1
|
Márquez M, Muñoz M, Córdova A, Puebla M, Figueroa XF. Connexin 40-Mediated Regulation of Systemic Circulation and Arterial Blood Pressure. J Vasc Res 2023; 60:87-100. [PMID: 37331352 DOI: 10.1159/000531035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Mónica Márquez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Córdova
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ladd Z, Su G, Hartman J, Lu G, Hensley S, Upchurch GR, Sharma AK. Pharmacologic inhibition by spironolactone attenuates experimental abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1101389. [PMID: 36776267 PMCID: PMC9908993 DOI: 10.3389/fcvm.2023.1101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background Abdominal aortic aneurysms (AAA) are characterized by vascular inflammation and remodeling that can lead to aortic rupture resulting in significant mortality. Pannexin-1 channels on endothelial cells (ECs) can modulate ATP secretion to regulate the pathogenesis of AAA formation. Our hypothesis focused on potential of spironolactone to inhibit EC-mediated ATP release for the mitigation of AAA formation. Methods A topical elastase AAA model was used initially in C57BL/6 (wild-type; WT) male mice. Mice were administered either a vehicle control (saline) or spironolactone and analyzed on day 14. In a second chronic AAA model, mice were subjected to elastase and β-aminopropionitrile (BAPN) treatment with/without administration of spironolactone to pre-formed aneurysms starting on day 14 and analyzed on day 28. Aortic diameter was evaluated by video micrometry and aortic tissue was analyzed for cytokine expression and histology. ATP measurement and matrix metalloproteinase (MMP2) activity was evaluated in aortic tissue on days 14 or -28. In vitro studies were performed to evaluate the crosstalk between aortic ECs with macrophages or smooth muscle cells. Results In the elastase AAA model, spironolactone treatment displayed a significant decrease in aortic diameter compared to elastase-treated controls on day 14. A significant increase in smooth muscle α-actin expression as well as decrease in elastic fiber disruption and immune cell (macrophages and neutrophils) infiltration was observed in mice treated with spironolactone compared to saline-treated controls. Spironolactone treatment also significantly mitigated pro-inflammatory cytokine expression, MMP2 activity and ATP content in aortic tissue compared to controls. Moreover, in the chronic AAA model, spironolactone treatment of pre-formed aneurysms significantly attenuated vascular inflammation and remodeling to attenuate the progression of AAAs compared to controls. Mechanistically, in vitro data demonstrated that spironolactone treatment attenuates extracellular ATP release from endothelial cells to mitigate macrophage activation (IL-1β and HMGB1 expression) and smooth muscle cell-dependent vascular remodeling (MMP2 activity). Conclusion These results demonstrate that spironolactone can mitigate aortic inflammation and remodeling to attenuate AAA formation as well as decrease growth of pre-formed aneurysms via inhibition of EC-dependent ATP release. Therefore, this study implicates a therapeutic application of spironolactone in the treatment of AAAs.
Collapse
|
3
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
4
|
Boric MP, Figueroa XF. Editorial: Cell Communication in Vascular Biology, Volume II. Front Physiol 2022; 13:903056. [PMID: 35694409 PMCID: PMC9175020 DOI: 10.3389/fphys.2022.903056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
|
5
|
Filiberto AC, Spinosa MD, Elder CT, Su G, Leroy V, Ladd Z, Lu G, Mehaffey JH, Salmon MD, Hawkins RB, Ravichandran KS, Isakson BE, Upchurch GR, Sharma AK. Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation. Nat Commun 2022; 13:1521. [PMID: 35315432 PMCID: PMC8938517 DOI: 10.1038/s41467-022-29233-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Pannexin-1 (Panx1) channels have been shown to regulate leukocyte trafficking and tissue inflammation but the mechanism of Panx1 in chronic vascular diseases like abdominal aortic aneurysms (AAA) is unknown. Here we demonstrate that Panx1 on endothelial cells, but not smooth muscle cells, orchestrate a cascade of signaling events to mediate vascular inflammation and remodeling. Mechanistically, Panx1 on endothelial cells acts as a conduit for ATP release that stimulates macrophage activation via P2X7 receptors and mitochondrial DNA release to increase IL-1β and HMGB1 secretion. Secondly, Panx1 signaling regulates smooth muscle cell-dependent intracellular Ca2+ release and vascular remodeling via P2Y2 receptors. Panx1 blockade using probenecid markedly inhibits leukocyte transmigration, aortic inflammation and remodeling to mitigate AAA formation. Panx1 expression is upregulated in human AAAs and retrospective clinical data demonstrated reduced mortality in aortic aneurysm patients treated with Panx1 inhibitors. Collectively, these data identify Panx1 signaling as a contributory mechanism of AAA formation. Pannexin-1 ion channels on endothelial cells regulate vascular inflammation and remodeling to mediate aortic aneurysm formation. Pharmacological blockade of Pannexin-1 channels may offer translational therapeutic mitigation of aneurysmal pathology.
Collapse
|
6
|
Wang H, Xiao Y, Ren X, Wan D. Prognostic value of programmed death ligand 1 (PD-L1) in glioblastoma: a systematic review, meta-analysis and validation based on dataset. Bioengineered 2021; 12:10366-10378. [PMID: 34903133 PMCID: PMC8809998 DOI: 10.1080/21655979.2021.1996515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 10/28/2022] Open
Abstract
Excellent prognostic value of programmed death ligand 1 (PD-L1) is observed in patients with other cancers; however, the prognostic value of PD-L1 in glioblastoma (GBM) remains unclear. Therefore, this meta-analysis evaluated the prognostic value of PD-L1 in GBM. We performed a systematic search in databases to screen eligible articles. The hazard ratio (HR) and 95% confidence interval (95% CI) were extracted from included articles. This meta-analysis included 15 studies, and the forest plot indicated that increased PD-L1 expression was associated with poorer overall survival (OS) of GBM (HR, 1.16; 95% CI, 1.05-1.27; P = 0.002). Furthermore, stratified analysis confirmed that PD-L1 expression was associated with unfavorable OS at the protein level (HR, 1.30; 95% CI, 1.13-1.48; P< 0.001) and messenger ribonucleic acid (mRNA) level (HR, 1.05; 95% CI, 1.00-1.09; P= 0.041). The analysis of a dataset verified the prognostic value of PD-L1 and revealed an association between PD-L1 mRNA expression and the status of isocitrate dehydrogenase (IDH). In conclusion, increased PD-L1 expression predicts unfavorable OS in GBM and may be a promising prognostic biomarker of GBM.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Youchao Xiao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingguang Ren
- Department of Neurosurgery, General Hospital of Tisco, Taiyuan, China
| | - Dahai Wan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Boric MP, Durán WN, Figueroa XF. Editorial: Cell Communication in Vascular Biology. Front Physiol 2021; 12:656959. [PMID: 33746785 PMCID: PMC7965979 DOI: 10.3389/fphys.2021.656959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Gap Junctions between Endothelial Cells Are Disrupted by Circulating Extracellular Vesicles from Sickle Cell Patients with Acute Chest Syndrome. Int J Mol Sci 2020; 21:ijms21238884. [PMID: 33255173 PMCID: PMC7727676 DOI: 10.3390/ijms21238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.
Collapse
|
9
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
10
|
Yang D, Shen J, Fan J, Chen Y, Guo X. Paracellular permeability changes induced by multi-walled carbon nanotubes in brain endothelial cells and associated roles of hemichannels. Toxicology 2020; 440:152491. [PMID: 32413421 DOI: 10.1016/j.tox.2020.152491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have promising applications in neurology depending on their unique physicochemical properties. However, there is limited understanding of their impacts on brain microvascular endothelial cells, the cells lining the vessels and maintaining the low and selective permeability of the blood-brain barrier. In this study, we examined the influence of pristine MWCNT (p-MWCNT) and carboxylated MWCNT (c-MWCNT) on permeability and tight junction tightness of murine brain microvascular endothelial cells, and investigated the potential mechanisms in the sight of hemichannel activity. Treatment with p-MWCNT for 24 h at subtoxic concentration (20 μg/mL) decreased the protein expression of occludin, disrupted zonula occludens-1 continuity, and elevated monolayer permeability as quantified by transendothelial electrical resistance and paracellular flux of 4000 Da fluorescein isothiocyanate-dextran conjugates. Moreover, p-MWCNT exposure also increased hemichannel activity with upregulated protein expression and altered subcellular localization of connexin (Cx)43 and pannexin (Panx)1. p-MWCNT-induced elevation in endothelial permeability could be prevented by hemichannel inhibitor carbenoxolone and peptide blocker of Cx43 and Panx1, indicating the crucial role of activated Cx43 and Panx1 hemichannels. Furthermore, Cx43 and Panx1 hemichannel-mediated ATP release might be involved in p-MWCNT-induced rise in endothelial permeability. In contrast, the above effects caused by p-MWCNT were not observed in cells treated with c-MWCNT, the functionalized form with more stable dispersion and a lower tendency to aggregate. Our study contributes further understanding of the impact of MWCNTs on brain endothelial tightness and permeability, which may have important implications for the safety application of MWCNTs in nanomedicine.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jingpu Fan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
11
|
CGRP signalling inhibits NO production through pannexin-1 channel activation in endothelial cells. Sci Rep 2019; 9:7932. [PMID: 31138827 PMCID: PMC6538758 DOI: 10.1038/s41598-019-44333-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O2• -) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O2• --dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.
Collapse
|
12
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
13
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Labra VC, Santibáñez CA, Gajardo-Gómez R, Díaz EF, Gómez GI, Orellana JA. The Neuroglial Dialog Between Cannabinoids and Hemichannels. Front Mol Neurosci 2018; 11:79. [PMID: 29662436 PMCID: PMC5890195 DOI: 10.3389/fnmol.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
The formation of gap junctions was initially thought to be the central role of connexins, however, recent evidence had brought to light the high relevance of unopposed hemichannels as an independent mechanism for the selective release of biomolecules during physiological and pathological conditions. In the healthy brain, the physiological opening of astrocyte hemichannels modulates basal excitatory synaptic transmission. At the other end, the release of potentially neurotoxic compounds through astroglial hemichannels and pannexons has been insinuated as one of the functional alterations that negatively affect the progression of multiple brain diseases. Recent insights in this matter have suggested encannabinoids (eCBs) as molecules that could regulate the opening of these channels during diverse conditions. In this review, we discuss and hypothesize the possible interplay between the eCB system and the hemichannel/pannexon-mediated signaling in the inflamed brain and during event of synaptic plasticity. Most findings indicate that eCBs seem to counteract the activation of major neuroinflammatory pathways that lead to glia-mediated production of TNF-α and IL-1β, both well-known triggers of astroglial hemichannel opening. In contrast to the latter, in the normal brain, eCBs apparently elicit the Ca2+-activation of astrocyte hemichannels, which could have significant consequences on eCB-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Cristian A Santibáñez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
15
|
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 2018; 135:387-407. [PMID: 29428972 DOI: 10.1007/s00401-018-1812-4] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K+, Ca2+, and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS of venules/veins as well as other pathways; such a system may or may not constitute a true 'circulation', but, at the least, suggests a comprehensive re-evaluation of the previously proposed 'glymphatic' concepts in favour of a new system better taking into account basic cerebrovascular physiology and fluid transport considerations.
Collapse
Affiliation(s)
- N Joan Abbott
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK.
| | - Michelle E Pizzo
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jane E Preston
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK
| | - Damir Janigro
- Flocel Inc., Cleveland, OH, USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert G Thorne
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA.
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, USA.
- , 5113 Rennebohm Hall, 777 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
16
|
Shestopalov VI, Panchin Y, Tarasova OS, Gaynullina D, Kovalzon VM. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle. Front Cell Neurosci 2017; 11:210. [PMID: 28769767 PMCID: PMC5511838 DOI: 10.3389/fncel.2017.00210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1−/− mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of MedicineMiami, FL, United States.,Microbiology and Bioengineering Laboratory, Department of Genomics and Biotechnology, Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
| | - Yuri Panchin
- Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia.,Department of Mathematical Methods in Biology, Belozersky Institute, M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | - Olga S Tarasova
- Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia.,Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State UniversityMoscow, Russia.,State Research Center of the Russian Federation, Institute for Biomedical Problems, Russian Academy of SciencesMoscow, Russia
| | - Dina Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State UniversityMoscow, Russia.,Department of Physiology, Russian National Research Medical UniversityMoscow, Russia
| | - Vladimir M Kovalzon
- Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia.,Severtsov Institute Ecology and Evolution, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
17
|
Abstract
While stroke research represents the primary interface between circulation and brain research, the hemostasis system also carries a pivotal role in the mechanism of vascular brain injury. The complex interrelated events triggered by the energy crisis have a specific spatial and temporal pattern arching from the initial damage to the final events of brain repair. The complexity of the pathophysiology make it difficult to model this disease, therefore it is challenging to find appropriate therapeutic targets. The ever-persistent antagonism between the positive results of drug candidates in the experimental stroke models and the failures of the clinical trials prompts changes in the research strategy, especially in the field of potential neuroprotective therapies. System biology approach could initiate new directions in the future for both preclinical and clinical research. Incentive methods aimed at anti-apoptosis mechanisms and the augmentation of post-ischemic brain repair could benefit the facts, that these processes can be targeted much longer following the cell-necrosis in the hyper-acute phase. Sequential monitoring of candidate genes and proteins responsible for stroke progression and post-stroke repair seems to be useful both in therapeutic target-identification, and in clinical testing. Understanding the mechanism behind the effect of selegiline and other drugs capable of activating the anti-apoptotic gene expression could help to find new approaches to enhance the regenerative potential in the remodeling of neuronal and microvascular networks.
Collapse
Affiliation(s)
- Z Nagy
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary.
| | - S Nardai
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary
| |
Collapse
|
18
|
Begandt D, Good ME, Keller AS, DeLalio LJ, Rowley C, Isakson BE, Figueroa XF. Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 2017; 18:2. [PMID: 28124621 PMCID: PMC5267334 DOI: 10.1186/s12860-016-0119-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Control of blood flow distribution and tissue homeostasis depend on the tight regulation of and coordination between the microvascular network and circulating blood cells. Channels formed by connexins or pannexins that connect the intra- and extracellular compartments allow the release of paracrine signals, such as ATP and prostaglandins, and thus play a central role in achieving fine regulation and coordination of vascular function. This review focuses on vascular connexin hemichannels and pannexin channels. We review their expression pattern within the arterial and venous system with a special emphasis on how post-translational modifications by phosphorylation and S-nitrosylation of these channels modulate their function and contribute to vascular homeostasis. Furthermore, we highlight the contribution of these channels in smooth muscle cells and endothelial cells in the regulation of vasomotor tone as well as how these channels in endothelial cells regulate inflammatory responses such as during ischemic and hypoxic conditions. In addition, this review will touch on recent evidence implicating a role for these proteins in regulating red blood cell and platelet function.
Collapse
Affiliation(s)
- Daniela Begandt
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alex S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Carol Rowley
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Shuvaev AN, Salmin VV, Kuvacheva NV, Pozhilenkova EA, Morgun AV, Lopatina OL, Salmina AB, Illarioshkin SN. Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit. Rev Neurosci 2016; 27:365-76. [PMID: 26641963 DOI: 10.1515/revneuro-2015-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023]
Abstract
Patch clamp is a golden standard for studying (patho)physiological processes affecting membranes of excitable cells. This method is rather labor-intensive and requires well-trained professionals and long-lasting experimental procedures; therefore, accurate designing of the experiments with patch clamp methodology as well as collecting and analyzing the data obtained are essential for the widely spread implementation of this method into the routine research practice. Recently, the method became very prospective not only for the characterization of single excitable cells but also for the detailed assessment of intercellular communication, i.e. within the neurovascular unit. Here, we analyze the main advantages and disadvantages of patch clamp method, with special focus on the tendencies in clamping technique improvement with the help of patch electrodes for the assessment of intercellular communication in the brain.
Collapse
|
20
|
Schmidt K, Windler R, de Wit C. Communication Through Gap Junctions in the Endothelium. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:209-40. [PMID: 27451099 DOI: 10.1016/bs.apha.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney.
Collapse
Affiliation(s)
- K Schmidt
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - R Windler
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - C de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
21
|
Abstract
Pannexin channels are newly discovered ATP release channels expressed throughout the body. Pannexin 1 (Panx1) channels have become of great interest as they appear to participate in a multitude of signalling cascades, including regulation of vascular function. Although numerous Panx1 pharmacological inhibitors have been discovered, these inhibitors are not specific for Panx1 and have additional effects on other proteins. Therefore, molecular tools, such as RNA interference and knockout animals, are needed to demonstrate the role of pannexins in various cellular functions. This review focuses on the known roles of Panx1 related to purinergic signalling in the vasculature focusing on post-translational modifications and channel gating mechanisms that may participate in the regulated release of ATP.
Collapse
|
22
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
23
|
Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 2015; 72:2779-92. [PMID: 26091747 PMCID: PMC11113959 DOI: 10.1007/s00018-015-1959-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
Abstract
Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
24
|
Freitas-Andrade M, Naus CC. Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience 2015; 323:207-21. [PMID: 25913636 DOI: 10.1016/j.neuroscience.2015.04.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022]
Abstract
The World Health Organization has predicted that by 2040 neurodegenerative diseases will overtake cancer to become the world's second leading cause of death after cardiovascular disease. This has sparked the development of several European and American brain research initiatives focusing on elucidating the underlying cellular and molecular mechanisms of neurodegenerative diseases. Connexin (Cx) and pannexin (Panx) membrane channel proteins are conduits through which neuronal, glial, and vascular tissues interact. In the brain, this interaction is highly critical for homeostasis and brain repair after injury. Understanding the molecular mechanisms by which these membrane channels function, in health and disease, might be particularly influential in establishing conceptual frameworks to develop new therapeutics against Cx and Panx channels. This review focuses on current insights and emerging concepts, particularly the impact of connexin43 and pannexin1, under neuroprotective and neurodegenerative conditions within the context of astrocytes.
Collapse
Affiliation(s)
- M Freitas-Andrade
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C C Naus
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Muñoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci 2015; 9:59. [PMID: 25805969 PMCID: PMC4354411 DOI: 10.3389/fncel.2015.00059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process.
Collapse
Affiliation(s)
- Manuel F Muñoz
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mariela Puebla
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Xavier F Figueroa
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
26
|
Kaneko Y, Tachikawa M, Akaogi R, Fujimoto K, Ishibashi M, Uchida Y, Couraud PO, Ohtsuki S, Hosoya KI, Terasaki T. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J Pharmacol Exp Ther 2015; 353:192-200. [PMID: 25670633 DOI: 10.1124/jpet.114.220210] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of blood-brain barrier (BBB) transport function is thought to exacerbate neuronal damage in acute ischemic stroke. The purpose of this study was to clarify the characteristics of pannexin (Px) and/or connexin (Cx) hemichannel(s)-mediated transport of organic anions and cations in human BBB endothelial cell line hCMEC/D3 and to identify inhibitors of hemichannel opening in hCMEC/D3 cells in the absence of extracellular Ca(2+), a condition mimicking acute ischemic stroke. In the absence of extracellular Ca(2+), the cells showed increased uptake and efflux transport of organic ionic fluorescent dyes. Classic hemichannel inhibitors markedly inhibited the enhanced uptake and efflux. Quantitative targeted absolute proteomics confirmed Px1 and Cx43 protein expression in plasma membrane of hCMEC/D3 cells. Knockdown of Px1 and Cx43 with the small interfering RNAs significantly inhibited the enhanced uptake and efflux of organic anionic and cationic fluorescent dyes. Clinically used cilnidipine and progesterone, which have neuroprotective effects in animal ischemia models, were identified as inhibitors of hemichannel opening. These findings suggest that altered transport dynamics at the human BBB in the absence of extracellular Ca(2+) is at least partly attributable to opening of Px1 and Cx43 hemichannels. Therefore, we speculate that Px1 and Cx43 may be potential drug targets to ameliorate BBB transport dysregulation during acute ischemia.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Ryo Akaogi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Kazuhisa Fujimoto
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Megumi Ishibashi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Pierre-Olivier Couraud
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Sumio Ohtsuki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Ken-ichi Hosoya
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| |
Collapse
|
27
|
Boassa D, Nguyen P, Hu J, Ellisman MH, Sosinsky GE. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front Cell Neurosci 2015; 8:468. [PMID: 25698922 PMCID: PMC4313697 DOI: 10.3389/fncel.2014.00468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.
Collapse
Affiliation(s)
- Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Phuong Nguyen
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Junru Hu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Limmer S, Weiler A, Volkenhoff A, Babatz F, Klämbt C. The Drosophila blood-brain barrier: development and function of a glial endothelium. Front Neurosci 2014; 8:365. [PMID: 25452710 PMCID: PMC4231875 DOI: 10.3389/fnins.2014.00365] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Collapse
Affiliation(s)
- Stefanie Limmer
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Felix Babatz
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| |
Collapse
|
29
|
Tong X, Han X, Yu B, Yu M, Jiang G, Ji J, Dong S. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway. Oncol Rep 2014; 33:207-14. [PMID: 25355463 DOI: 10.3892/or.2014.3571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/17/2014] [Indexed: 11/05/2022] Open
Abstract
Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Binbin Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Ji
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|