PMID: 28853490 DOI: 10.2119/molmed.2016.00064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Interleukin (IL)-26 is abundant in human airways and this cytokine is involved in the local immune response to a bacterial stimulus in vivo. Specifically, local exposure to the toll-like receptor (TLR) 4 agonist endotoxin does increase IL-26 in human airways and this cytokine potentiates chemotactic responses in human neutrophils. In addition to T-helper (Th) 17 cells, alveolar macrophages can produce IL-26, but it remains unknown whether this cytokine can also be produced in the airway mucosa per se in response to a viral stimulus. Here, we evaluated whether this is the case using primary bronchial epithelial cells from the airway epithelium in vitro, and exploring the signaling mechanisms involved, including the modulatory effects of additional Th17 cytokines. Finally, we assessed IL-26 and its archetype signaling responses in healthy human airways in vivo. We found increased transcription and release of IL-26 protein after stimulation with the viral-related double stranded (ds) RNA polyinosinic-polycytidylic acid (poly-IC) and showed that this IL-26 release involved mitogen-activated protein (MAP) kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The release of IL-26 in response to a viral stimulus was modulated by additional Th17 cytokines. Moreover, there was transcription of IL26 mRNA and expression of the protein in epithelial cells of bronchial brush and tissue biopsies respectively after harvest in vivo. In addition, the extracellular IL-26 protein concentrations in bronchoalveolar lavage (BAL) samples did correlate with increased epithelial cell transcription of an archetype intracellular signaling molecule downstream of the IL-26-receptor complex, STAT1, in the bronchial brush biopsies. Thus, our study suggests that viral stimulation causes the production of IL-26 in lining epithelial cells of human airway structural cells that constitute a critical immune barrier and that this production is modulated by Th17 cytokines.
Collapse
Affiliation(s)
- Karlhans Fru Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77 Stockholm, Sweden
| | - Riitta Kaarteenaho
- Unit of Medicine and Clinical Research, Pulmonary Division, University of Eastern Finland and Center of Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, Center for Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Bettina Levänen
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77 Stockholm, Sweden
| | - Jitong Sun
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77 Stockholm, Sweden
| | - Åsa Wheelock
- Respiratory Medicine Unit. Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm
| | - Lena Palmberg
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77 Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit. Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm.,Lung Allergy Clinic, Karolinska University Hospital Solna, Stockholm, SE-171 76 Stockholm, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77 Stockholm, Sweden.,Lung Allergy Clinic, Karolinska University Hospital Solna, Stockholm, SE-171 76 Stockholm, Sweden
| |
Collapse
|
47
|
Scar Prevention and Enhanced Wound Healing Induced by Polydeoxyribonucleotide in a Rat Incisional Wound-Healing Model. Int J Mol Sci 2017; 18:ijms18081698. [PMID: 28771195 PMCID: PMC5578088 DOI: 10.3390/ijms18081698] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/15/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
High-mobility group box protein-1 (HMGB-1) plays a central role in the inflammatory network, and uncontrolled chronic inflammation can lead to excessive scarring. The aim of this study was to evaluate the anti-inflammatory effects of polydeoxyribonucleotide (PDRN) on scar formation. Sprague-Dawley rats (n = 30) underwent dorsal excision of the skin, followed by skin repair. PDRN (8 mg/kg) was administered via intraperitoneal injection for three (PDRN-3 group, n = 8) or seven (PDRN-7 group, n = 8) days, and HMGB-1 was administered via intradermal injection in addition to PDRN treatment for three days (PDRN-3+HMGB-1 group; n = 6). The scar-reducing effects of PDRN were evaluated in the internal scar area and by inflammatory cell counts using histology and immunohistochemistry. Western blot, immunohistochemistry and immunofluorescence assays were performed to observe changes in type I and type III collagen and the expression of HMGB-1 and CD45. Treatment with PDRN significantly reduced the scar area, inflammatory cell infiltration and the number of CD45-positive cells. In addition, the increased expression of HMGB-1 observed in the sham group was significantly reduced after treatment with PDRN. Rats administered HMGB-1 in addition to PDRN exhibited scar areas with inflammatory cell infiltration similar to the sham group, and the collagen synthesis effects of PDRN were reversed. In summary, PDRN exerts anti-inflammatory and collagen synthesis effects via HMGB-1 suppression, preventing scar formation. Thus, we believe that the anti-inflammatory and collagen synthesis effects of PDRN resulted in faster wound healing and decreased scar formation.
Collapse
|
48
|
Shah A, Amini-Nik S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int J Mol Sci 2017; 18:ijms18051068. [PMID: 28509885 PMCID: PMC5454978 DOI: 10.3390/ijms18051068] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
Historically, plant-based products have been the basis of medicine since before the advent of modern Western medicine. Wound dressings made of honey, curcumin and other phytochemical-rich compounds have been traditionally used. Recently, the mechanisms behind many of these traditional therapies have come to light. In this review, we show that in the context of wound healing, there is a global theme of anti-inflammatory and antioxidant phytochemicals in traditional medicine. Although promising, we discuss the limitations of using some of these phytochemicals in order to warrant more research, ideally in randomized clinical trial settings.
Collapse
Affiliation(s)
- Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
49
|
GM-CSF produced by the airway epithelium is required for sensitization to cockroach allergen. Mucosal Immunol 2017; 10:705-715. [PMID: 27731325 PMCID: PMC5389932 DOI: 10.1038/mi.2016.90] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023]
Abstract
Airway epithelial cells are among the first to encounter inhaled allergens and can initiate allergic responses by producing pro-Th2 innate cytokines. In this study, we investigated the role of epithelial-derived cytokines in sensitization to a clinically relevant allergen, cockroach allergen (CRA). Among the epithelial-derived cytokines, granulocyte macrophage colony-stimulating factor (GM-CSF) had a central role in the initiation of Th2 allergic responses to CRA. We show that initial exposure to CRA directly activated airway epithelial cells through a TLR4-MyD88-dependent pathway and MyD88 signaling in epithelial cells induced upregulation of GM-CSF during sensitization. Epithelial-derived GM-CSF was required for allergic sensitization and selectively restored Th2 responses in the absence of MyD88. Thus, we demonstrate that epithelial-derived GM-CSF is a critical early signal during allergic sensitization to CRA.
Collapse
|
50
|
Schmitt L, Amann PM, Marquardt Y, Heise R, Czaja K, Gerber PA, Steiner T, Hölzle F, Baron JM. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models. Lasers Med Sci 2017; 32:805-814. [PMID: 28299490 DOI: 10.1007/s10103-017-2175-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
Abstract
The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm2). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment settings resulted in a complete regeneration of the epidermis 3 days after irradiation. Fractional ablative erbium:YAG laser treatment with a pulse stacking technique resulted in histological alterations and shifts in the expression of various genes related to epidermal differentiation, inflammation, and dermal remodeling depending on the treatment setting applied. A standardized in vitro 3D model of human skin proved to be a useful tool for exploring the effects of various laser settings both on skin morphology and gene expression during wound healing. It provides novel data on the gene expression and microscopic architecture of the exposed skin. This may enhance our understanding of laser treatment at a molecular level.
Collapse
Affiliation(s)
- Laurenz Schmitt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - P M Amann
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Y Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - R Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - K Czaja
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - P A Gerber
- Department of Dermatology and Allergology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - T Steiner
- Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - F Hölzle
- Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|