1
|
Li X, Huang L, Xiao J, Zhang X. Pharmacokinetic study of multicomponent in Hong-Hua-Xiao-Yao tablet. Biomed Chromatogr 2024; 38:e5830. [PMID: 38445357 DOI: 10.1002/bmc.5830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 03/07/2024]
Abstract
Hong-Hua-Xiao-Yao tablet (HHXYT) is attracting attention increasingly because of its use in treatment of mammary gland hyperplasia (MGH) and menopausal syndrome. However, its pharmacokinetics remains unclear. This study developed a sensitive and rapid method for simultaneous determination of 10 compounds of HHXYT in rat plasma by liquid chromatography-tandem mass spectrometry and to compare the pharmacokinetics of these compounds in MGH rats and sham operated rats. The linearity, accuracy, precision, stability and matrix effect were within acceptable ranges. This established method was successfully applied to a pharmacokinetics study of 10 compounds in sham operated and MGH rats. According to the results, the bioavailability of glycyrrhetinic acid was highest in MGH rats and sham operated rats. The mean residence times of glycyrrhetinic acid and glycyrrhetinic acid 3-O-glucuronide were higher than those of the other compounds while the mean residence time and half-life of liquiritin, isoliquiritin and paeoniflorin were lower. Some pharmacokinetic parameters of ormononetin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, paeoniflorin, protocatechuic acid and senkyunolide I were significantly different between MGH rats and sham operated rats. This study elucidated the dynamic changes of multiple components in rats after oral administration of HHXYT systematically and comprehensively, which provided guidance for clinical application.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, China
- Jiangxi Puzheng Pharmaceutical Co., Ltd., Jian, China
| | - Leyi Huang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co., Ltd., Jian, China
| | - Xuemei Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cheng Y, Azad MAK, Ding S, Liu Y, Blachier F, Ye T, Kong X. Metabolomics Analysis Reveals the Potential Relationship Between Sow Colostrum and Neonatal Serum Metabolites in Different Pig Breeds. Mol Nutr Food Res 2023; 67:e2200677. [PMID: 37436085 DOI: 10.1002/mnfr.202200677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/18/2023] [Indexed: 07/13/2023]
Abstract
SCOPE Colostrum composition is an important indicator of newborn piglet survival and growth. However, limited information is available on the association between colostrum metabolites in sows and serum metabolites in neonates. Therefore, the present study aims to determine the metabolites in the colostrum of sows, in the serum of their offspring piglets, and mother-offspring metabolite correlations in different pig breeds. METHODS AND RESULTS Colostrum and serum samples are collected from 30 sows and their piglets from three pig breeds (Taoyuan black, TB; Xiangcun black, XB; and Duroc) to analyze the targeted metabolomics. This study identifies 191 metabolites in the colostrum of sows, including fatty acids, amino acids, bile acids, carnitines, carbohydrates, and organic acids, and the concentrations of these metabolites are highest in the TB pigs. Metabolite profiles in sow colostrum and piglet serum differ among Duroc, TB, and XB pigs, and the matching metabolites are mainly enriched in the digestive system and transportation pathways. Furthermore, identification of the associations between metabolites in the colostrum of sows and their neonate sera suggests that metabolite compounds from colostrum are transported to suckling piglets. CONCLUSION The present study findings deepen the understanding of the composition of sow colostrum metabolites and the transportation of metabolites from sow colostrum to piglets. The findings also provide insight regarding the development of dietary formulas that resemble the sow colostrum for newborn animals to maintain health and improve the early growth of offspring.
Collapse
Affiliation(s)
- Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sujuan Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yating Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | | | - Ting Ye
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol 2021; 105:4819-4832. [PMID: 34106313 PMCID: PMC8188536 DOI: 10.1007/s00253-021-11381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Abstract Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. Key points •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | | | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan.
| |
Collapse
|
4
|
Metal coordination by L-amino acid oxidase derived from flounder Platichthys stellatus is structurally essential and regulates antibacterial activity. Appl Microbiol Biotechnol 2020; 104:9645-9654. [DOI: 10.1007/s00253-020-10914-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
|
5
|
Aso K, Nishigawa T, Nagamachi S, Takakura M, Furuse M. Orally administrated D-arginine exhibits higher enrichment in the brain and milk than L-arginine in ICR mice. J Vet Med Sci 2020; 82:307-313. [PMID: 31932535 PMCID: PMC7118480 DOI: 10.1292/jvms.19-0630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
D-Amino acids exert various physiological functions and are widely present in animals.
However, they are absorbed to a lesser extent than L-amino acids. Little is known about
D-arginine (D-Arg); however, its isomer L-Arg serves as a substrate for several
metabolites and exhibits various functions including promotion of growth hormone
secretion. Milk is the only nutrient source for infants; it plays an important role during
their initial growth and brain development. No studies have evaluated the availability of
D-Arg in the brain and milk in mammals. Here, we have studied the differential
availability of orally administered D- and L-Arg in the brain and milk using ICR mice. Our
results revealed that without D-Arg administration, D-Arg was undetectable in both plasma
and brain samples. However, the plasma D-Arg was about twice the concentration of L-Arg
post administration of the same. In the cerebral cortex and hypothalamus, L-Arg
concentration remained almost constant for over period of 90 min after L-Arg treatment.
Nevertheless, the L-Arg concentration decreased after D-Arg administration with time
compared to the case post L-Arg administration. Contrastingly, D-Arg level sharply
increased at both the brain regions with time after D-Arg treatment. Furthermore, L-Arg
concentration in the milk hardly increased after L-Arg administration. Interestingly, oral
administration of D-Arg showed efficient enrichment of D-Arg in milk, compared with L-Arg.
Thus, our results imply that D-Arg may be available for brain development and infant
nourishment through milk as an oral drug and/or nutrient supplement.
Collapse
Affiliation(s)
- Kenta Aso
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuma Nishigawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Satsuki Nagamachi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Takakura
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Nagamachi S, Nishigawa T, Takakura M, Ikeda H, Kodaira M, Yamaguchi T, Chowdhury VS, Yasuo S, Furuse M. Dietary L-serine modifies free amino acid composition of maternal milk and lowers the body weight of the offspring in mice. J Vet Med Sci 2017; 80:235-241. [PMID: 29269705 PMCID: PMC5836758 DOI: 10.1292/jvms.17-0577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The growth of offspring is affected not only by the protein in maternal milk but also by the free amino acids (FAAs) contained in it. L-Serine (L-Ser) is known as an important FAA for the development of the central nervous system and behavioral activity. However, it is not clear whether L-Ser is transported into the pool of FAAs contained in milk and thereby affects the growth of offspring. Using mice, the current study investigated the effects of dietary L-Ser during pregnancy and lactation on milk and plasma FAA composition, as well as on growth, behavior, and plasma FAAs of offspring. Dietary L-Ser did not significantly affect the maternal, anxiety-like, or cognitive behaviors of either the dam or the offspring. The FAA composition notably differed between plasma and milk in dams. In milk, dietary L-Ser increased free L-Ser levels, while glutamic acid, L-alanine, D-alanine and taurine levels were decreased. The body weight of the offspring was lowered by dietary L-Ser. The concentrations of plasma FAAs in 13-day-old offspring (fed only milk) were not altered, but 20-day-old offspring (fed both milk and parental diet) showed higher plasma L-Ser and D-Ser concentrations as a result of the dietary L-Ser treatment. In conclusion, the present study found that dietary L-Ser transported easily from maternal plasma to milk and that dietary L-Ser treatment could change the FAA composition of milk, but that an enhanced level of L-Ser in milk did not enhance the plasma L-Ser level in the offspring.
Collapse
Affiliation(s)
- Satsuki Nagamachi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Takuma Nishigawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mayumi Takakura
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Momoko Kodaira
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Takeshi Yamaguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit Sur Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
7
|
Zhang J, Yang D, Yan Q, Jiang Z. Characterization of a novel l -phenylalanine oxidase from Coprinopsis cinereus and its application for enzymatic production of phenylpyruvic acid. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|