1
|
Kulikov EI, Malakheeva LI, Komarchev AS. The role of BTG1 and BTG2 genes and their effects on insulin in poultry. Front Physiol 2024; 15:1315346. [PMID: 38357499 PMCID: PMC10864570 DOI: 10.3389/fphys.2024.1315346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Egor Igorevich Kulikov
- Federal Scientific Center, All-Russian Research and Technological Poultry Institute, RAS, Sergiyev Posad, Russia
| | | | | |
Collapse
|
2
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
3
|
Zhang H, Gao L, Zhang W, Li K. Differentiation of rat bone marrow mesenchymal stem cells into neurons induced by bone morphogenetic protein 7 in vitro. Neurol Res 2022; 45:440-448. [PMID: 36542543 DOI: 10.1080/01616412.2022.2154487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Spinal cord injury (SCI) is caused by external direct or indirect factors with high disability rate, which may even endanger the life of patients. To explore the role of bone morphogenetic protein 7 (BMP-7) in the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into neurons in vitro. METHODS BMSCs were isolated and cultured by whole bone marrow adherence method. Adipogenic induction and osteogenic differentiation were used to test the multi⁃directional differentiation ability of BMSCs. RESULTS After 28 days of adipogenic induction, BMSCs showed lipid droplets in the cytoplasm. After osteogenic induction, there were opaque lumps of mineral nodules in BMSCs. There were also orange-red or red mineral nodules in the extracellular matrix. The BMSCs in the 75 ng/ml BMP-7 group were morphologically similar to the neurons. After induction with BMP-7 for 2 h, the NF200 mRNA expression was higher, mRNA expression levels of SYN1, MAP2 and GFAP were higher. Positive rate of immunofluorescence staining in the BMP-7 group was notably increased. The positive rate of NSE immunofluorescence staining in the BMP-7 group was higher. CONCLUSION BMP-7 can induce rat BMSCs to differentiate into neurons in vitro.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Orthopaedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Lei Gao
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Wen Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Kuanxin Li
- Department of Orthopaedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Transl Psychiatry 2022; 12:361. [PMID: 36056013 PMCID: PMC9440106 DOI: 10.1038/s41398-022-02137-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.
Collapse
|
5
|
Anderson MK. Shifting gears: Id3 enables recruitment of E proteins to new targets during T cell development and differentiation. Front Immunol 2022; 13:956156. [PMID: 35983064 PMCID: PMC9378783 DOI: 10.3389/fimmu.2022.956156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the “Clutch” model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity (“clutch in”) long enough to allow shifting of the genomic landscape into a different “gear”, resulting in accessibility to different E protein target genes once Id3 decreases (“clutch out”) and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.
Collapse
Affiliation(s)
- Michele K. Anderson
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
6
|
Ikeda Y, Taniguchi K, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Reactive oxygen species may influence on the crossroads of stemness, senescence, and carcinogenesis in a cell via the roles of APRO family proteins. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excessive reactive oxygen species (ROS) may cause oxidative stress which is involved in aging and in the pathogenesis of various human diseases. Whereas unregulated levels of the ROS may be harmful, regulated basal level of ROS are even necessary to support cellular functions as a second messenger for homeostasis under physiological conditions. Therefore, redox medicine could develop as a new therapeutic concept for human health-benefits. Here, we introduce the involvement of ROS on the crossroads of stemness, senescence, and carcinogenesis in a stem cell and cancer cell biology. Amazingly, the anti-proliferative (APRO) family anti-proliferative proteins characterized by immediate early growth responsive genes may also be involved in the crossroads machinery. The biological functions of APRO proteins (APROs) seem to be quite intricate, however, which might be a key modulator of microRNAs (miRNAs). Given the crucial roles of ROS and APROs for pathophysiological functions, upcoming novel therapeutics should include vigilant modulation of the redox state. Next generation of medicine including regenerative medicine and/or cancer therapy will likely comprise strategies for altering the redox environment with the APROs via the modulation of miRNAs as well as with the regulation of ROS of cells in a sustainable manner.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
7
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
8
|
Dong LX, Bao HL, Zhang YY, Liu Y, Zhang GW, An FM. RETRACTED: MicroRNA-16-5p/BTG2 axis affects neurological function, autophagy and apoptosis of hippocampal neurons in Alzheimer's disease. Brain Res Bull 2021; 175:254-262. [PMID: 34217799 DOI: 10.1016/j.brainresbull.2021.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/17/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as there are concerns about the reliability of the results. Concerns have been raised about the western blot bands in Figures 6 B + D having the same eyebrow shaped phenotype as found in many other publications as detailed here (https://pubpeer.com/publications/B32F93859FBAA13471ED0FFCA5BCB6). The journal requested the corresponding author to comment on these concerns and send the raw data, however the author was not able to provide uncropped images of the original gels. The Editor-in-Chief therefore no longer has confidence in the data and conclusions of this study.
Collapse
Affiliation(s)
- Li-Xia Dong
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China
| | - Hai-Lan Bao
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China
| | - Yan-Yun Zhang
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China
| | - Yu Liu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China
| | - Guo-Wei Zhang
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China.
| | - Feng-Mao An
- Institute of Dementia, Inner Mongolia University for Nationalities, Tongliao, 028002, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028002, Inner Mongolia, PR China.
| |
Collapse
|
9
|
Pagin M, Pernebrink M, Pitasi M, Malighetti F, Ngan CY, Ottolenghi S, Pavesi G, Cantù C, Nicolis SK. FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes. Cells 2021; 10:cells10071757. [PMID: 34359927 PMCID: PMC8303191 DOI: 10.3390/cells10071757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Mattia Pitasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Federica Malighetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Chew-Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Via Celoria 26, 20134 Milano, Italy;
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Correspondence: (C.C.); (S.K.N.)
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
- Correspondence: (C.C.); (S.K.N.)
| |
Collapse
|
10
|
Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Séraphin B, Mauxion F. A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biol 2021; 18:2450-2465. [PMID: 34060423 PMCID: PMC8632095 DOI: 10.1080/15476286.2021.1925476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiproliferative BTG/Tob proteins interact directly with the CAF1 deadenylase subunit of the CCR4-NOT complex. This binding requires the presence of two conserved motifs, boxA and boxB, characteristic of the BTG/Tob APRO domain. Consistently, these proteins were shown to stimulate mRNA deadenylation and decay in several instances. Two members of the family, BTG1 and BTG2, were reported further to associate with the protein arginine methyltransferase PRMT1 through a motif, boxC, conserved only in this subset of proteins. We recently demonstrated that BTG1 and BTG2 also contact the first RRM domain of the cytoplasmic poly(A) binding protein PABPC1. To decipher the mode of interaction of BTG1 and BTG2 with partners, we performed nuclear magnetic resonance experiments as well as mutational and biochemical analyses. Our data demonstrate that, in the context of an APRO domain, the boxC motif is necessary and sufficient to allow interaction with PABPC1 but, unexpectedly, that it is not required for BTG2 association with PRMT1. We show further that the presence of a boxC motif in an APRO domain endows it with the ability to stimulate deadenylation in cellulo and in vitro. Overall, our results identify the molecular interface allowing BTG1 and BTG2 to activate deadenylation, a process recently shown to be necessary for maintaining T-cell quiescence.
Collapse
Affiliation(s)
- Hamza Amine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Nina Ripin
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland
| | - Sahil Sharma
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Frédéric H Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zürich, Switzerland
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
11
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
12
|
Fu R, Gillen AE, Grabek KR, Riemondy KA, Epperson LE, Bustamante CD, Hesselberth JR, Martin SL. Dynamic RNA Regulation in the Brain Underlies Physiological Plasticity in a Hibernating Mammal. Front Physiol 2021; 11:624677. [PMID: 33536943 PMCID: PMC7848201 DOI: 10.3389/fphys.2020.624677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hibernation is a physiological and behavioral phenotype that minimizes energy expenditure. Hibernators cycle between profound depression and rapid hyperactivation of multiple physiological processes, challenging our concept of mammalian homeostasis. How the hibernator orchestrates and survives these extremes while maintaining cell to organismal viability is unknown. Here, we enhance the genome integrity and annotation of a model hibernator, the 13-lined ground squirrel. Our new assembly brings this genome to near chromosome-level contiguity and adds thousands of previously unannotated genes. These new genomic resources were used to identify 6,505 hibernation-related, differentially-expressed and processed transcripts using RNA-seq data from three brain regions in animals whose physiological status was precisely defined using body temperature telemetry. A software tool, squirrelBox, was developed to foster further data analyses and visualization. SquirrelBox includes a comprehensive toolset for rapid visualization of gene level and cluster group dynamics, sequence scanning of k-mer and domains, and interactive exploration of gene lists. Using these new tools and data, we deconvolute seasonal from temperature-dependent effects on the brain transcriptome during hibernation for the first time, highlighting the importance of carefully timed samples for studies of differential gene expression in hibernation. The identified genes include a regulatory network of RNA binding proteins that are dynamic in hibernation along with the composition of the RNA pool. In addition to passive effects of temperature, we provide evidence for regulated transcription and RNA turnover during hibernation. Significant alternative splicing, largely temperature dependent, also occurs during hibernation. These findings form a crucial first step and provide a roadmap for future work toward defining novel mechanisms of tissue protection and metabolic depression that may 1 day be applied toward improving human health.
Collapse
Affiliation(s)
- Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Grabek
- Fauna Bio Incorporated, Emeryville, CA, United States.,Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - L Elaine Epperson
- Center for Genes, Environment & Health, National Jewish Health, Denver, CO, United States
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Jay R Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Sandra L Martin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Cell & Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
13
|
Li Y, Huo J, He J, Zhang Y, Ma X. BTG1 inhibits malignancy as a novel prognosis signature in endometrial carcinoma. Cancer Cell Int 2020; 20:490. [PMID: 33041670 PMCID: PMC7542768 DOI: 10.1186/s12935-020-01591-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is one of the three major malignant tumors of the female reproductive system. In recent years, the incidence and mortality rate of EC have increased. B-cell translocation gene 1 (BTG1) is an anti-proliferation gene that regulates the occurrence and development of a variety of tumors, but there is no research regarding this gene in EC. Methods Based on The Cancer Genome Atlas (TCGA) database, we used a variety of bioinformatics tools and databases to explore the expression and prognosis of BTG1. We verified expression and prognosis of BTG1 in EC using qRT-PCR and analyzed the relevant clinicopathological parameters. We functionally enriched BTG1 and related genes in EC patients through the bioinformatics website and analyzed miRNA targets of BTG1 and interacting protein networks. Cell proliferation, wound healing, transwell invasion, and cell apoptosis assays were used to detect the effects of BTG1 on the malignant biological behavior of endometrial carcinoma cells (ECCs). The effect of BTG1 on the epithelial-to-mesenchymal transition (EMT) process was detected using western blot. Results We analyzed the expression and prognosis of BTG1 based on TCGA and found that low expression of BTG1 was associated with poor EC prognosis. The qRT-PCR suggested that BTG1 had low expression in EC. BTG1 expression was significantly correlated with overall survival (OS) shortening. Clinicopathological analysis suggested that expression of BTG1 was related to invasion depth and the International Federation of Gynecology and Obstetrics (FIGO) stage. EC pathological tissue type, fertility history, lymphatic metastasis, menopause, estrogen receptor (ER), progesterone receptor (PR), and age of diagnosis were not related. Functional enrichment analysis showed that BTG1 plays an important role in regulating embryonic development, tumorigenesis, apoptosis, and cell cycle. Biological behavior experiments suggest that BTG1 inhibits proliferation, migration, and invasion of ECCs, and promotes apoptosis of ECCs. Western blot indicated that BTG1 inhibited the EMT process of ECCs. Conclusions BTG1, as a tumor suppressor gene, plays an important role in the occurrence and development of EC. We believe that BTG1 can be used as a potential prognostic biomarker for EC.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Jianing Huo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Yunzheng Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| |
Collapse
|
14
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
15
|
TRIM6 promotes colorectal cancer cells proliferation and response to thiostrepton by TIS21/FoxM1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:23. [PMID: 31992359 PMCID: PMC6988281 DOI: 10.1186/s13046-019-1504-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Tripartite motif-containing proteins (TRIM) play a crucial role in carcinogenesis. Little attention has been focused on the possible functions of TRIM6 on carcinogenesis. METHODS The expression levels of TRIM6 were assessed in colorectal cancer (CRC) samples. TRIM6 expression was knocked down in CRC cell lines, and subjected to Cell counting kit-8 (CCK-8), bromodeoxyuridine (BrdU) incorporation and cell cycle assays. Immunoprecipitation and proteomics analysis was performed to identify potential associated proteins of TRIM6. RESULTS TRIM6 expression was up-regulated in CRC samples and TRIM6 expression may be an independent prognostic marker for CRC. Knocking down TRIM6 expression suppressed CRC cell proliferation, induced cell cycle arrested at G2/M phase and increased sensitivity to 5-fluorouracil and oxaliplatin. TIS21, an anti-proliferative protein involved in the regulation of G2/M arrest, was identified as an interaction partner of TRIM6. Moreover, CRC cells with TRIM6 overexpression showed decreased TIS21 protein stability. TIS21 ubiquitination was increased in CRC cells overexpressing TRIM6, but not in those overexpressing TRIM6 E3 catalytic mutant (C15A). Further, Lys5 was essential for TRIM6 mediated TIS21 ubiquitination. TIS21 overexpression reversed the induced effects of TRIM6 overexpression on CRC cell proliferation, and the levels of forkhead box M1 (FoxM1), phosphorylated FoxM1, Cyclin B1 and c-Myc. Thiostrepton, a specific inhibitor for FoxM1, was less effective in anti-proliferative activity against CRC cells with lower level of TRIM6 in vitro and in vivo. CONCLUSIONS Our study suggests that TRIM6 promotes the progression of CRC via TIS21/FoxM1.
Collapse
|
16
|
Differentiation of Bone Marrow Mesenchymal Stem Cells into Neural Lineage Cells Induced by bFGF-Chitosan Controlled Release System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5086297. [PMID: 31032349 PMCID: PMC6457308 DOI: 10.1155/2019/5086297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
Bone marrow mesenchymal stem cells undergo differentiation to different lineages with different efficiencies when induced by different factors. We added a bFGF-chitosan controlled release system (bFGF-CCRS) as an inducer into conditioned medium to facilitate the oriented differentiation of BMSCs into neural lineage cells (eventually mature neurons); furthermore, we synchronized BMSCs to the G0/G1 phase via serum starvation to observe the effect of the inducer on the differentiation direction and efficiency. The nonsynchronized group, chitosan alone (not loaded with bFGF) group, soluble bFGF group, and conditioned medium group served as controls, and we observed the dynamic process of differentiation of BMSCs into neural lineage cells at different time points after the beginning of coculture. We analyzed the binding patterns of bFGF and chitosan and assayed the expression differences of key factors (FGFR1, ERK, and c-fos) and molecular switches (BTG2) that regulate the transformation from cell proliferation to differentiation. We also investigated the potential molecular mechanism of BMSC differentiation into neural lineage cells at a high percentage when induced by bFGF-CCRS.
Collapse
|
17
|
Presutti D, Ceccarelli M, Micheli L, Papoff G, Santini S, Samperna S, Lalli C, Zentilin L, Ruberti G, Tirone F. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018. [PMID: 29538458 PMCID: PMC5851620 DOI: 10.1371/journal.pone.0194206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), the tumor of the cerebellum, is the most frequent brain cancer in childhood and a major cause of pediatric mortality. Based on gene profiling, four MB subgroups have been identified, i.e., Wnt or Sonic Hedgehog (Shh) types, and subgroup 3 or 4. The Shh-type MB has been shown to arise from the cerebellar precursors of granule neurons (GCPs), where a hyperactivation of the Shh pathway leads to their neoplastic transformation. We have previously shown that the gene Tis21 (PC3/Btg2) inhibits the proliferation and promotes the differentiation and migration of GCPs. Moreover, the overexpression or the deletion of Tis21 in Patched1 heterozygous mice, a model of spontaneous Shh-type MB, highly reduces or increases, respectively, the frequency of MB. Here we tested whether Tis21 can inhibit MB allografts. Athymic nude mice were subcutaneously grafted with MB cells explanted from Patched1 heterozygous mice. MB allografts were then injected with adeno-associated viruses either carrying Tis21 (AAV-Tis21) or empty (AAV-CBA). We observed that the treatment with AAV-Tis21 significantly inhibited the growth of tumor nodules, as judged by their volume, and reduced the number of proliferating tumor cells (labeled with Ki67 or BrdU), relative to AAV-CBA-treated control mice. In parallel, AAV-Tis21 increased significantly tumor cells labeled with early and late neural differentiation markers. Overall the results suggest that Tis21-gene therapy slows down MB tumor growth through inhibition of proliferation and enhancement of neural differentiation. These results validate Tis21 as a relevant target for MB therapy.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Giuliana Papoff
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simonetta Santini
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simone Samperna
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
- * E-mail: (GR); (FT)
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
- * E-mail: (GR); (FT)
| |
Collapse
|
18
|
Micheli L, D'Andrea G, Leonardi L, Tirone F. HDAC1, HDAC4, and HDAC9 Bind to PC3/Tis21/Btg2 and Are Required for Its Inhibition of Cell Cycle Progression and Cyclin D1 Expression. J Cell Physiol 2017; 232:1696-1707. [PMID: 27333946 DOI: 10.1002/jcp.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
PC3/Tis21 is a transcriptional cofactor that inhibits proliferation in several cell types, including neural progenitors. Here, we report that PC3/Tis21 associates with HDAC1, HDAC4, and HDAC9 in vivo, in fibroblast cells. Furthermore, when HDAC1, HDAC4, or HDAC9 are silenced in fibroblasts or in a line of cerebellar progenitor cells, the ability of PC3/Tis21 to inhibit proliferation is significantly reduced. Overexpression of HDAC1, HDAC4, or HDAC9 in fibroblasts and in cerebellar precursor cells synergizes with PC3/Tis21 in inhibiting the expression of cyclin D1, a cyclin selectively inhibited by PC3/Tis21. Conversely, the depletion of HDAC1 or HDAC4 (but not HDAC9) in fibroblasts and in cerebellar precursor cells significantly impairs the ability of PC3/Tis21 to inhibit cyclin D1 expression. An analysis of HDAC4 deletion mutants shows that both the amino-terminal moiety and the catalytic domain of HDAC4 associate to PC3/Tis21, but neither alone is sufficient to potentiate the inhibition of cyclin D1 by PC3/Tis21. As a whole, our findings indicate that PC3/Tis21 inhibits cell proliferation in a way dependent on the presence of HDACs, in fibroblasts as well as in neural cells. Considering that several reports have demonstrated that HDACs can act as transcriptional corepressors on the cyclin D1 promoter, our data suggest that the association of PC3/Tis21 to HDACs is functional to recruit them to target genes, such as cyclin D1, for repression of their expression. J. Cell. Physiol. 232: 1696-1707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
19
|
Gentile G, Ceccarelli M, Micheli L, Tirone F, Cavallaro S. Functional Genomics Identifies Tis21-Dependent Mechanisms and Putative Cancer Drug Targets Underlying Medulloblastoma Shh-Type Development. Front Pharmacol 2016; 7:449. [PMID: 27965576 PMCID: PMC5127835 DOI: 10.3389/fphar.2016.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently generated a novel medulloblastoma (MB) mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+/-/Tis21KO ). Its main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs). By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+/-/Tis21 wild-type vs. Ptch1+/-/Tis21 knockout), among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets. The data analysis using bioinformatic tools revealed: (i) a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; (ii) a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype, i.e., the neural cell type involved in group 3 MB; (iii) the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute of Neurological Sciences, National Research Council Catania, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | | |
Collapse
|
20
|
Chung H, Multhaupt HAB, Oh ES, Couchman JR. Minireview: Syndecans and their crucial roles during tissue regeneration. FEBS Lett 2016; 590:2408-17. [PMID: 27383370 DOI: 10.1002/1873-3468.12280] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans, with roles in development, tumorigenesis and inflammation, and growing evidence for involvement in tissue regeneration. This is a fast developing field with the prospect of utilizing tissue engineering and biomaterials in novel therapies. Syndecan receptors are not only ubiquitous in mammalian tissues, regulating cell adhesion, migration, proliferation, and differentiation through independent signaling but also working alongside other receptors. Their importance is highlighted by an ability to interact with a diverse array of ligands, including extracellular matrix glycoproteins, growth factors, morphogens, and cytokines that are important regulators of regeneration. We also discuss the potential for syndecans to regulate stem cell properties, and suggest that understanding these proteoglycans is relevant to exploiting cell, tissue, and materials technologies.
Collapse
Affiliation(s)
- Heesung Chung
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Eok-Soo Oh
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Kim DY. Post-transcriptional regulation of gene expression in neural stem cells. Cell Biochem Funct 2016; 34:197-208. [PMID: 27001557 DOI: 10.1002/cbf.3181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
22
|
Lee HS, Kundu J, Kim RN, Shin YK. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective. Int J Mol Sci 2015; 16:29815-28. [PMID: 26694352 PMCID: PMC4691146 DOI: 10.3390/ijms161226203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.
Collapse
Affiliation(s)
- Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Juthika Kundu
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ryong Nam Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
- The Center for Anti-cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
23
|
The tumor suppressor BTG1 is expressed in the developing digits and regulates skeletogenic differentiation of limb mesodermal progenitors in high density cultures. Cell Tissue Res 2015; 364:299-308. [PMID: 26662056 DOI: 10.1007/s00441-015-2331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
In the developing limb, differentiation of skeletal progenitors towards distinct connective tissues of the digits is correlated with the establishment of well-defined domains of Btg1 gene expression. Zones of high expression of Btg1 include the earliest digit blastemas, the condensing mesoderm at the tip of the growing digits, the peritendinous mesenchyme, and the chondrocytes around the developing interphalangeal joints. Gain- and loss-of function experiments in micromass cultures of skeletal progenitors reveal a negative influence of Btg1 in cartilage differentiation accompanied by up-regulation of Ccn1, Scleraxis and PTHrP. Previous studies have assigned a role to these factors in the aggregation of progenitors in the digit tips (Ccn1), in the differentiation of tendon blastemas (Scleraxis) and repressing hypertrophic cartilage differentiation (PTHrP). Overexpression of Btg1 up-regulates the expression of retinoic acid and thyroid hormone receptors, but, different from other systems, the influence of BTG1 in connective tissue differentiation appears to be independent of retinoic acid and thyroid hormone signaling.
Collapse
|
24
|
Farioli-Vecchioli S, Tirone F. Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plast 2015; 1:41-54. [PMID: 29765834 PMCID: PMC5928538 DOI: 10.3233/bpl-150013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult brain the neurogenesis is mainly restricted to two neurogenic regions: newly generated neurons arise at the subventricular zone (SVZ) of the lateral ventricle and at the subgranular zone of the hippocampal subregion named the dentate gyrus. The hippocampus is involved in learning and memory paradigms and the generation of new hippocampal neurons has been hypothesized to be a pivotal form of plasticity involved in the process. Moreover the dysregulation of hippocampal adult neurogenesis has been recognized and could anticipate several varieties of brain disease such as Alzheimer disease, epilepsy and depression. Over the last few decades numerous intrinsic, epigenetic and environmental factors have been revealed to deeply influence the process of adult neurogenesis, although the underlying mechanisms remain largely unknown. Growing evidence indicates that physical exercise represents one of the main extrinsic factor able to profoundly increase hippocampal adult neurogenesis, by altering neurochemistry and function of newly generated neurons. The present review surveys how neurogenesis can be modulated by cell cycle kinetics and highlights the putative role of the cell cycle length as a key component of the beneficial effect of running for hippocampal adult neurogenesis, both in physiological conditions and in the presence of defective neurogenesis.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| |
Collapse
|