1
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
2
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
3
|
Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5799308. [PMID: 35097121 PMCID: PMC8799346 DOI: 10.1155/2022/5799308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the arterial intima. As AS represents the most common type of vascular disease, it affects millions of individuals and is a source of high morbidity and mortality rates worldwide. Overwhelming evidence indicates that AS-related inflammation is mediated by proinflammatory cytokines, chemokines, adhesion molecules and inflammatory signaling pathways, with each of these factors being shown to play critical roles during the entire progression of AS. While a number of drugs have been approved for use in the treatment of AS, their benefits are modest, which underscores the urgency for the development of new drug therapies. In part, these deficits in effective drugs can be attributable to the lack of a clear understanding of the molecular mechanisms of AS. In this study, we investigate the capacity for thrombin to trigger inflammation and induce cell proliferation in vascular smooth muscle cells (VSMCs). We then assessed the effects of baicalin and its potential mechanisms on VSMC inflammation as induced by thrombin. Baicalin, which is a natural bioactive compound of S. baicalensis Georgi (SBG), exerted a protective effect against thrombin-induced VSMC inflammation as resulting from the upregulation of PAR-1. This protection as exerted by baicalin appears to reside in its capacity to produce an inhibitory effect on the thrombin-induced activation of the ERK1/2 pathway. These findings suggest that baicalin may be a promising candidate for the treatment of atherosclerosis.
Collapse
|
4
|
Deng Z, Xie H, Cheng W, Zhang M, Liu J, Huo Y, Liao Y, Cheng Y. Dabigatran ameliorates airway smooth muscle remodeling in asthma by modulating Yes-associated protein. J Cell Mol Med 2020; 24:8179-8193. [PMID: 32542982 PMCID: PMC7348141 DOI: 10.1111/jcmm.15485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that thrombin, the major effector of the coagulation cascade, plays an important role in the pathogenesis of asthma. Interestingly, dabigatran, a drug used in clinical anticoagulation, directly inhibits thrombin activity. The aim of this study was to investigate the effects and mechanisms of dabigatran on airway smooth muscle remodeling in vivo and in vitro. Here, we found that dabigatran attenuated inflammatory pathology, mucus production, and collagen deposition in the lungs of asthmatic mice. Additionally, dabigatran suppressed Yes‐associated protein (YAP) activation in airway smooth muscle of asthmatic mice. In human airway smooth muscle cells (HASMCs), dabigatran not only alleviated thrombin‐induced proliferation, migration and up‐regulation of collagen I, α‐SMA, CTGF and cyclin D1, but also inhibited thrombin‐induced YAP activation, while YAP activation mediated thrombin‐induced HASMCs remodeling. Mechanistically, thrombin promoted actin stress fibre polymerization through the PAR1/RhoA/ROCK/MLC2 axis to activate YAP and then interacted with SMAD2 in the nucleus to induce downstream target genes, ultimately aggravating HASMCs remodeling. Our study provides experimental evidence that dabigatran ameliorates airway smooth muscle remodeling in asthma by inhibiting YAP signalling, and dabigatran may have therapeutic potential for the treatment of asthma.
Collapse
Affiliation(s)
- Zhenan Deng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Haojun Xie
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weiying Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Meihong Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jie Liu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yating Huo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018; 9:1984. [PMID: 30279688 PMCID: PMC6153344 DOI: 10.3389/fimmu.2018.01984] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis.
Collapse
Affiliation(s)
- Sooghee Chang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Young-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Sungyoon Moon
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Yong Yook Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Jin Sun Jung
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hi-Eun Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Taek-Chin Cheong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Jung Moon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hai-Chon Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Eun-Hee Nam
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Altieri P, Bertolotto M, Fabbi P, Sportelli E, Balbi M, Santini F, Brunelli C, Canepa M, Montecucco F, Ameri P. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects. Int J Cardiol 2018; 271:219-227. [PMID: 29801760 DOI: 10.1016/j.ijcard.2018.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Data with animal cells and models suggest that thrombin activates cardiac fibroblasts (Fib) to myofibroblasts (myoFib) via protease-activated receptor 1 (PAR1) cleavage, and in this way promotes adverse atrial remodeling and, thereby, atrial fibrillation (AF). OBJECTIVE Here, we explored the effects of thrombin on human atrial Fib and whether they are antagonized by the clinically available direct thrombin inhibitor, dabigatran. METHODS Fib isolated from atrial appendages of patients without AF undergoing elective cardiac surgery were evaluated for PAR expression and treated with thrombin with or without dabigatran. PAR1 cleavage, downstream signaling and myoFib markers were investigated by immunofluorescence and Western blot. Collagen synthesis, activity of matrix metalloprotease (MMP)-2 and proliferation were assessed by Picro-Sirius red staining, gelatinolytic zymography and BrdU incorporation, respectively. Fib function was studied as capability to contract a collagen gel and stimulate the chemotaxis of peripheral blood monocytes from healthy volunteers. RESULTS Primary human atrial Fib expressed PAR1, while levels of the other PARs were very low. Thrombin triggered PAR1 cleavage and phosphorylation of ERK1/2, p38 and Akt, elicited a switch to myoFib enriched for αSMA, fibronectin and type I collagen, and induced paracrine/autocrine transforming growth factor beta-1, cyclooxygenase-2, endothelin-1 and chemokine (C-C motif) ligand 2 (CCL2); conversely, MMP-2 activity decreased. Thrombin-primed cells displayed enhanced proliferation, formed discrete collagen-containing cellular nodules, and stimulated the contraction of a collagen gel. Furthermore, their conditioned medium caused monocytes to migrate. All these effects were prevented by dabigatran. CONCLUSION These results with human cells complete the knowledge about thrombin actions on cardiac Fib and strengthen the translational potential of the emerging paradigm that pharmacological blockade of thrombin may counteract molecular and cellular events underlying AF.
Collapse
Affiliation(s)
- Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Maria Bertolotto
- Department of Internal Medicine, University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Fabbi
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Elena Sportelli
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Manrico Balbi
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Santini
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudio Brunelli
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genova, Genova, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
7
|
Smoktunowicz N, Platé M, Stern AO, D'Antongiovanni V, Robinson E, Chudasama V, Caddick S, Scotton CJ, Jarai G, Chambers RC. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells. Oncotarget 2018; 7:65471-65484. [PMID: 27566553 PMCID: PMC5323169 DOI: 10.18632/oncotarget.11472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022] Open
Abstract
The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer.
Collapse
Affiliation(s)
- Natalia Smoktunowicz
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Alejandro Ortiz Stern
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Vanessa D'Antongiovanni
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Eifion Robinson
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, UK
| | - Chris J Scotton
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Gabor Jarai
- Novartis Institutes of Biomedical Research, Horsham, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| |
Collapse
|
8
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
9
|
Kreutter G, Kassem M, El Habhab A, Baltzinger P, Abbas M, Boisrame‐Helms J, Amoura L, Peluso J, Yver B, Fatiha Z, Ubeaud‐Sequier G, Kessler L, Toti F. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets. J Cell Mol Med 2017; 21:2759-2772. [PMID: 28524456 PMCID: PMC5661261 DOI: 10.1111/jcmm.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023] Open
Abstract
Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H2 O2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eMaPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H2 O2 -treated rat islets with increased viability (62% versus 48% H2 O2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets.
Collapse
Affiliation(s)
- Guillaume Kreutter
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Mohamad Kassem
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Ali El Habhab
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Philippe Baltzinger
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Malak Abbas
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Julie Boisrame‐Helms
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Anesthesia‐ReanimationUniversity Hospital, CHU de Strasbourg, 1 place de l'HôpitalStrasbourg CedexFrance
| | - Lamia Amoura
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Jean Peluso
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Blandine Yver
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Zobairi Fatiha
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Geneviève Ubeaud‐Sequier
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Pharmacy‐sterilizationUniversity HospitalCHU de StrasbourgStrasbourgFrance
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Laurence Kessler
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Florence Toti
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| |
Collapse
|
10
|
Deng X, Zhou X, Deng Y, Liu F, Feng X, Yin Q, Gu Y, Shi S, Xu M. Thrombin Induces CCL2 Expression in Human Lung Fibroblasts via p300 Mediated Histone Acetylation and NF-KappaB Activation. J Cell Biochem 2017; 118:4012-4019. [PMID: 28407300 DOI: 10.1002/jcb.26057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023]
Abstract
Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoling Deng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaoqiong Zhou
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yan Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Fan Liu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaofan Feng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Qi Yin
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yinzhen Gu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Songlin Shi
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Mingyan Xu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Xiamen Medical College, Xiamen, 361000, Fujian Province, People's Republic of China
| |
Collapse
|
11
|
Factor Xa Mediates Calcium Flux in Endothelial Cells and is Potentiated by Igg From Patients With Lupus and/or Antiphospholipid Syndrome. Sci Rep 2017; 7:10788. [PMID: 28883515 PMCID: PMC5589732 DOI: 10.1038/s41598-017-11315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca2+). Therefore, we measured alterations in Ca2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects’ IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.
Collapse
|
12
|
Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol 2017; 312:L772-L782. [DOI: 10.1152/ajplung.00553.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
In lung injury and disease, including idiopathic pulmonary fibrosis (IPF), extravascular factor X is converted into factor Xa (FXa), a coagulant protease with fibrogenic actions. Extracellular annexin A2 binds to FXa, augmenting activation of the protease-activated receptor-1 (PAR-1). In this study, the contribution of annexin A2 in lung injury and fibrosis was investigated. Annexin A2 immunoreactivity was observed in regions of fibrosis, including those associated with fibroblasts in lung tissue of IPF patients. Furthermore, annexin A2 was detected in the conditioned media and an EGTA membrane wash of human lung fibroblast (LF) cultures. Incubation with human plasma (5% vol/vol) or purified FXa (15–50 nM) evoked fibrogenic responses in LF cultures, with FXa increasing interleukin-6 (IL-6) production and cell number by 270 and 46%, respectively ( P < 0.05, n = 5–8). The fibrogenic actions of plasma or FXa were attenuated by the selective FXa inhibitor apixaban (10 μM, or antibodies raised against annexin A2 or PAR-1 (2 μg/ml). FXa-stimulated LFs from IPF patients ( n = 6) produced twice as much IL-6 as controls ( n = 10) ( P < 0.05), corresponding with increased levels of extracellular annexin A2. Annexin A2 gene deletion in mice reduced bleomycin-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 levels and cell number (* P < 0.05; n = 4–12). Lung fibrogenic gene expression and dry weight were reduced by annexin A2 gene deletion, but lung levels of collagen were not. Our data suggest that annexin A2 contributes to lung injury and fibrotic disease by mediating the fibrogenic actions of FXa. Extracellular annexin A2 is a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Asres Berhan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Langenbach
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Glen Westall
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Robinson E, Knight E, Smoktunowicz N, Chambers RC, Inglis GG, Chudasama V, Caddick S. Identification of an active metabolite of PAR-1 antagonist RWJ-58259 and synthesis of analogues to enhance its metabolic stability. Org Biomol Chem 2016; 14:3198-201. [PMID: 26927018 DOI: 10.1039/c6ob00332j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discontinuation of PAR-1 antagonist RWJ-58259 beyond use as a biological probe is most likely due to it's short half-life in vivo. However, retention of significant in vivo activity beyond the point where most of the RWJ-58259 had been consumed implies the generation of an active metabolite. Herein we describe the biological activity of a predicted metabolite of RWJ-58259 and the synthesis of analogues designed to enhance the metabolic stability of RWJ-58259.
Collapse
Affiliation(s)
- Eifion Robinson
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Emily Knight
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Natalia Smoktunowicz
- Centre for Inflammation and Tissue Repair, 5 University Street, London WC1E 6JJ, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, 5 University Street, London WC1E 6JJ, UK
| | | | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Stephen Caddick
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
14
|
Coagulation Factors in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Schuliga M, Royce SG, Langenbach S, Berhan A, Harris T, Keenan CR, Stewart AG. The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2-Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation. Am J Respir Cell Mol Biol 2016; 54:200-9. [PMID: 26120939 DOI: 10.1165/rcmb.2014-0419oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During asthma exacerbation, plasma circulating coagulant factor X (FX) enters the inflamed airways and is activated (FXa). FXa may have an important role in asthma, being involved in thrombin activation and an agonist of protease-activated receptor-1 (PAR-1). Extracellular annexin A2 and integrins are also implicated in PAR-1 signaling. In this study, the potential role of PAR-1 in mediating the effects of FXa on human airway smooth muscle (ASM) cell cytokine production and proliferation was investigated. FXa (5-50 nM), but not FX, stimulated increases in ASM IL-6 production and cell number after 24- and 48-hour incubation, respectively (P < 0.05; n = 5). FXa (15 nM) also stimulated increases in the levels of mRNA for cytokines (IL-6), cell cycle-related protein (cyclin D1), and proremodeling proteins (FGF-2, PDGF-B, CTGF, SM22, and PAI-1) after 3-hour incubation (P < 0.05; n = 4). The actions of FXa were insensitive to inhibition by hirudin (1 U/ml), a selective thrombin inhibitor, but were attenuated by SCH79797 (100 nM), a PAR-1 antagonist, or Cpd 22 (1 μM), an inhibitor of integrin-linked kinase. The selective targeting of PAR-1, annexin A2, or β1-integrin by small interfering RNA and/or by functional blocking antibodies also attenuated FXa-evoked responses. In contrast, the targeting of annexin A2 did not inhibit thrombin-stimulated ASM function. In airway biopsies of patients with asthma, FXa and annexin A2 were detected in the ASM bundle by immunohistochemistry. These findings establish FXa as a potentially important asthma mediator, stimulating ASM function through actions requiring PAR-1 and annexin A2 and involving integrin coactivation.
Collapse
Affiliation(s)
- Michael Schuliga
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Simon G Royce
- 2 Department Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Shenna Langenbach
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Asres Berhan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Trudi Harris
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Christine R Keenan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Alastair G Stewart
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
16
|
de Ridder GG, Lundblad RL, Pizzo SV. Actions of thrombin in the interstitium. J Thromb Haemost 2016; 14:40-7. [PMID: 26564405 DOI: 10.1111/jth.13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/14/2023]
Abstract
Thrombin is a pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis. There is increasing evidence to suggest a role for thrombin in the development of interstitial fibrosis, but interstitial thrombin has not been demonstrated by the direct determination of activity. Rather its presence is inferred by products of thrombin action such as fibrin and activated fibroblasts. This review will focus on possible mechanisms of thrombin formation in the interstitial space, the possible actions of thrombin, processes regulating thrombin activity in the interstitial space, and evidence supporting a role for thrombin in fibrosis.
Collapse
Affiliation(s)
- G G de Ridder
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - R L Lundblad
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - S V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Knight E, Robinson E, Smoktunowicz N, Chambers RC, Aliev AE, Inglis GG, Chudasama V, Caddick S. Synthesis of novel and potent vorapaxar analogues. Org Biomol Chem 2016; 14:3264-74. [DOI: 10.1039/c5ob02541a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlocking novel and potent vorapaxar analogues by functionalisation of previously unexplored positions on the parent vorapaxar scaffold.
Collapse
Affiliation(s)
- Emily Knight
- Department of Chemistry
- University College London
- London
- UK
| | | | | | | | - Abil E. Aliev
- Department of Chemistry
- University College London
- London
- UK
| | | | | | | |
Collapse
|
18
|
Huang L, Zhang L, Ju H, Li Q, Pan JSC, Al-Lawati Z, Sheikh-Hamad D. Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 2015; 5:18117. [PMID: 26640170 PMCID: PMC4671147 DOI: 10.1038/srep18117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/12/2015] [Indexed: 11/09/2022] Open
Abstract
Thrombin-induced and proteinase-activated receptor 1 (PAR1)-mediated signaling increases ROS production, activates ERK, and promotes inflammation and fibroblast proliferation in bleomycin-induced lung injury. Stanniocalcin-1 (STC1) activates anti-oxidant pathways, inhibits inflammation and provides cytoprotection; hence, we hypothesized that STC1 will inhibit thrombin/PAR1 signaling and protect from bleomycin-induced pneumonitis. We determined thrombin level and activity, thrombin-induced PAR-1-mediated signaling, superoxide generation and lung pathology after intra-tracheal administration of bleomycin to WT and STC1 Tg mice. Lungs of bleomycin-treated WT mice display: severe pneumonitis; increased generation of superoxide; vascular leak; increased thrombin protein abundance and activity; activation of ERK; greater cytokine/chemokine release and infiltration with T-cells and macrophages. Lungs of STC1 Tg mice displayed none of the above changes. Mechanistic analysis in cultured pulmonary epithelial cells (A549) suggests that STC1 inhibits thrombin-induced and PAR1-mediated ERK activation through suppression of superoxide. In conclusion, STC1 blunts bleomycin-induced rise in thrombin protein and activity, diminishes thrombin-induced signaling through PAR1 to ERK, and inhibits bleomycin-induced pneumonitis. Moreover, our study identifies a new set of cytokines/chemokines, which play a role in the pathogenesis of bleomycin-induced lung injury. These findings broaden the array of potential therapeutic targets for the treatment of lung diseases characterized by thrombin activation, oxidant stress and inflammation.
Collapse
Affiliation(s)
- Luping Huang
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Lin Zhang
- Center of General Surgery, Chengdu General Hospital of Chengdu Military Area Command, Chengdu, P.R. China.,Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huiming Ju
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,College of Veterinary Medicine, Yangzhou University, Yangzhou 25009, Jiangsu, P.R.China
| | - Qingtian Li
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jenny Szu-Chin Pan
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zahraa Al-Lawati
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
José RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6024-34. [PMID: 25948816 PMCID: PMC4456635 DOI: 10.4049/jimmunol.1500124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/24/2022]
Abstract
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1β, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1β, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Andrew E Williams
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Michal G Sulikowski
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
20
|
The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015:437695. [PMID: 25878399 PMCID: PMC4387953 DOI: 10.1155/2015/437695] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa), factor VIIa (FVIIa), tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells) or inflammatory cells (e.g., macrophages) via the proteolytic activation of protease-activated receptors (PARs). Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4) activating fibrin degradation products (FDPs) and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β). Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator) evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.
Collapse
|
21
|
Asokananthan N, Lan RS, Graham PT, Bakker AJ, Tokanović A, Stewart GA. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts. Physiol Rep 2015; 3:3/2/e12295. [PMID: 25663523 PMCID: PMC4393203 DOI: 10.14814/phy2.12295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway.
Collapse
Affiliation(s)
- Nithiananthan Asokananthan
- School Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia School of Psychology and Clinical Sciences, Charles Darwin University, Ellengowan Drive, CasuarinaDarwin, NT, Australia
| | - Rommel S Lan
- School Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia
| | - Peter T Graham
- School Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia
| | - Anthony J Bakker
- School of Anatomy, Physiology and Human Biology, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia
| | - Ana Tokanović
- School Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia
| | - Geoffrey A Stewart
- School Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, CrawleyPerth, WA, Australia
| |
Collapse
|
22
|
Xu QL, Guo XH, Liu JX, Chen B, Liu ZF, Su L. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation. Cell Biol Int 2015; 39:411-7. [PMID: 25492552 DOI: 10.1002/cbin.10408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022]
Abstract
Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia.
Collapse
Affiliation(s)
- Qiu-lin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | | | | | | | | | | |
Collapse
|
23
|
Thrombin induces ICAM-1 expression in human lung epithelial cells via c-Src/PDGFR/PI3K/Akt-dependent NF-κB/p300 activation. Clin Sci (Lond) 2014; 127:171-83. [PMID: 24506791 DOI: 10.1042/cs20130676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Up-regulation of ICAM-1 (intercellular adhesion molecule-1) is frequently implicated in lung inflammation and lung diseases, such as IPF (idiopathic pulmonary fibrosis). Thrombin has been shown to play a key role in inflammation via the induction of adhesion molecules, which then causes lung injury. However, the mechanisms underlying thrombin-induced ICAM-1 expression in HPAEpiCs (human pulmonary alveolar epithelial cells) remain unclear. In the present study, we have shown that thrombin induced ICAM-1 expression in HPAEpiCs. Pre-treatment with the inhibitor of thrombin [PPACK (D-Phe-Pro-Arg-chloromethyl ketone)], c-Src (PP1), PDGFR (platelet-derived growth factor receptor) (AG1296), PI3K (phosohinositide 3-kinase) (LY294002), NF-κB (nuclear factor κB) (Bay11-7082) or p300 (GR343) and transfection with siRNAs of c-Src, PDGFR, Akt, p65 and p300 markedly reduced thrombin-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with thrombin. In addition, we established that thrombin stimulated the phosphorylation of c-Src, PDGFR, Akt and p65, which were inhibited by pre-treatment with their respective inhibitors PP1, AG1296, LY294002 or Bay11-7082. In addition, thrombin also enhanced Akt and NF-κB translocation from the cytosol to the nucleus, which was reduced by PP1, AG1296 or LY294002. Thrombin induced NF-κB promoter activity and the formation of the p65-Akt-p300 complex, which were inhibited by AG1296, LY294002 or PP1. Finally, we have shown that thrombin stimulated in vivo binding of p300, Akt and p65 to the ICAM-1 promoter, which was reduced by AG1296, LY294002, SH-5 or PP1. These results show that thrombin induced ICAM-1 expression and monocyte adherence via a c-Src/PDGFR/PI3K/Akt/NF-κB-dependent pathway in HPAEpiCs. Increased understanding of the signalling mechanisms underlying ICAM-1 gene regulation will create opportunities for the development of anti-inflammatory therapeutic strategies.
Collapse
|
24
|
Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M. Regulation of pulmonary inflammation by mesenchymal cells. Pulm Pharmacol Ther 2014; 29:156-65. [PMID: 24657485 DOI: 10.1016/j.pupt.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered.
Collapse
Affiliation(s)
- Hatem Alkhouri
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Wilfred Jelco Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Navessa Padma Tania
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alaina Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Schuliga
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Lung Health Research Centre, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
25
|
Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, Zheng C. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-κB-independent pathways. Cell Biol Int 2014; 38:747-56. [PMID: 24523227 DOI: 10.1002/cbin.10264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
Acute and chronic respiratory diseases are associated with abnormal coagulation regulation and fibrolysis. However, the detailed mechanism by which coagulation regulation and fibrolysis affect the occurrence and development of lung diseases remain to be elucidated. Protease activated receptor-1 (PAR-1), a major high-affinity thrombin receptor, and nuclear factor kappa B (NF-κB), a transcription factor, are involved in cell survival, differentiation, and proliferation. We have investigated the potential mechanism of thrombin-induced fibroblast proliferation and roles of PAR-1 and NF-κB signalling in this process. The effect of thrombin on proliferation of human pulmonary fibroblasts (HPF) was assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation assay. The expression of PAR1 and NF-κB subunit p65 protein was detected by Western blot. Nuclear translocation of p65 was examined by laser scanning confocal microscopy. We show that thrombin significantly increased proliferation of HPF as determined by induction of BrdU-positive incorporation ratio. Induced PAR1 protein expression was also seen in HPF cells treated with thrombin. However, thrombin had no significant effect on expression and translocation of NF-κB p65 in HPF cells. The results indicate that, by increasing protein expression and interacting with PAR1, thrombin promotes HPF proliferation. NF-κB signalling appears to play no role in this process.
Collapse
Affiliation(s)
- Shengyu Zhou
- Department of Clinical Teaching and Research, School of Nursing, Shandong University, Shandong, Jinan, 250012, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Yiu WH, Wong DWL, Chan LYY, Leung JCK, Chan KW, Lan HY, Lai KN, Tang SCW. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells. PLoS One 2014; 9:e88894. [PMID: 24586431 PMCID: PMC3931644 DOI: 10.1371/journal.pone.0088894] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022] Open
Abstract
Tissue kallikrein (KLK1) expression is up-regulated in human diabetic kidney tissue and induced by high glucose (HG) in human proximal tubular epithelial cells (PTEC). Since the kallikrein-kinin system (KKS) has been linked to cellular inflammatory process in many diseases, it is likely that KLK1 expression may mediate the inflammatory process during the development of diabetic nephropathy. In this study, we explored the role of KLK1 in tubular pro-inflammatory responses under the diabetic milieu. Recombinant KLK1 stimulated the production of inflammatory cytokines in PTEC via the activation of p42/44 and p38 MAPK signaling pathways. Molecular knockdown of endogenous KLK1 expression by siRNA transfection in PTEC attenuated advanced glycation end-products (AGE)-induced IL-8 and ICAM-1 productions in vitro. Interestingly, exposure of PTEC to KLK1 induced the expression of protease-activated receptors (PARs). There was a 2.9-fold increase in PAR-4, 1.4-fold increase in PAR-1 and 1.2-fold increase in PAR-2 mRNA levels. Activation of PAR-4 by a selective agonist was found to elicit the pro-inflammatory and pro-fibrotic phenotypes in PTEC while blockade of the receptor by specific antagonist attenuated high glucose-induced IL-6, CCL-2, CTGF and collagen IV expression. Calcium mobilization by the PAR-4 agonist in PTEC was desensitized by pretreatment with KLK1. Consistent with these in vitro findings, there was a markedly up-regulation of tubular PAR-4 expression in human diabetic renal cortical tissues. Together, these results suggest that up-regulation of KLK1 in tubular epithelial cells may mediate pro-inflammatory pathway and PAR activation during diabetic nephropathy and provide a new therapeutic target for further investigation.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Dickson W. L. Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Loretta Y. Y. Chan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Joseph C. K. Leung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Kwok Wah Chan
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Sydney C. W. Tang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
27
|
Deng X, Xu M, Yuan C, Yin L, Chen X, Zhou X, Li G, Fu Y, Feghali-Bostwick CA, Pang L. Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-κB and activator protein-1. Int J Biochem Cell Biol 2013; 45:1366-76. [DOI: 10.1016/j.biocel.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
28
|
Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1018-27. [PMID: 23298546 DOI: 10.1016/j.bbadis.2012.12.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 12/29/2022]
Abstract
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|